Geographical Dependence of Open Hardware Optimization: Case Study of Solar Photovoltaic Racking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Solar Photovoltaic Racking
2.2. Market Analysis
- London, ON, Canada
- San Jose, CA, USA
- Atlanta, GA, USA
- Port Huron, MI, USA
- Mexico City, Mexico
- Buenos, Argentina
- Santiago, Chile
- Lima, Peru
- Panama City, Panama
- Bogotá, Colombia
3. Results
4. Discussion and Future Work
4.1. Open Source PV Racking Material Selection Considerations
4.1.1. Economics
4.1.2. Fire Resistance and Weathering
4.1.3. Electrical Grounding
4.1.4. Attachment
4.1.5. Advantages, Disadvantages and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raymond, E. The cathedral and the bazaar. Knowl. Technol. Policy 1999, 12, 23–49. [Google Scholar] [CrossRef]
- Herstatt, C.; Ehls, D. Open Source Innovation—The Phenomenon, Participant’s Behavior, Business Implications; Routledge: New York, NY, USA, 2015; ISBN 1-317-62425-4. [Google Scholar]
- Lee, S.-Y.T.; Kim, H.-W.; Gupta, S. Measuring open source software success. Omega 2009, 37, 426–438. [Google Scholar] [CrossRef]
- Weber, S. The Success of Open Source; Harvard University Press: Cambridge, MA, USA, 2005; ISBN 0-674-04499-1. [Google Scholar]
- Lakhani, K.R.; Von Hippel, E. How Open Source Software Works: “Free” User-to-User Assistance. In Produktentwicklung Mit Virtuellen Communities: Kundenwünsche Erfahren und Innovationen Realisieren; Gabler Verlag: Wiesbaden, Germany, 2004; pp. 303–339. [Google Scholar]
- Zeitlyn, D. Gift economies in the development of open source software: Anthropological reflections. Res. Policy 2003, 32, 1287–1291. [Google Scholar] [CrossRef]
- Comino, S.; Manenti, F.M.; Parisi, M.L. From planning to mature: On the success of open source projects. Res. Policy 2007, 36, 1575–1586. [Google Scholar] [CrossRef]
- Hiteshdawda. Realising the Value of Cloud Computing with Linux; Rackspace: San Antonio, TX, USA, 2020. [Google Scholar]
- Parloff, R. How Linux Conquered the Fortune 500; Fortune: New York, NY, USA, 2013. [Google Scholar]
- Supercomputers: All Linux, All the Time. Available online: https://www.zdnet.com/article/supercomputers-all-linux-all-the-time/ (accessed on 16 February 2023).
- IDC. Smartphone Market Share. Available online: https://www.idc.com/promo/smartphone-market-share (accessed on 16 February 2023).
- Eclipse IoT. IoT Developer Survey. 2019. Available online: https://iot.eclipse.org/community/resources/iot-surveys/assets/iot-developer-survey-2019.pdf (accessed on 13 March 2023).
- Gal, M.S. Viral open source: Competition vs. synergy. J. Compet. Law Econ. 2012, 8, 469–506. [Google Scholar] [CrossRef]
- Hausberg, J.P.; Spaeth, S. Why makers make what they make: Motivations to contribute to open source hardware development. R D Manag. 2020, 50, 75–95. [Google Scholar] [CrossRef]
- Gibb, A. Building Open Source Hardware: DIY Manufacturing for Hackers and Makers; Pearson Education: London, UK, 2014; ISBN 0-321-90604-7. [Google Scholar]
- Spaeth, S.; Hausberg, P. Can Open Source Hardware Disrupt Manufacturing Industries? The Role of Platforms and Trust in the Rise of 3d Printing. In the Decentralized and Networked Future of Value Creation; Springer: Cham, Switzerland, 2016; ISBN 3-319-31684-2. [Google Scholar]
- Powell, A. Democratizing production through open source knowledge: From open software to open hardware. Media Cult. Soc. 2012, 34, 691–708. [Google Scholar] [CrossRef]
- Petrovič, P.; Vaško, J. An Open Solution for a Low-Cost Educational Toy. In Proceedings of the Robotics in Education: Current Research and Innovations 10, Vienna, Austria, 10–12 April 2019; Springer: Cham, Switzerland, 2020; pp. 196–208. [Google Scholar]
- Petersen, E.E.; Kidd, R.W.; Pearce, J.M. Impact of DIY Home Manufacturing with 3D Printing on the Toy and Game Market. Technologies 2017, 5, 45. [Google Scholar] [CrossRef]
- Pearce, J.M. Open-Source Lab: How to Build Your Own Hardware and Reduce Research Costs; Newnes: New South Wales, Australia, 2013; ISBN 0-12-410486-X. [Google Scholar]
- Oellermann, M.; Jolles, J.W.; Ortiz, D.; Seabra, R.; Wenzel, T.; Wilson, H.; Tanner, R.L. Open Hardware in Science: The Benefits of Open Electronics. Integr. Comp. Biol. 2022, 62, 1061–1075. [Google Scholar] [CrossRef]
- Chagas, A.M.; Molloy, J.C.; Prieto-Godino, L.L.; Baden, T. Leveraging open hardware to alleviate the burden of COVID-19 on global health systems. PLoS Biol. 2020, 18, e3000730. [Google Scholar] [CrossRef]
- Stirling, J.; Bowman, R. The COVID-19 Pandemic Highlights the Need for Open Design Not Just Open Hardware. Des. J. 2021, 24, 299–314. [Google Scholar] [CrossRef]
- Pearce, J.M. Distributed Manufacturing of Open Source Medical Hardware for Pandemics. J. Manuf. Mater. Process. 2020, 4, 49. [Google Scholar] [CrossRef]
- EVerest: The Open Source Software Stack for EV Charging Infrastructure. Available online: https://www.zdnet.com/article/everest-the-open-source-software-stack-for-electric-vehicle-charging-infrastructure/ (accessed on 16 February 2023).
- All Our Patent Are Belong to You. Available online: https://www.tesla.com/blog/all-our-patent-are-belong-you (accessed on 16 February 2023).
- The Green Living Guy. Ford Motor Company Announces Open Source Portfolio of EV Patents. Available online: https://greenlivingguy.com/2015/06/ford-motor-company-announces-open-source-portfolio-of-ev-patents/ (accessed on 16 February 2023).
- Dobbelaere, T.; Vereecken, P.M.; Detavernier, C. A USB-controlled potentiostat/galvanostat for thin-film battery characterization. Hardwarex 2017, 2, 34–49. [Google Scholar] [CrossRef]
- Sylvestrin, G.R.; Scherer, H.F.; Junior, O.H.A. Hardware and Software Development of an Open Source Battery Management System. IEEE Lat. Am. Trans. 2021, 19, 1153–1163. [Google Scholar] [CrossRef]
- Carloni, A.; Baronti, F.; Di Rienzo, R.; Roncella, R.; Saletti, R. An Open-Hardware and Low-Cost Maintenance Tool for Light-Electric-Vehicle Batteries. Energies 2021, 14, 4962. [Google Scholar] [CrossRef]
- Fleming, J.; Amietszajew, T.; McTurk, E.; Towers, D.P.; Greenwood, D.; Bhagat, R. Development and evaluation of in-situ instrumentation for cylindrical Li-ion cells using fibre optic sensors. Hardwarex 2018, 3, 100–109. [Google Scholar] [CrossRef]
- Yensen, N.; Allen, P.B. Open source all-iron battery for renewable energy storage. Hardwarex 2019, 6, e00072. [Google Scholar] [CrossRef]
- Koirala, D.; Yensen, N.; Allen, P.B. Open source all-iron battery 2.0. Hardwarex 2021, 9, e00171. [Google Scholar] [CrossRef]
- Yip, M.C.; Forsslund, J. Spurring Innovation in Spatial Haptics: How Open-Source Hardware Can Turn Creativity Loose. IEEE Robot. Autom. Mag. 2017, 24, 65–76. [Google Scholar] [CrossRef]
- Dosemagen, S.; Liboiron, M.; Molloy, J. Gathering for Open Science Hardware 2016. J. Open Hardw. 2017, 1, 4. [Google Scholar] [CrossRef]
- Hsing, P.-Y. Sustainable Innovation for Open Hardware and Open Science–Lessons from The Hardware Hacker. J. Open Hardw. 2018, 2, 4. [Google Scholar] [CrossRef]
- Pearce, J.M. Sponsored Libre Research Agreements to Create Free and Open Source Software and Hardware. Inventions 2018, 3, 44. [Google Scholar] [CrossRef]
- Gibney, E. ‘Open-hardware’ pioneers push for low-cost lab kit. Nature 2016, 531, 147–148. [Google Scholar] [CrossRef] [PubMed]
- Pearce, J.M. Cut costs with open-source hardware. Nature 2014, 505, 618. [Google Scholar] [CrossRef]
- Arancio, J.; Tirado, M.M.; Pearce, J. Equitable Research Capacity Towards the Sustainable Development Goals: The Case for Open Science Hardware. J. Sci. Policy Gov. 2022, 21. [Google Scholar] [CrossRef]
- Beder, S. The role of technology in sustainable development. IEEE Technol. Soc. Mag. 1994, 13, 14–19. [Google Scholar] [CrossRef]
- Sianipar, C.P.M.; Yudoko, G.; Adhiutama, A.; Dowaki, K. Community Empowerment through Appropriate Technology: Sustaining the Sustainable Development. Procedia Environ. Sci. 2013, 17, 1007–1016. [Google Scholar] [CrossRef]
- Pearce, J.M. The case for open source appropriate technology. Environ. Dev. Sustain. 2012, 14, 425–431. [Google Scholar] [CrossRef]
- Gwamuri, J.; Pearce, J.M. Open source 3-D printers: An appropriate technology for building low cost optics labs for the developing communities. In Proceedings of the ETOP 2017, Hangzhou, China, 29–31 May 2017; Optica Publishing Group: Washington, DC, USA, 2017; p. 104522S. [Google Scholar] [CrossRef]
- Pearce, J.M.; Blair, C.M.; Laciak, K.J.; Andrews, R.; Nosrat, A.; Zelenika-Zovko, I. 3-D Printing of Open Source Appropriate Technologies for Self-Directed Sustainable Development. J. Sustain. Dev. 2010, 3, p17. [Google Scholar] [CrossRef]
- Critical Preparedness, Readiness and Response Actions for COVID-19. Available online: https://www.who.int/publications-detail-redirect/critical-preparedness-readiness-and-response-actions-for-covid-19 (accessed on 17 February 2023).
- The Lancet. COVID-19: Too Little, Too Late? Lancet 2020, 395, 755. [Google Scholar] [CrossRef]
- Oberloier, S.; Gallup, N.; Pearce, J. Overcoming supply disruptions during pandemics by utilizing found hardware for open source gentle ventilation. Hardwarex 2022, 11, e00255. [Google Scholar] [CrossRef] [PubMed]
- Feldman, D.; Barbose, G.; Margolis, R.; Bolinger, M.; Chung, D.; Fu, R.; Seel, J.; Davidson, C.; Wiser, R. Photovoltaic System Pricing Trends: Historical, Recent, and Near-Term Projections 2015 Edition; National Renewable Energy Laboratory: Golden, CO, USA, 2016. [Google Scholar] [CrossRef]
- Fu, R.; Feldman, D.J.; Margolis, R.M.U.S. Solar Photovoltaic System Cost Benchmark: Q1 2018; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2018. [Google Scholar]
- Barron, A.R. Cost reduction in the solar industry. Mater. Today 2015, 18, 2–3. [Google Scholar] [CrossRef]
- Tan, F. Solar Costs to Fall Further, Powering Global Demand—Irena. Reuters, 23 October 2017. [Google Scholar]
- Matasci, S. Solar Panel Cost: Avg. Solar Panel Prices by State in 2019: EnergySage. Available online: https://www.energysage.com/local-data/solar-panel-cost/ (accessed on 13 April 2023).
- Dudley, D. Renewable Energy Will Be Consistently Cheaper than Fossil Fuels by 2020, Report Claims. Available online: https://www.forbes.com/sites/dominicdudley/2018/01/13/renewable-energy-cost-effective-fossil-fuels-2020/ (accessed on 17 February 2023).
- Solar Industry Research Data. Available online: https://www.seia.org/solar-industry-research-data (accessed on 17 February 2023).
- Vaughan, A. Time to Shine: Solar Power Is Fastest-Growing Source of New Energy. The Guardian, 4 October 2017. [Google Scholar]
- Levin, T.; Thomas, V.M. Can Developing Countries Leapfrog the Centralized Electrification Paradigm? Energy Sustain. Dev. 2016, 31, 97–107. [Google Scholar] [CrossRef]
- Lang, T.; Ammann, D.; Girod, B. Profitability in absence of subsidies: A techno-economic analysis of rooftop photovoltaic self-consumption in residential and commercial buildings. Renew. Energy 2016, 87, 77–87. [Google Scholar] [CrossRef]
- Prehoda, E.; Pearce, J.M.; Schelly, C. Policies to Overcome Barriers for Renewable Energy Distributed Generation: A Case Study of Utility Structure and Regulatory Regimes in Michigan. Energies 2019, 12, 674. [Google Scholar] [CrossRef]
- Minigrids in the Money. Available online: https://rmi.org/insight/minigrids-money/ (accessed on 17 February 2023).
- Alafita, T.; Pearce, J. Securitization of residential solar photovoltaic assets: Costs, risks and uncertainty. Energy Policy 2014, 67, 488–498. [Google Scholar] [CrossRef]
- Rai, V.; Reeves, D.C.; Margolis, R. Overcoming barriers and uncertainties in the adoption of residential solar PV. Renew. Energy 2016, 89, 498–505. [Google Scholar] [CrossRef]
- Horváth, D.; Szabó, R.Z. Evolution of photovoltaic business models: Overcoming the main barriers of distributed energy deployment. Renew. Sustain. Energy Rev. 2018, 90, 623–635. [Google Scholar] [CrossRef]
- Yousaf, H.; Shakeel, S.R.; Rajala, A.; Raza, Z. Addressing Financial Barriers Influencing the Adoption of Solar PV: The Role of Business Models. In Advances in Human Factors, Business Management and Leadership, Proceedings of the AHFE 2021 Virtual Conferences on Human Factors, Business Management and Society, and Human Factors in Management and Leadership, Online, 25–29 July 2021; Springer: Cham, Switzerland, 2021; pp. 42–49. [Google Scholar]
- Grafman, L.; Pearce, J.M. To Catch the Sun; Humboldt State University Press: Arcata, CA, USA, 2021. [Google Scholar]
- Wittbrodt, B.; Laureto, J.; Tymrak, B.; Pearce, J.M. Distributed manufacturing with 3-D printing: A case study of recreational vehicle solar photovoltaic mounting systems. J. Frugal Innov. 2015, 1, 1. [Google Scholar] [CrossRef]
- Wittbrodt, B.; Pearce, J.M. 3-D printing solar photovoltaic racking in developing world. Energy Sustain. Dev. 2017, 36, 1–5. [Google Scholar] [CrossRef]
- Wittbrodt, B.; Pearce, J. Total U.S. cost evaluation of low-weight tension-based photovoltaic flat-roof mounted racking. Sol. Energy 2015, 117, 89–98. [Google Scholar] [CrossRef]
- Vandewetering, N.; Hayibo, K.S.; Pearce, J.M. Impacts of Location on Designs and Economics of DIY Low-Cost Fixed-Tilt Open Source Wood Solar Photovoltaic Racking. Designs 2022, 6, 41. [Google Scholar] [CrossRef]
- Vandewetering, N.; Hayibo, K.S.; Pearce, J.M. Open-Source Vertical Swinging Wood-Based Solar Photovoltaic Racking Systems. Designs 2023, 7, 34. [Google Scholar] [CrossRef]
- Geographical Dependence of Open Hardware Optimization: Case Study of Solar Photovoltaic Racking. Open Sci. Framew. 2023. [CrossRef]
- National Research Council Canada. National Building Code of Canada 2015. Available online: https://nrc.canada.ca/en/certifications-evaluations-standards/codes-canada/codes-canada-publications/national-building-code-canada-2015 (accessed on 9 March 2023).
- Fauchart, E.; Bacache-Beauvallet, M.; Bourreau, M.; Moreau, F. Do-It-Yourself or Do-It-Together: How digital technologies affect creating alone or with others? Technovation 2022, 112, 102412. [Google Scholar] [CrossRef]
- Dupont, L.; Kasmi, F.; Pearce, J.M.; Ortt, R. Do-It-Together”: Towards the Factories of the Future. In Cosmo-Local Reader; Ramos, J., Bauwens, M., Ede, S., Wong, J.G., Eds.; Futures Lab: London, UK, 2021; pp. 52–59. [Google Scholar]
- Mahajan, S.; Luo, C.-H.; Wu, D.-Y.; Chen, L.-J. From Do-It-Yourself (DIY) to Do-It-Together (DIT): Reflections on designing a citizen-driven air quality monitoring framework in Taiwan. Sustain. Cities Soc. 2020, 66, 102628. [Google Scholar] [CrossRef]
- Vandewetering, N.; Hayibo, K.S.; Pearce, J.M. Open-Source Design and Economics of Manual Variable-Tilt Angle DIY Wood-Based Solar Photovoltaic Racking System. Designs 2022, 6, 54. [Google Scholar] [CrossRef]
- Dupont, L.; Kasmi, F.; Pearce, J.M.; Ortt, R.J. “Do-It-Together” and Innovation: Transforming European Industry. J. Innov. Econ. Manag. 2023, 40, 1–11. [Google Scholar] [CrossRef]
- Benkler, Y.; Nissenbaum, H. Commons-based Peer Production and Virtue. J. Political Philos. 2006, 14, 394–419. [Google Scholar] [CrossRef]
- Bauwens, M.; Pantazis, A. The ecosystem of commons-based peer production and its transformative dynamics. Sociol. Rev. 2018, 66, 302–319. [Google Scholar] [CrossRef]
- Hirscher, A.-L.; Niinimäki, K.; Armstrong, C.M.J. Social manufacturing in the fashion sector: New value creation through alternative design strategies? J. Clean. Prod. 2018, 172, 4544–4554. [Google Scholar] [CrossRef]
- Cullmann, S.; Guittard, C.; Schenk, E. Participative creativity serving product design in SMEs: A case study. J. Innov. Econ. Manag. 2015, 18, 79–98. [Google Scholar] [CrossRef]
- UN Centralised Database of Open-Source Appropriate Technologies; United Nations Conference on Trade and Development, 2021. Contribution to ECOSOC Resolution E/RES/2021/30. Available online: https://unctad.org/publication/note-proposed-united-nations-centralised-database-open-source-appropriate-technologies (accessed on 13 March 2023).
- Chile Aluminum: Exports, 1995–2023|CEIC Data. Available online: https://www.ceicdata.com/en/indicator/chile/aluminum-exports (accessed on 19 February 2023).
- Peru Aluminium Industry Outlook 2022–2026. Available online: https://www.reportlinker.com/clp/country/15854/726274 (accessed on 19 February 2023).
- Panama Aluminium Industry Outlook 2022–2026. Available online: https://www.reportlinker.com/clp/country/15854/726313 (accessed on 19 February 2023).
- Colombia Exports of Aluminum–2023 Data 2024 Forecast 1991–2021 Historical. Available online: https://tradingeconomics.com/colombia/exports/aluminum (accessed on 19 February 2023).
- Michigan’s Forest Products Industry’s Value Spikes–Michigan Farm News. Available online: https://www.michiganfarmnews.com/privacy-and-security (accessed on 19 February 2023).
- Arias, E. Mexico: Market Profile; South Carolina Forestry Commission: Columbia, SC, USA, 2019. [Google Scholar]
- Wainwright, O. ‘I Want to Caress the Lift!’: The Eco Office Block Miracle Made Entirely from Wood. The Guardian, 30 January 2023. [Google Scholar]
- Orta, B.; Martínez-Gayá, J.E.; Cervera, J.; Aira, J.R. Timber High Rise, State of the Art. Inf. Construcción 2020, 72, e346. [Google Scholar] [CrossRef]
- NFPA 70®: National Electrical Code®. Available online: https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=70 (accessed on 15 February 2023).
- Canadian Electrical Code Products. Available online: https://www.csagroup.org/store/canadian-electrical-code-products/ (accessed on 15 February 2023).
- Wiles, J.C., Jr. Solar America Board for Codes and Standards Photovoltaic System Grounding; Solar America Board for Codes and Standards: Orlando, FL, USA, 2012. [Google Scholar]
- Wiles, J. To Ground or Not to Ground: That Is Not the Question (in the USA). Home Power 1999, 72, 112–117. [Google Scholar]
- Bower, W.I.; Wiles, J.C. Analysis of Grounded and Ungrounded Photovoltaic Systems. In Proceedings of the 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion–WCPEC (A Joint Conference of PVSC, PVSEC and PSEC), Waikoloa, HI, USA, 5–9 December 1994; Volume 1, pp. 809–812. [Google Scholar]
- Hutchins, M. A Lightweight Plastic to Replace Aluminum Module Frames. Available online: https://www.pv-magazine.com/2021/10/19/lightweight-plastic-material-to-replace-aluminum-frames/ (accessed on 7 February 2023).
- IRWIN QUICK-GRIP Clamps, One-Handed, Mini Bar, 6-Inch, 4-Pack (1964758): Amazon.ca: Tools & Home Improvement. Available online: https://www.amazon.ca/IRWIN-QUICK-GRIP-One-Handed-Mini-Clamp/dp/B001DSY4QO/ (accessed on 21 February 2023).
- Fernando, P. Tools for Public Participation in Science: Design and Dissemination of Open-Science Hardware. In Proceedings of the 2019 on Creativity and Cognition, San Diego CA USA, 23–26 June 2019; pp. 697–701. [Google Scholar]
- Pearce, J.M. Quantifying the Value of Open Source Hard-ware Development. Mod. Econ. 2015, 6, 1–11. [Google Scholar] [CrossRef]
- Daniel, K.F.; Peter, J.G. Open-source hardware is a low-cost alternative for scientific instrumentation and research. Mod. Instrum. 2012, 1, 8–20. [Google Scholar] [CrossRef]
- Oberloier, S.; Pearce, J.M. Open source low-cost power monitoring system. Hardwarex 2018, 4, e00044. [Google Scholar] [CrossRef]
- Thompson, C. Build It. Share It. Profit. Can Open Source Hardware Work. Wired Magazine, 20 October 2011. [Google Scholar]
- Pearce, J. Return on investment for open source scientific hardware development. Sci. Public Policy 2016, 43, 192–195. [Google Scholar] [CrossRef]
- Pearce, J.M. Economic savings for scientific free and open source technology: A review. Hardwarex 2020, 8, e00139. [Google Scholar] [CrossRef]
- Harnett, C. Open source hardware for instrumentation and measurement. IEEE Instrum. Meas. Mag. 2011, 14, 34–38. [Google Scholar] [CrossRef]
- Pearce, J.M. Building Research Equipment with Free, Open-Source Hardware. Science 2012, 337, 1303–1304. [Google Scholar] [CrossRef] [PubMed]
- Chagas, A.M. Haves and have nots must find a better way: The case for open scientific hardware. PLoS Biol. 2018, 16, e3000014. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, T. Open hardware: From DIY trend to global transformation in access to laboratory equipment. PLoS Biol. 2023, 21, e3001931. [Google Scholar] [CrossRef] [PubMed]
- Sells, E.; Bailard, S.; Smith, Z.; Bowyer, A.; Olliver, V. RepRap: The Replicating Rapid Prototyper: Maximizing Customizability by Breeding the Means of Production. In Handbook of Research in Mass Customization and Personalization: (In 2 Volumes); World Scientific: Singapore, 2010; pp. 568–580. [Google Scholar]
- Jones, R.; Haufe, P.; Sells, E.; Iravani, P.; Olliver, V.; Palmer, C.; Bowyer, A. RepRap—The replicating rapid prototyper. Robotica 2011, 29, 177–191. [Google Scholar] [CrossRef]
- Kentzer, J.; Koch, B.; Thiim, M.; Jones, R.W.; Villumsen, E. An open source hardware-based mechatronics project: The replicating rapid 3-D printer. In Proceedings of the 2011 4th International Conference on Mechatronics (ICOM), Kuala Lumpur, Malaysia, 17–19 May 2011; pp. 1–8. [Google Scholar] [CrossRef]
- Bowyer, A. 3D Printing and Humanity’s First Imperfect Replicator. 3D Print. Addit. Manuf. 2014, 1, 4–5. [Google Scholar] [CrossRef]
- Rundle, G. A Revolution in the Making; Affirm Press: South Melbourne, Australia, 2014; ISBN 1-922213-48-9. [Google Scholar]
- Wittbrodt, B.T.; Glover, A.G.; Laureto, J.; Anzalone, G.C.; Oppliger, D.; Irwin, J.L.; Pearce, J.M. Life-cycle economic analysis of distributed manufacturing with open-source 3-D printers. Mechatronics 2013, 23, 713–726. [Google Scholar] [CrossRef]
- Petersen, E.E.; Pearce, J. Emergence of Home Manufacturing in the Developed World: Return on Investment for Open-Source 3-D Printers. Technologies 2017, 5, 7. [Google Scholar] [CrossRef]
- Hafez, A.Z.; Yousef, A.M.; Harag, N.M. Solar tracking systems: Technologies and trackers drive types–A review. Renew. Sustain. Energy Rev. 2018, 91, 754–782. [Google Scholar] [CrossRef]
- Awasthi, A.; Shukla, A.K.; Murali Manohar, S.R.; Dondariya, C.; Shukla, K.N.; Porwal, D.; Richhariya, G. Review on sun tracking technology in solar PV system. Energy Rep. 2020, 6, 392–405. [Google Scholar] [CrossRef]
- Mpodi, E.K.; Tjiparuro, Z.; Matsebe, O. Review of Dual Axis Solar Tracking and Development of Its Functional Model. Procedia Manufacturing 2019, 35, 580–588. [Google Scholar] [CrossRef]
- Seme, S.; Štumberger, B.; Hadžiselimović, M.; Sredenšek, K. Solar Photovoltaic Tracking Systems for Electricity Generation: A Review. Energies 2020, 13, 4224. [Google Scholar] [CrossRef]
- Hollman, M.R.; Pearce, J.M. Geographic potential of shotcrete photovoltaic racking: Direct and low-concentration cases. Sol. Energy 2021, 216, 386–395. [Google Scholar] [CrossRef]
- Amanlou, Y.; Hashjin, T.T.; Ghobadian, B.; Najafi, G.; Mamat, R. A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems. Renew. Sustain. Energy Rev. 2016, 60, 1430–1441. [Google Scholar] [CrossRef]
- Andrews, R.W.; Pollard, A.; Pearce, J.M. Photovoltaic system performance enhancement with non-tracking planar concentrators: Experimental results and BDRF based modelling. In Proceedings of the 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL, USA, 16–21 June 2013; pp. 229–234. [Google Scholar] [CrossRef]
- Yadav, P.; Tripathi, B.; Rathod, S.; Kumar, M. Real-time analysis of low-concentration photovoltaic systems: A review towards development of sustainable energy technology. Renew. Sustain. Energy Rev. 2013, 28, 812–823. [Google Scholar] [CrossRef]
- Dellicompagni, P.R.; Heim, D.; Knera, D.; Krempski-Smejda, M. A Combined Thermal and Electrical Performance Evaluation of Low Concentration Photovoltaic Systems. Energy 2022, 254, 124247. [Google Scholar] [CrossRef]
- Rodrigo, P.; Fernández, E.; Almonacid, F.; Pérez-Higueras, P. Models for the electrical characterization of high concentration photovoltaic cells and modules: A review. Renew. Sustain. Energy Rev. 2013, 26, 752–760. [Google Scholar] [CrossRef]
- Gómez-Gil, F.J.; Wang, X.; Barnett, A. Energy production of photovoltaic systems: Fixed, tracking, and concentrating. Renew. Sustain. Energy Rev. 2012, 16, 306–313. [Google Scholar] [CrossRef]
Component | Dimensions (m) | Quantity |
---|---|---|
Outside Joists | 0.60 × 1.82 × 2.43 | 2 |
Inside Joists | 0.60 × 2.43 × 2.43 | 2 |
Beams | 0.60 × 2.43 × 3.04 | 2 |
Back Posts | 1.82 × 1.82 × 2.43 | 2 |
Front Posts | 1.21 × 1.21 × 3.04 | 1 |
Lateral Bracing | 0.60 × 1.21 × 2.43 | 2 |
Lateral Bracing | 0.60 × 1.21 × 3.04 | 1 |
Concrete | Bag (30 kg) | 8 |
Component | Dimensions (m) | Quantity |
---|---|---|
Outside Joists | 1.5 × 0.75 × 0.125 | 2 |
Inside Joists | 2 × 1 × 0.125 | 2 |
Beams | 1.5 × 0.75 × 0.125 | 2 |
Back Posts | 2 × 1 × 0.995 | 2 |
Front Posts | 1.5 × 0.75 × 0.125 | 2 |
Concrete | Bag (30 kg) | 8 |
Parameters | London, ON, Canada | San Jose, CA, USA | Atlanta, GA, USA | Port Huron, MI, USA | Mexico City, Mexico | Buenos, Argentina | Santiago, Chile | Lima, Peru | Panama City, Panama | Bogota, Colombia |
---|---|---|---|---|---|---|---|---|---|---|
System Type | Residential | |||||||||
PV Module | Heliene 72M–400 G1 | |||||||||
Module Type | Mono Crystalline Silicon | |||||||||
Number of Modules | 3 | |||||||||
Tilt Angle | 43 | 34 | 35 | 43 | 19 | 45 | 35 | 12 | 9 | 4.6 |
Azimuth | 180 | |||||||||
DC Power Rating | 1.2 kWdc | |||||||||
DC to AC Ratio | 0.79 | |||||||||
Inverter | Altenergy Power System Inc: QS1A [240 V] |
Advantages | Wood | Metal |
---|---|---|
Lower cost than proprietary racks | X | X |
Uses local materials that are more easily sourced | X | X |
Easier to find replacement components | X | X |
Lower embodied energy of transportation | X | X |
Supports local manufacturing jobs | X | X |
No intellectual property costs or rents | X | X |
Sustainable biobased material | X | |
Recyclable | X | |
Able to be grounded normally | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rana, S.; Vandewetering, N.; Powell, J.; Ariza, J.Á.; Pearce, J.M. Geographical Dependence of Open Hardware Optimization: Case Study of Solar Photovoltaic Racking. Technologies 2023, 11, 62. https://doi.org/10.3390/technologies11020062
Rana S, Vandewetering N, Powell J, Ariza JÁ, Pearce JM. Geographical Dependence of Open Hardware Optimization: Case Study of Solar Photovoltaic Racking. Technologies. 2023; 11(2):62. https://doi.org/10.3390/technologies11020062
Chicago/Turabian StyleRana, Shafquat, Nicholas Vandewetering, Jadyn Powell, Jonathan Álvarez Ariza, and Joshua M. Pearce. 2023. "Geographical Dependence of Open Hardware Optimization: Case Study of Solar Photovoltaic Racking" Technologies 11, no. 2: 62. https://doi.org/10.3390/technologies11020062
APA StyleRana, S., Vandewetering, N., Powell, J., Ariza, J. Á., & Pearce, J. M. (2023). Geographical Dependence of Open Hardware Optimization: Case Study of Solar Photovoltaic Racking. Technologies, 11(2), 62. https://doi.org/10.3390/technologies11020062