Curve-Fitting Correction Method for the Nonlinear Dimming Response of Tunable SSL Devices
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- Very high resolution: using measurement points from every alternate dimming step (e.g., 255, 253, 251, 249 …) resulting in n = 125 measurement points per LED channel;
- (2)
- High resolution: using measurement points from every 10th dimming step (e.g., 255, 245, 235, 225 …) resulting in n = 23 measurement points per LED channel;
- (3)
- Medium resolution: using measurement points from every 20th dimming step (e.g., 255, 235, 215, 195 …) resulting in n = 12 measurement points per LED channel;
- (4)
- Low resolution: using measurement points from every 50th dimming step (e.g., 255, 205, 155, 105 …) resulting in n = 6 measurement points per LED channel.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
LED | Light-emitting diode |
RGB | Red, green, blue |
pcLED | Phosphor-coated LED |
OLED | Organic LED |
CCT | Correlated color temperature |
PWM | Pulse-width modulation |
PID | Proportional–integral–derivative |
OL | Open loop |
TFF | Temperature feed-forward |
FFB | Flux feedback |
CCFB | Color coordinates feedback |
SNR | Signal-to-noise ratio |
CSK | Color-shift keying |
FOV | Field of view |
Curve-fitting | The process of constructing a curve, or mathematical function, that has the best fit to a series of data points, possibly subject to constraints. |
MATLAB | A proprietary multi-paradigm programming language and numeric computing environment. |
CIE 1976 (u′v′) | A two-dimensional chromaticity diagram that allows light source chromaticity differences to be computed as a Euclidean distance. |
MacAdam ellipses | Graphical representations of perceptible chromaticity differences plotted on a chromaticity diagram based on visual experiments conducted by David L. MacAdam [50]. |
References
- Tsao, J.Y.; Crawford, M.H.; Coltrin, M.E.; Fischer, A.J.; Koleske, D.D.; Subramania, G.S.; Wang, G.T.; Wierer, J.J.; Karlicek, R.F., Jr. Toward smart and ultra-efficient solid-state lighting. Adv. Opt. Mater. 2014, 2, 809–836. [Google Scholar] [CrossRef]
- Pimputkar, S.; Speck, J.S.; Denbaars, S.P.; Nakamura, S. Prospects for LED Lighting. Nat. Photonics 2009, 3, 180–182. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Xu, X.; Li, J.; Song, J.; Lan, S.; Liu, S.; Cai, B.; Han, B.; Precht, J.T.; et al. Efficient and Bright White Light-Emitting Diodes Based on Single-Layer Heterophase Halide Perovskites. Nat. Photonics 2021, 15, 238–244. [Google Scholar] [CrossRef]
- Shirasaki, Y.; Supran, G.J.; Bawendi, M.G.; Bulović, V. Emergence of Colloidal Quantum-Dot Light-Emitting Technologies. Nat. Photonics 2013, 7, 13–23. [Google Scholar] [CrossRef]
- Durmus, D. Multi-Objective Optimization Trade-Offs for Color Rendition, Energy Efficiency, and Circadian Metrics. In Proceedings of the Conference on Light-Emitting Devices, Materials, and Applications XXV, Online, 6–12 March 2021. [Google Scholar] [CrossRef]
- Hu, W.; Davis, W. Spectral Optimization for Human-Centric Lighting Using a Genetic Algorithm and a Modified Monte Carlo Method. In Proceedings of the Optical Devices and Materials for Solar Energy and Solid-State Lighting 2020, Washington, DC, USA, 13–16 July 2020; Optics InfoBase Conference Papers, Part F189-PVLED. OSA Technical Digest (Optica Publishing Group): Washington, DC, USA, 2020. [Google Scholar] [CrossRef]
- Vázquez, D.; Fernández-Balbuena, A.A.; Canabal, H.; Muro, C.; Durmus, D.; Davis, W.; Benítez, A.; Mayorga, S. Energy Optimization of a Light Projection System for Buildings That Virtually Restores Artworks. Digit. Appl. Archaeol. Cult. Herit. 2020, 16, e00128. [Google Scholar] [CrossRef]
- Durmus, D.; Abdalla, D.; Duis, A.; Davis, W. Spectral optimization to minimize light absorbed by artwork. Leukos 2020, 16, 45–54. [Google Scholar] [CrossRef]
- Dai, Q.; Huang, Y.; Hao, L.; Lin, Y.; Chen, K. Spatial and Spectral Illumination Design for Energy-Efficient Circadian Lighting. Build. Environ. 2018, 146, 216–225. [Google Scholar] [CrossRef]
- Mamoshin, A.; Ivanov, Y.; Seryogina, E.; Krasova, A.; Potapova, E.; Shupletsov, V.; Dunaev, A.; Aladov, A.; Chernyakov, A.; Panchenkov, D. Optimization of Spectral Characteristics of the Controlled Color-Dynamic Surgical Light Source for Visualization of Organs and Tissues of Laboratory Animals. In Proceedings of the 2019 IEEE International Conference on Electrical Engineering and Photonics, EExPolytech 2019, St. Petersburg, Russia, 17–18 October 2019. [Google Scholar]
- Huang, Y.; Ma, J. Laser and Led Hybrid Plant Lighting System Design Based on the Particle Swarm Algorithm. Appl. Sci. 2020, 10, 7588. [Google Scholar] [CrossRef]
- Mészáros, Á.; Kriska, G.; Egri, Á. Spectral Optimization of Beacon Lights for the Protection of Night-Swarming Mayflies. Insect Conserv. Divers. 2021, 14, 225–234. [Google Scholar] [CrossRef]
- United States Department of Energy (DOE). Photometric Testing of White-Tunable LED Luminaires; DOE: Alexandria, VA, USA, 2015.
- Tuttle, R.; McClear, M. Understanding the true cost of LED choices in SSL systems. LEDs Mag. 2014, 43–46. Available online: https://www.ledsmagazine.com/leds-ssl-design/packaged-leds/article/16695263/understand-the-true-cost-of-led-choices-in-ssl-systems-magazine (accessed on 15 September 2023).
- Hansen, M.; Davis, J.L. The True Value of LED Packages. In Proceedings of the 2015 Strategies in Light Conference, Las Vegas, NV, USA, 24–26 February 2015; Available online: https://www.ledsupply.com/blog/strategies-light-2015-hope-leds-future/ (accessed on 15 September 2023).
- Koh, S.; Ye, H.; Yazdan Mehr, M.; Wei, J.; Van Driel, W.D.; Zhao, L.B.; Zhang, G.Q. Investigation of Color Shift of LEDs-Based Lighting Products. In Proceedings of the 2014 15th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2014, Ghent, Belgium, 7–9 April 2014. [Google Scholar]
- Zanoni, E.; Meneghini, M.; Trivellin, N.; Dal Lago, M.; Meneghesso, G. GaN-Based LEDs: State of the Art and Reliability-Limiting Mechanisms. In Proceedings of the 2014 15th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2014, Ghent, Belgium, 7–9 April 2014. [Google Scholar]
- Chang, M.H.; Das, D.; Varde, P.V.; Pecht, M. Light Emitting Diodes Reliability Review. Microelectron. Reliab. 2012, 52, 762–782. [Google Scholar] [CrossRef]
- Royer, M.; Tuttle, R.; Rosenfeld, S.; Miller, N. Color Maintenance of LEDs in Laboratory and Field Applications; Energy Efficiency & Renewable Energy; Office of Scientific and Techinical Information: Oak Ridge, TN, USA, 2013.
- Górecki, K.; Ptak, P.; Torzewicz, T.; Janicki, M. Influence of a Thermal Pad on Selected Parameters of Power LEDs. Energies 2020, 13, 3732. [Google Scholar] [CrossRef]
- Deurenberg, P.; Hoelen, C.; van Meurs, J.; Ansems, J. Achieving Color Point Stability in RGB Multi-Chip LED Modules Using Various Color Control Loops. In Proceedings of the Fifth International Conference on Solid State Lighting, San Diego, CA, USA, 31 July–4 August 2005; Volume 5941. [Google Scholar]
- Llenas, A.; Carreras, J. Arbitrary Spectral Matching Using Multi-LED Lighting Systems. Opt. Eng. 2019, 58, 035105. [Google Scholar] [CrossRef]
- Chen, H.T.; Tan, S.C.; Hui, S.Y.R. Nonlinear Dimming and Correlated Color Temperature Control of Bicolor White LED Systems. IEEE Trans. Power Electron. 2015, 30, 6934–6947. [Google Scholar] [CrossRef]
- Lee, A.T.L.; Chen, H.; Tan, S.C.; Hui, S.Y. Precise Dimming and Color Control of LED Systems Based on Color Mixing. IEEE Trans. Power Electron. 2016, 31, 65–80. [Google Scholar] [CrossRef]
- Stefan, I.; Elgala, H.; Haas, H. Study of Dimming and LED Nonlinearity for ACO-OFDM Based VLC Systems. In Proceedings of the IEEE Wireless Communications and Networking Conference, WCNC, Paris, France, 1–4 April 2012. [Google Scholar]
- Dyble, M.; Narendran, N.; Bierman, A.; Klein, T. Impact of Dimming White LEDs: Chromaticity Shifts Due to Different Dimming Methods. In Proceedings of the Fifth International Conference on Solid State Lighting, San Diego, CA, USA, 31 July–4 August 2005; Volume 5941. [Google Scholar]
- Heemstra, T.H. A LED-Based Illumination Device with Low Heat Up Color Shift. WO2012164440A1, 6 December 2012. [Google Scholar]
- Lasance, C.J.; Poppe, A. (Eds.) Thermal Management for LED Applications; Springer: New York, NY, USA, 2014; Volume 2. [Google Scholar]
- Yang, D.; Kong, J.; Liu, C. Research on Dimming Optimization Control Method of Emu Led Lighting System Based on Neural Network. In Proceedings of the 2019 14th IEEE International Conference on Electronic Measurement and Instruments, ICEMI 2019, Changsha, China, 1–3 November 2019. [Google Scholar]
- Halder, A.; Barman, A. Das Nonlinear Compensation of LEDs for Improved Performance in CSK Based Indoor Visible Light Communication. In Proceedings of the 2015 6th International Conference on Computers and Devices for Communication, CODEC 2015, Kolkata, India, 16–18 December 2015. [Google Scholar]
- Durmus, D. Optimizing a Three-Channel Sensor Spectral Sensitivity Using a Genetic Algorithm. In Proceedings of the Optical Devices and Materials for Solar Energy and Solid-State Lighting, Washington, DC, USA, 26–29 July 2021; Optics InfoBase Conference Papers. OSA Technical Digest (Optica Publishing Group): Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Durmus, D. Correlated Color Temperature: Use and Limitations. Light. Res. Technol. 2022, 54, 363–375. [Google Scholar] [CrossRef]
- Samini, A.; Palmerius, K.L.; Ljung, P. A review of current, complete augmented reality solutions. In Proceedings of the 2021 International Conference on Cyberworlds (CW), Caen, France, 28–30 September 2021; pp. 49–56. [Google Scholar] [CrossRef]
- Commission Internationale de l’Eclairage (CIE). Colorimetry, 4th ed.; International Commission on Illumination: Austria, Vienna, 2018. [Google Scholar] [CrossRef]
- Miguel Faria, P.; Cardoso, S.; Morais, R.; Miguel Moreira, P.; Moura, A.; Maia Marques, G.; Silva, A.; Almeida, C.; Araújo, I. Enhancing Cultural Heritage of a Region Through Visual and Auditory Engagement in a Video Mapping Projection. J. Digit. Media Interact. 2020, 3, 124–144. [Google Scholar] [CrossRef]
- Fujimoto, Y. Projection Mapping for Enhancing the Perceived Deliciousness of Food. IEEE Access 2018, 6, 59975–59985. [Google Scholar] [CrossRef]
- Durmus, D. Spectral Optimization of Solid-State Light Sources for Cyanosis Observation Index, Circadian, and Color Metrics. In Proceedings of the Optical Devices and Materials for Solar Energy and Solid-State Lighting, Washington, DC, USA, 26–29 July 2021; Optics InfoBase Conference Papers. OSA Technical Digest (Optica Publishing Group): Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Dain, S. Color Changes in Cyanosis and the Significance of Congenital Dichromasy and Lighting. Color Res. Appl. 2007, 32, 428–432. [Google Scholar] [CrossRef]
- Midolo, N.A.; Sergeyeva, L. Lighting for Clinical Observation of Cyanosis. Aust. Hosp. Eng. 2007, 30, 38–43. [Google Scholar]
- Durmus, D.; Davis, W. Blur perception and visual clarity in light projection systems. Opt. Express 2019, 27, A216–A223. [Google Scholar] [CrossRef] [PubMed]
- Canabal, H.; Mayorga, S.; Muro, C.; Galan, T.; Vázquez-Moliní, D.; García-Botella, Á.; Alvarez, A. Point to Point Multispectral Light Projection Applied to Cultural Heritage. In Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 6–10 August 2017. [Google Scholar] [CrossRef]
- Manzanares, Á.G.; Benítez, A.J.; Antón, J.C.M. Virtual Restoration and Visualization Changes through Light: A Review. Heritage 2020, 3, 1373–1384. [Google Scholar] [CrossRef]
- Zhang, J.; Smet, K.A.; Meuret, Y. Tuning color and saving energy with spatially variable laser illumination. Opt. Express 2019, 27, 27136–27150. [Google Scholar] [CrossRef] [PubMed]
- Cerpentier, J.; Acuña, P.; Meuret, Y. Controlling the target pattern of projected LED arrays for smart lighting. Opt. Express 2023, 31, 37316–37324. [Google Scholar] [CrossRef]
- Saw, Y.J.; Kalavally, V.; Tan, C.P. The spectral optimization of a commercializable multi-channel LED panel with circadian impact. IEEE Access 2020, 8, 136498–136511. [Google Scholar] [CrossRef]
- Knoop, M.; Stefani, O.; Bueno, B.; Matusiak, B.; Hobday, R.; Wirz-Justice, A.; Martiny, K.; Kantermann, T.; Aarts, M.P.J.; Zemmouri, N.; et al. Daylight: What makes the difference? Light. Res. Technol. 2020, 52, 423–442. [Google Scholar] [CrossRef]
- Aderneuer, T.; Stefani, O.; Fernández, O.; Cajochen, C.; Ferrini, R. Circadian tuning with metameric white light: Visual and non-visual aspects. Light. Res. Technol. 2021, 53, 543–554. [Google Scholar] [CrossRef]
- Alkhatatbeh, B.J.; Asadi, S. Role of Architectural Design in Creating Circadian-Effective Interior Settings. Energies 2021, 14, 6731. [Google Scholar] [CrossRef]
- Trinh, V.Q.; Babilon, S.; Myland, P.; Khanh, T.Q. Processing RGB Color Sensors for Measuring the Circadian Stimulus of Artificial and Daylight Light Sources. Appl. Sci. 2022, 12, 1132. [Google Scholar] [CrossRef]
- MacAdam, D.L. Visual Sensitivities to Color Differences in Daylight. J. Opt. Soc. Am. 1942, 32, 247–274. [Google Scholar] [CrossRef]
Light Output | Comparison | Maximum Power | Total Power |
---|---|---|---|
100% | Estimated vs. measured SPDs | y = 37.41 x3 − 13.108 x2 + 1.8273 x + 0.011 R2 = 0.9675 | y = 0.0509 x3 − 0.5062 x2 + 1.9665 x + 0.1425 R2 = 0.9669 |
Dimming level vs. measured SPDs | y = −6 × 10−8 x3 + 2 × 10−5 x2 − 0.0011 x + 0.0165 R2 = 0.9959 | y = −2 × 10−6 x3 + 0.0007 x2 − 0.0303 x + 0.5577 R2 = 0.9959 | |
50% | Estimated vs. measured SPDs | y = 43.068 x3 − 15.091 x2 + 2.1037 x + 0.0126 R2 = 0.9675 | y = 0.0593 x3 − 0.5899 x2 + 2.2916 x + 0.1661 R2 = 0.9669 |
Dimming level vs. measured SPDs | y = −6 × 10−8 x3 + 2 × 10−5 x2 − 0.0011 x + 0.0165 R2 = 0.9959 | y = −2 × 10−6 x3 + 0.0007 x2 − 0.0303 x + 0.5577 R2 = 0.9959 |
p-Value | Very High Resolution (n = 125) | High Resolution (n = 23) | Medium Resolution (n = 12) | Low Resolution (n = 6) | Theoretical (Linear) |
---|---|---|---|---|---|
Very high resolution (n = 125) | - | ||||
High resolution (n = 23) | <0.00001 | - | |||
Medium resolution (n = 12) | <0.001 | <0.00001 | - | ||
Low resolution (n = 6) | <0.001 | <0.001 | <0.001 | - | |
Theoretical (linear) | <0.001 | <0.001 | <0.001 | <0.00001 | - |
Effect Size (r) | Very High Resolution (n = 125) | High Resolution (n = 23) | Medium Resolution (n = 12) | Low Resolution (n = 6) | Theoretical (Linear) |
---|---|---|---|---|---|
Very high resolution (n = 125) | - | ||||
High resolution (n = 23) | 0.3 | - | |||
Medium resolution (n = 12) | 0.41 | 0.13 | - | ||
Low resolution (n = 6) | 1.03 | 0.91 | 0.83 | - | |
Theoretical (linear) | 1.04 | 0.95 | 0.89 | 0.2 | - |
p-Value | Very High Resolution (n = 125) | High Resolution (n = 23) | Medium Resolution (n = 12) | Low Resolution (n = 6) | Theoretical (Linear) |
---|---|---|---|---|---|
Very high resolution (n = 125) | - | ||||
High resolution (n = 23) | <0.00001 | - | |||
Medium resolution (n = 12) | <0.001 | <0.00001 | - | ||
Low resolution (n = 6) | <0.001 | <0.001 | <0.001 | - | |
Theoretical (linear) | <0.001 | <0.001 | <0.001 | 0.44 | - |
Effect Size (r) | Very High Resolution (n = 125) | High Resolution (n = 23) | Medium Resolution (n = 12) | Low Resolution (n = 6) | Theoretical (Linear) |
---|---|---|---|---|---|
Very high resolution (n = 125) | - | ||||
High resolution (n = 23) | 0.23 | - | |||
Medium resolution (n = 12) | 0.5 | 0.24 | - | ||
Low resolution (n = 6) | 1.4 | 1.42 | 1.42 | - | |
Theoretical (linear) | 0.2 | 1.38 | 1.36 | 0.007 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kore, R.; Durmus, D. Curve-Fitting Correction Method for the Nonlinear Dimming Response of Tunable SSL Devices. Technologies 2023, 11, 162. https://doi.org/10.3390/technologies11060162
Kore R, Durmus D. Curve-Fitting Correction Method for the Nonlinear Dimming Response of Tunable SSL Devices. Technologies. 2023; 11(6):162. https://doi.org/10.3390/technologies11060162
Chicago/Turabian StyleKore, Rugved, and Dorukalp Durmus. 2023. "Curve-Fitting Correction Method for the Nonlinear Dimming Response of Tunable SSL Devices" Technologies 11, no. 6: 162. https://doi.org/10.3390/technologies11060162
APA StyleKore, R., & Durmus, D. (2023). Curve-Fitting Correction Method for the Nonlinear Dimming Response of Tunable SSL Devices. Technologies, 11(6), 162. https://doi.org/10.3390/technologies11060162