Neural Network-Based Body Weight Prediction in Pelibuey Sheep through Biometric Measurements
Abstract
:1. Introduction
2. Methods and Methodology
2.1. Pelibuey Sheep Selection
2.2. Software
2.3. Image Processing
2.4. Biometric Measurements
2.5. Artificial Neural Network as Body Weight Predictor
3. Results
3.1. Selection of Network Architecture and Network Performance with the Seven Biometric Parameters as Input
3.2. Correlation between Real Biometric Measurements and those Obtained with Digital Image Analysis
3.3. Network Performance with Lower Inputs and Comparison with Heuristic Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wishart, H.; Morgan-Davies, C.; Stott, A.; Wilson, R.; Waterhouse, T. Liveweight loss associated with handling and weighing of grazing sheep. Small Rumin. Res. 2017, 153, 163–170. [Google Scholar] [CrossRef]
- Pezzuolo, A.; Guarino, M.; Sartori, L.; González, L.A.; Marinello, F. On-barn pig weight estimation based on body measurements by a Kinect v1 depth camera. Comput. Electron. Agric. 2018, 148, 29–36. [Google Scholar] [CrossRef]
- Kongsro, J. Estimation of pig weight using a Microsoft Kinect prototype imaging system. Comput. Electron. Agric. 2014, 109, 32–35. [Google Scholar] [CrossRef]
- Zhang, A.L.N.; Wu, B.P.; Jiang, C.X.H.; Xuan, D.C.Z.; Ma, E.Y.H.; Zhang, F.Y.A. Development and validation of a visual image analysis for monitoring the body size of sheep. J. Appl. Anim. Res. 2018, 46, 1004–1015. [Google Scholar] [CrossRef]
- Huang, L.; Li, S.; Zhu, A.; Fan, X.; Zhang, C.; Wang, H. Non-contact body measurement for qinchuan cattle with LiDAR sensor. Sensors 2018, 18, 3014. [Google Scholar] [CrossRef] [PubMed]
- Le Cozler, Y.; Allain, C.; Caillot, A.; Delouard, J.; Delattre, L.; Luginbuhl, T.; Faverdin, P. High-precision scanning system for complete 3D cow body shape imaging and analysis of morphological traits. Comput. Electron. Agric. 2019, 157, 447–453. [Google Scholar] [CrossRef]
- Pezzuolo, A.; Guarino, M.; Sartori, L.; Marinello, F. A feasibility study on the use of a structured light depth-camera for three-dimensional body measurements of dairy cows in free-stall barns. Sensors 2018, 18, 673. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Norton, T.; Youssef, A.; Radojkovic, N.; Fernández, A.P.; Berckmans, D. Extracting body surface dimensions from top-view images of pigs. Int. J. Agric. Biol. Eng. 2018, 11, 182–191. [Google Scholar] [CrossRef]
- Weber, V.A.d.M.; Weber, F.d.L.; Gomes, R.d.C.; Oliveira Junior, A.d.S.; Menezes, G.V.; Abreu, U.G.P.d.; Belete, N.A.d.S.; Pistori, H. Prediction of Girolando cattle weight by means of body measurements extracted from images. Rev. Bras. Zootec. 2020, 49, e20190110. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, J.; Teng, G. Mobile measuring system based on LabVIEW for pig body components estimation in a large-scale farm. Comput. Electron. Agric. 2019, 156, 399–405. [Google Scholar] [CrossRef]
- Hao, H.; Jincheng, Y.; Ling, Y.; Gengyuan, C.; Sumin, Z.; Huan, Z. An improved PointNet++ point cloud segmentation model applied to automatic measurement method of pig body size. Comput. Electron. Agric. 2023, 205, 107560. [Google Scholar] [CrossRef]
- He, C.; Qiao, Y.; Mao, R.; Li, M.; Wang, M. Enhanced LiteHRNet based sheep weight estimation using RGB-D images. Comput. Electron. Agric. 2023, 206, 107667. [Google Scholar] [CrossRef]
- Nunes, L.; Ampatzidis, Y.; Costa, L.; Wallau, M. Horse foraging behavior detection using sound recognition techniques and artificial intelligence. Comput. Electron. Agric. 2021, 183, 106080. [Google Scholar] [CrossRef]
- Rodríguez Alvarez, J.; Arroqui, M.; Mangudo, P.; Toloza, J.; Jatip, D.; Rodriguez, J.M.; Teyseyre, A.; Sanz, C.; Zunino, A.; Machado, C.; et al. Estimating body condition score in dairy cows from depth images using convolutional neural networks, transfer learning and model ensembling techniques. Agronomy 2019, 9, 90. [Google Scholar] [CrossRef]
- Alvarez, J.R.; Arroqui, M.; Mangudo, P.; Toloza, J.; Jatip, D.; Rodríguez, J.M.; Teyseyre, A.; Sanz, C.; Zunino, A.; Machado, C.; et al. Body condition estimation on cows from depth images using Convolutional Neural Networks. Comput. Electron. Agric. 2018, 155, 12–22. [Google Scholar] [CrossRef]
- Cang, Y.; He, H.; Qiao, Y. An intelligent pig weights estimate method based on deep learning in sow stall environments. IEEE Access 2019, 7, 164867–164875. [Google Scholar] [CrossRef]
- Aguilar-Martínez, C.U.; Berruecos-Villalobos, J.M.; Espinoza-Gutiérrez, B.; Segura-Correa, J.C.; Valencia-Méndez, J.; Roldán-Roldán, A. Origen, historia y situacion actual de la oveja pelibuey en Mexico. Trop. Subtrop. Agroecosyst. 2017, 20, 429–439. [Google Scholar] [CrossRef]
- AFRC. Energy and Protein Requirements of Ruminants; Agricultural and Food Research Council; University of Wisconsin: Madison, WI, USA, 1993. [Google Scholar]
- Van Rossum, G.; Drake, F.L., Jr. Python Reference Manual; Centrum voor Wiskunde en Informatica: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools 2000, 120, 122–125. [Google Scholar]
- Oliphant, T.E. A Guide to NumPy; Trelgol Publishing: Austin, TX, USA, 2006; Volume 1. [Google Scholar]
- McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28–30 June 2010; van der Walt, S., Millman, J., Eds.; pp. 56–61. [Google Scholar]
- Cai, Z.; Han, J.; Liu, L.; Shao, L. RGB-D datasets using microsoft kinect or similar sensors: A survey. Multimed. Tools Appl. 2017, 76, 4313–4355. [Google Scholar] [CrossRef]
- Pagliari, D.; Pinto, L. Calibration of Kinect for Xbox One and Comparison between the Two Generations of Microsoft Sensors. Sensors 2015, 15, 27569–27589. [Google Scholar] [CrossRef]
- Bautista-Díaz, E.; Salazar-Cuytun, R.; Chay-Canul, A.J.; Garcia Herrera, R.A.; Piñeiro-Vázquez, Á.T.; Magaña Monforte, J.G.; Tedeschi, L.O.; Cruz-Hernández, A.; Gómez-Vázquez, A. Determination of carcass traits in Pelibuey ewes using biometric measurements. Small Rumin. Res. 2017, 147, 115–119. [Google Scholar] [CrossRef]
- Montoya-Santiyanes, L.A.; Chay-Canul, A.J.; Camacho-Pérez, E.; Rodríguez-Abreo, O. A novel model for estimating the body weight of Pelibuey sheep through Gray Wolf Optimizer algorithm. J. Appl. Anim. Res. 2022, 50, 635–642. [Google Scholar] [CrossRef]
- Kashiha, M.; Bahr, C.; Ott, S.; Moons, C.P.; Niewold, T.A.; Ödberg, F.O.; Berckmans, D. Automatic weight estimation of individual pigs using image analysis. Comput. Electron. Agric. 2014, 107, 38–44. [Google Scholar] [CrossRef]
- Bassano, B.; Bergero, D.; Peracino, A. Accuracy of body weight prediction in Alpine ibex (Capra ibex, L. 1758) using morphometry. J. Anim. Physiol. Anim. Nutr. 2003, 87, 79–85. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, W.; Winter, P.; Walker, L. Walk-through weighing of pigs using machine vision and an artificial neural network. Biosyst. Eng. 2008, 100, 117–125. [Google Scholar] [CrossRef]
- Wongsriworaphon, A.; Arnonkijpanich, B.; Pathumnakul, S. An approach based on digital image analysis to estimate the live weights of pigs in farm environments. Comput. Electron. Agric. 2015, 115, 26–33. [Google Scholar] [CrossRef]
- Lasfeto, D.B.; Letik, M. A measuring weight model of Timor’s cattle based on image. Int. J. Eng. Technol. 2017, 9, 677–688. [Google Scholar] [CrossRef]
- Morota, G.; Ventura, R.V.; Silva, F.F.; Koyama, M.; Fernando, S.C. Big data analytics and precision animal agriculture symposium: Machine learning and data mining advance predictive big data analysis in precision animal agriculture. J. Anim. Sci. 2018, 96, 1540–1550. [Google Scholar] [CrossRef] [PubMed]
Input 1 | Input 2 | Input 3 | Input 4 | Input 5 | Input 6 | Input 7 | Output 1 |
---|---|---|---|---|---|---|---|
HWK | RHK | BLK | BDLK | BTLK | GSCK | ASCK | BW |
Net | Activation Functions | Neurons in Layers | Mean RMSE (Ten Tests) |
---|---|---|---|
N-A | T-P | 3 | 3.12 |
N-B | T-P | 5 | 2.88 |
N-C | T-T | 5 | 3.48 |
N-D | P-P | 5 | 3.47 |
N-E | T-L | 8 | 6.81 |
N-F | T-T | 8 | 2.94 |
N-G | T-P | 12 | 2.73 |
N-H | T-T | 12 | 2.79 |
N-I | T-P | 24 | 2.80 |
N-J | T-T-P | 3-2 | 3.13 |
N-K | T-T-P | 5-3 | 2.88 |
N-L | T-T-P | 8-5 | 2.71 |
N-M | T-T-T | 8-5 | 2.89 |
N-N | L-L-T | 8-5 | 3.87 |
N-O | L-L-L | 8-5 | 4.15 |
N-P | P-P-T | 8-5 | 4.02 |
N-Q | T-T-P | 12-8 | 4.11 |
N-R | T-T-P | 24-12 | 4.01 |
N-S | T-T-P | 48-24 | 4.13 |
Model | Inputs | RMSE | R2 (%) | AIC | BIC |
---|---|---|---|---|---|
N 1 | BTLK | 3.2937 | 81.98 | 5.25 | 5.36 |
N 2 | BTLK, HWK | 3.2306 | 82.67 | 5.25 | 5.47 |
N 3 | BTLK, HWK, RHK | 2.8548 | 86.46 | 5.04 | 5.36 |
N 4 | ASCK, GSCK, RHK, HWK, BDLK, BTLK, BLK | 2.7198 | 89.38 | 4.93 | 5.69 |
Model | Inputs | RMSE | R2 (%) | AIC | BIC |
---|---|---|---|---|---|
N 4 | ASCK, GSCK, RHK, HWK, BDLK, BTLK, BLK | 2.7198 | 89.38 | 4.93 | 5.69 |
Schaeffer’s original | GC, BTL | 4.1688 | 71.14 | 5.76 | 5.98 |
Schaeffer’s adjusted | GSC, BTL | 2.7728 | 87.23 | 4.94 | 5.16 |
Truncated cone model | AC, GC, BTL | 2.5716 | 89.02 | 4.87 | 5.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chay-Canul, A.J.; Camacho-Pérez, E.; Casanova-Lugo, F.; Rodríguez-Abreo, O.; Cruz-Fernández, M.; Rodríguez-Reséndiz, J. Neural Network-Based Body Weight Prediction in Pelibuey Sheep through Biometric Measurements. Technologies 2024, 12, 59. https://doi.org/10.3390/technologies12050059
Chay-Canul AJ, Camacho-Pérez E, Casanova-Lugo F, Rodríguez-Abreo O, Cruz-Fernández M, Rodríguez-Reséndiz J. Neural Network-Based Body Weight Prediction in Pelibuey Sheep through Biometric Measurements. Technologies. 2024; 12(5):59. https://doi.org/10.3390/technologies12050059
Chicago/Turabian StyleChay-Canul, Alfonso J., Enrique Camacho-Pérez, Fernando Casanova-Lugo, Omar Rodríguez-Abreo, Mayra Cruz-Fernández, and Juvenal Rodríguez-Reséndiz. 2024. "Neural Network-Based Body Weight Prediction in Pelibuey Sheep through Biometric Measurements" Technologies 12, no. 5: 59. https://doi.org/10.3390/technologies12050059
APA StyleChay-Canul, A. J., Camacho-Pérez, E., Casanova-Lugo, F., Rodríguez-Abreo, O., Cruz-Fernández, M., & Rodríguez-Reséndiz, J. (2024). Neural Network-Based Body Weight Prediction in Pelibuey Sheep through Biometric Measurements. Technologies, 12(5), 59. https://doi.org/10.3390/technologies12050059