Backfill for Advanced Potash Ore Mining Technologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Backfill Material
- Salt tailings (aggregate—A);
- Smelter slag (binder—B);
- Fiber (basalt (BF), carbon (CF), or polymer (PF));
- Grouting fluid—NaCl-saturated salt solution.
2.2. Laboratory Test Methods and Investigated Compositions
2.3. Strength Forecasting by Machine-Learning Algorithms
3. Results
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zubov, V.P. Applied technologies and actual problems of resource saving during underground development of bedded mineral deposits. Gorn. Zhurnal 2018, 6, 77–83. [Google Scholar] [CrossRef]
- Schleinig, J.-P.; Höntzsch, S.; Barnasch, J.; Günther, M.; Jungmann, O.; Zienert, H.; Knauth, M.; Günther, R.-M. A new technology to increase the extraction rate in potash mining areas—An approach for a safe secondary mining concept. In New Challenges in Rock Mechanics and Rock Engineering, 1st ed.; CRC Press: Boca Raton, FL, USA, 2024; pp. 772–777. ISBN 9781003429234. [Google Scholar]
- Sanmiquel, L.; Bascompta, M.; Vintró, C.; Yubero, T. Subsidence Management System for Underground Mining. Minerals 2018, 8, 243. [Google Scholar] [CrossRef]
- Kowalewski, O.; Śpiewanowski, P. Stock Market Response to Potash Mine Disasters (March 3, 2017). IESEG Working Papers 2017-ACF-02. 2017. Available online: http://www.ssrn.com/abstract=2926890 (accessed on 28 January 2025). [CrossRef]
- Kovalski, E.R.; Kongar-Syuryun, C.B.; Petrov, D.N. Challenges and prospects for several-stage stoping in potash minining. Sustain. Dev. Mt. Territ. 2023, 15, 349–364. [Google Scholar] [CrossRef]
- Sidki-Rius, N.; Sanmiquel, L.; Bascompta, M.; Parcerisa, D. Subsidence Management and Prediction System: A Case Study in Potash Mining. Minerals 2022, 12, 1155. [Google Scholar] [CrossRef]
- Kaskiw, L.M.; Morgan, R.M.; Ruse, D.C. Backfilling at IMC Canada K-2 potash mine. In Innovations in Mining Backfill Technology; CRC Press: Boca Raton, FL, USA, 2021; pp. 315–325. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Li, M.; Liu, H.; Zhu, C. Effect of Compressive Behaviours of Tail Salt Filling Materials on Roof Deformation in Potash Mine. Adv. Civ. Eng. 2021, 2021, 6678258. [Google Scholar] [CrossRef]
- Karasev, M.A.; Petrushin, V.V. Methodological issues in determination of initial parameters for modeling deformation of rock salt as a polycrystalline discrete medium. MIAB Min. Inf. Anal. Bull. 2024, 9, 47–64. [Google Scholar] [CrossRef]
- Zabulonov, Y.; Khevpa, Z.; Bahrii, I.; Kryl, I.; Vyzhva, S. Analysis of natural and technological factors of changes in exogeodynamic conditions of mine no. 2 of the Stebnytsky potassium deposit as a consequence of self-rehabilitation flooding. Miner. Resour. Ukr. 2024, 4, 16–22. [Google Scholar] [CrossRef]
- Qu, H.; Yin, H.; Li, C.; Wang, W. Deformation characteristics and mechanism of salt structure: Research and discussion based on seismic analysis and tectonic simulation and implications for rock salt migration and mineralization in complex tectonic regions. Dizhi Xuebao/Acta Geol. Sin. 2024, 98, 2916–2930. [Google Scholar] [CrossRef]
- Sidorenko, A.A.; Dmitriev, P.N.; Alekseev, V.Y.; Sidorenko, S.A. Improvement of technological schemes of mining of coal seams prone to spontaneous combustion and rock bumps. J. Min. Inst. 2023, 264, 949–961. [Google Scholar] [CrossRef]
- Zhang, Y.; Lapatsin, S.; Zhuravkov, M.; Yu, G.; Karpovich, I. The Stability and Failure of Deep Underground Structures at Potash Mining Deposits. Appl. Sci. 2024, 14, 9434. [Google Scholar] [CrossRef]
- Trushko, V.L.; Baeva, E.K. Substantiation of rational parameters of mine support system for underground roadways in difficult geological conditions. MIAB Min. Inf. Anal. Bull. 2023, 12, 55–69. [Google Scholar] [CrossRef]
- Loginov, E.V.; Volf, V.V. Parameters of flow charts for hydraulic backhoe excavation of sand-and-gravel deposits. MIAB Min. Inf. Anal. Bull. 2022, 8, 71–84. [Google Scholar] [CrossRef]
- Marinin, M.A.; Pospehov, G.B.; Sushkova, V.I.; Pomortseva, A.A.; Moseykin, V.V. Experience of trial percolation in heap leaching pile of sandy–clayey rocks. MIAB Min. Inf. Anal. Bull. 2024, 8, 51–62. [Google Scholar] [CrossRef]
- Baryakh, A.A.; Smirnov, E.V.; Kvitkin, S.Y.; Tenison, L.O. Russian potash industry: Issues of rational and safe mining. Russ. Min. Ind. 2022, 1, 41–50. [Google Scholar] [CrossRef]
- Wang, S.; Qi, C.; Cui, B.; Li, X.; Li, D.; Zhang, B.; Zhou, Y.; Liu, W.; Sun, X.; Ding, X.; et al. Analysis and prospect of exploration trends of potassium salt resources in China. Dizhi Xuebao/Acta Geol. Sin. 2024, 98, 2978–2988. [Google Scholar] [CrossRef]
- Semin, M.A.; Maltsev, S.V.; Rodionov, V.A. Improving methods for calculating the equivalent pressure of jet fans in large-section mine workings. Bull. Tomsk Polytech. Univ. Geo Assets Eng. 2024, 335, 185–195. [Google Scholar] [CrossRef]
- Zubov, V.P.; Trofimov, A.V.; Kolganov, A.V. Influence of ground control features on indicators of dilution in mines of the Talanakh ore province. MIAB Min. Inf. Anal. Bull. 2024, 12-1, 87–106. [Google Scholar] [CrossRef]
- Ryl’nikova, M.V.; Berger, R.V.; Yakovlev, I.V.; Tatarnikov, V.I.; Zubkov, P.O. Backfill Technologies and Designs for Deep-Level Sylvinite Mining. J. Min. Sci. 2024, 60, 332–340. [Google Scholar] [CrossRef]
- Liu, Y.; Li, G.; Hou, J.; Fan, C.; Tong, C.; Wang, P. Optimization Model for Mine Backfill Scheduling Under Multi-Resource Constraints. Minerals 2024, 14, 1183. [Google Scholar] [CrossRef]
- Tyulyaeva, Y.S.; Khayrutdinov, A.M. Creation of a backfill composite based on coal industry waste. Ugol 2024, 10, 24–27. [Google Scholar] [CrossRef]
- Gets, A.K.; Onika, S.G.; Kologrivko, A.A.; Shodiev, A.N. Prediction of ore flow quality in a potash mine with regard to the ore face-to-shaft haulage logistics. Gorn. Zhurnal 2022, 4, 49–51. [Google Scholar] [CrossRef]
- Hu, G.; Liu, S.; Zhou, B.; Wang, Y.; Miao, X.; Zhong, Y. Geological Characteristics, Genetic Analysis and Extraction Technology of Potassium Salt Deposits along Hormuz Strait, Iran. Multipurp. Util. Miner. Resour. 2024, 45, 8–14. [Google Scholar] [CrossRef]
- Shkuratsky, D.N.; Skopinov, M.V.; Smirnov, E.V.; Baryakh, A.A. Closure of potentially hazardous sites in potash mines. Gorn. Zhurnal 2023, 3, 5–12. [Google Scholar] [CrossRef]
- Baryah, A.A.; Evseev, A.V. Closure of potash and salt mines: Review and analysis of the problem. MIAB Min. Inf. Anal. Bull. 2019, 9, 5–29. [Google Scholar] [CrossRef]
- Huo, W.; Li, H.; Guo, G.; Wang, Y.; Yuan, Y. Surface Subsidence Prediction Method for Backfill Mining in Shallow Coal Seams with Hard Roofs for Building Protection. Sustainability 2023, 15, 15791. [Google Scholar] [CrossRef]
- Kazanin, O.I.; Sidorenko, A.A.; Evsiukova, A.A.; Liu, Z. Justification of the longwall panel entries support technology when mining gently inclined coal seams at large depths. MIAB Min. Inf. Anal. Bull. 2023, 9, 5–21. [Google Scholar] [CrossRef]
- Repin, S.V.; Afanasyev, A.S.; Dobromirov, V.N.; Barsukov, V.O. Innovative method for disposal of waste of monolithic building structures. Sustain. Dev. Mt. Territ. 2023, 15, 771–783. [Google Scholar] [CrossRef]
- Konstantinova, S.A.; Anikin, M.F.; Gilev, M.V. Hydraulic backfill as a structural element of mining system at the Verkhnekamskoye deposit of potassium and potassium-magnesium salts. MIAB Min. Inf. Anal. Bull. 2001, 12, 89–92. [Google Scholar]
- Spearing, A.J.S.; Zhang, J.; Ma, L. A new automated, safe, environmentally sustainable, and high extraction soft-rock underground mining method. J. South. Afr. Inst. Min. Metall. 2021, 121, 89–96. [Google Scholar] [CrossRef]
- Sedghizadeh, M.; van den Berghe, M.; Shcherbakov, R. Leveraging the ETAS model to forecast mining microseismicity. Geophys. J. Int. 2024, 238, 1491–1504. [Google Scholar] [CrossRef]
- Sidorenko, S.; Trushnikov, V.; Sidorenko, A. Methane Emission Estimation Tools as a Basis for Sustainable Underground Mining of Gas-Bearing Coal Seams. Sustainability 2024, 16, 3457. [Google Scholar] [CrossRef]
- Samsonov, S.V.; Feng, W.; Blais-Stevens, A.; Eaton, D.W. Ground deformation due to natural resource extraction in the Western Canada Sedimentary Basin. Remote Sens. Appl. Soc. Environ. 2024, 34, 101159. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, G.; Ge, Y.; Zhang, C.; Chu, F. Damage Self-Healing Property of Dissolved Salt Columns in Solid Potash Mine. ACS Omega 2024, 9, 31136–31147. [Google Scholar] [CrossRef] [PubMed]
- Duan, R.; Chang, L.; Gu, X.; Li, X.; You, X.; Zhang, Q.; Wang, Q. The Hydrogeochemical Processes of Groundwater in the Bieletan Area, the Western Potash Production Region in China. Water 2024, 16, 1833. [Google Scholar] [CrossRef]
- Babyr, N.V.; Gabov, V.V.; Nosov, A.A.; Nikiforov, A.V. Features of design and work method of mining module at coal deposits in the Russian Arctic. MIAB. Min. Inf. Anal. Bull. 2024, 6, 5–16. [Google Scholar] [CrossRef]
- Malozyomov, B.V.; Martyushev, N.V.; Babyr, N.V.; Pogrebnoy, A.V.; Efremenkov, E.A.; Valuev, D.V.; Boltrushevich, A.E. Modelling of Reliability Indicators of a Mining Plant. Mathematics 2024, 12, 2842. [Google Scholar] [CrossRef]
- Igmailov, A.; Israilov, M.; Latipov, Z.; Olimov, F. Determination of the optimal location of workings to reduce losses and difference of panels №7 and №7 of H2A formation at the mining complex of JSC Dekhkanobad potash plant. AIP Conf. Proc. 2024, 3152, 040012. [Google Scholar] [CrossRef]
- Maksarov, V.V.; Minin, A.O.; Vasilkov, D.V. The use of high-frequency wave action as part of the process to ensure the quality of boring surfaces in products made of corrosion-resistant aluminum alloys. Tsvetnye Metally 2025, 1, 76–83. [Google Scholar] [CrossRef]
- Gendler, S.G.; Kryukova, M.S.; Alferova, E.L. Investigation of thermodynamic parameters of the air environment in subway lines with single-track and double-track tunnels. Min. Sci. Technol. 2024, 9, 250–262. [Google Scholar] [CrossRef]
- Gendler, S.G.; Kryukova, M.S.; Galachiev, K.V.; Dydegkaeva, N.T. Control of thermodynamic parameters of the air environment of subway lines with single-track deep tunnels. Sustain. Dev. Mt. Territ. 2024, 16, 1343–1352. [Google Scholar] [CrossRef]
- Jin, R.; Wang, X.; Zhang, S.; Huo, H.; Li, J.; Ni, W. Slurry Transportation Characteristics of Potash Mine Cemented Paste Backfills via Loop Test Processing. Processes 2024, 12, 2929. [Google Scholar] [CrossRef]
- Liu, Y.; Li, G.; Hou, J.; Guo, G.; Pan, D.; Yu, Q. An Underground Mine Safety-Oriented Optimization Model for Mine Tailings Backfill Scheduling Considering Multi-Process and Multi-Cycle Issues. Minerals 2023, 13, 1409. [Google Scholar] [CrossRef]
- Kongar-Syuryun, C.B. Influence of mine water on the strength of artificial mass based on industrial waste. Ugol 2024, 12, 75–78. [Google Scholar] [CrossRef]
- Bronnikov, D.M.; Tsygalov, M.N. Backfill in Mines; Nedra: Moscow, Russia, 1980; 400p. [Google Scholar]
- Paliy, V.D.; Smelyanskiy, E.S.; Kravchenko, V.T.; Maletin, L.V. Guidelines for Determining the Standard Strength of Hardening Backfill and Assessing the Strength Properties of Artificial Mass; All-Union Research Institute of Mining Geomechanics and Mine Surveying VNIMI: Saint Petersburg, Russia, 1975; 42p. [Google Scholar]
- Khomyakov, V.I. Foreign Experience of Backfilling; Nedra: Moscow, Russia, 1984; 187p. [Google Scholar]
- Bitimbaev, M.Z.; Krupnik, L.A.; Shaposhnik, Y.N. Theory and Practice of Stowage Operations in the Development of Mineral Deposits; TOO RPIK “Dauir”: Almaty, Kazakhstan, 2012; 624p. [Google Scholar]
- Adigamov, A.E. Mathematical method for determining the standard strength of a backfill taking into account mining and geological factors. MIAB. Min. Inf. Anal. Bull. 2008, 10, 204–206. [Google Scholar]
- Baryakh, A.A.; Fedoseev, A.K.; Lobanov, S.Y. Deformations and fracture of rock strata during deep level potash mining. Procedia Struct. Integr. 2021, 32, 109–116. [Google Scholar] [CrossRef]
- Fang, A.; Yang, Y.; Yang, Z.; Hua, S.; Wang, J.; Zhou, F. Consolidation Properties of Soil/Modified Bentonite Backfill in Salt Solution. Water 2022, 14, 1967. [Google Scholar] [CrossRef]
- Sample-Lord, K.M.; Zhang, W.; Tong, S.; Shackelford, C.D. Apparent salt diffusion coefficients for soil–bentonite backfills. Can. Geotech. J. 2020, 57, 623–634. [Google Scholar] [CrossRef]
- Somtong, S.; Khamrat, S.; Fuenkajorn, K. Laboratory performance assessment of consolidated crushed salt for backfill material in potash mine openings. Res. Dev. J. 2015, 26, 15–22. [Google Scholar]
- Volkov, E.P. Development of Technology for Hardening Backfill with Tailings. Ph.D. Thesis, Siberian Federal University, Krasnoyarsk, Russia, 2020; 140p. [Google Scholar]
- Anushenkov, A.N.; Stovmanenko, A.Y.; Volkov, E.P. Fundamentals of Production and Transportation Processes of Backfill in Underground Mining; Siberian Federal University: Krasnoyarsk, Russia, 2015; 208p, ISBN 978-5-7638-3153-5. [Google Scholar]
- Liu, W.; Liu, Z.; Xiong, S.; Wang, M. Comparative prediction performance of the strength of a new type of Ti tailings cemented backfilling body using PSO-RF, SSA-RF, and WOA-RF models. Case Stud. Constr. Mater. 2024, 20, e02766. [Google Scholar] [CrossRef]
- Zhang, B.; Li, K.; Zhang, S.; Hu, Y.; Han, B. Strength prediction and application of cemented paste backfill based on machine learning and strength correction. Heliyon 2022, 8, e10338. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.; Fourie, A.; Chen, Q.; Zhang, Q. A strength prediction model using artificial intelligence for recycling waste tailings as cemented paste backfill. J. Clean. Prod. 2018, 183, 566–578. [Google Scholar] [CrossRef]
- Thotakura, V.; Bala, G.S.; Prasad, C.D.; Ravindran, G.; Biswal, M. Machine Learning–Informed Geomaterial Design for Embankment Construction. Transp. Infrastruct. Geotech. 2025, 12, 56. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, R.; Zhang, B.; Han, B. Research on mechanical properties and mix proportion design of solid waste-based cemented paste backfill. Case Stud. Constr. Mater. 2024, 21, e03618. [Google Scholar] [CrossRef]
- Hu, Y.; Ye, Y.; Zhang, B.; Li, K.; Han, B. Distribution characterization and strength prediction of backfill in underhand drift stopes based on sparrow search algorithm-extreme learning machine and field experiments. Case Stud. Constr. Mater. 2024, 21, e03784. [Google Scholar] [CrossRef]
- Golik, V.I.; Kongar-Syuryun, C.B.; Tyulyaeva, Y.S.; Khairutdinov, A.M. The use of binders based on metallurgical slags in the composition of based mixtures. Proc. TSU 2020, 4, 384–400. [Google Scholar]
- Pashkevich, M.A.; Kulikova, Y.A. Current trends in blast furnace waste management. Eurasian Sci. J. 2022, 14, 30NZVN622. Available online: https://esj.today/PDF/30NZVN622.pdf (accessed on 28 January 2025).
- Golik, V.I.; Dmitrak, Y.V.; Komashchenko, V.I.; Kachurin, N.M. Management of hardening mixtures properties when stowing mining sites of ore deposits. J. Min. Inst. 2020, 243, 285–292. [Google Scholar] [CrossRef]
- Tyulyaeva, Y.S.; Khayrutdinov, A.M.; Gorelkina, E.I. Increasing Classification of georesources in the paradigm of their integrated development. Russ. Min. Ind. 2024, 6, 140–143. [Google Scholar] [CrossRef]
- Argimbaev, K.R.; Ligotsky, D.N.; Mironova, K.V.; Loginov, E.V. Investigations on Material Composition of Iron-containing Tails of Enrichment of Combined Mining and Processing in Kursk Magnetic Anomaly of Russia. Int. J. Eng. Trans. A Basics 2020, 33, 1431–1439. [Google Scholar]
- Ran, J.J. Safe mining practices under wide spans in underground non-caving mines—Case studies. Int. J. Min. Sci. Technol. 2019, 29, 535–540. [Google Scholar] [CrossRef]
- Aleksandrova, T.N.; Prokhorova, E.O. Modification of properties of rock-forming minerals during flotation. MIAB Min. Inf. Anal. Bull. 2023, 12, 123–138. [Google Scholar] [CrossRef]
- Zhang, Z.; Ahmad, N.; Shrestha, A.; Tang, Z.; Cai, Z.; Ergashev, R.; Kalandarbekov, I.; Liu, L.; Li, L. Investigation of fresh, shrinkage, and mechanical properties in iron sand high-strength engineered cementitious composites: Effects of water-to-binder ratio and fiber volume fraction. Case Stud. Constr. Mater. 2025, 22, e04138. [Google Scholar] [CrossRef]
- Long, Z.; Long, G.; Chen, Y.; Shangguan, M.; Wang, J.; Zhang, Y.; Yi, M.; Gao, C.; Tang, Z. Regulating drying shrinkage behavior of cement-based materials in low vacuum environments and developing a predictive model. J. Build. Eng. 2025, 99, 11639. [Google Scholar] [CrossRef]
- Rodríguez-Marcos, M.; Pacheco-Torres, R.; Fernández-Gómez, J.; Villanueva-Llaurado, P. Durable Performance of Cement-Based Repair Mortars for Retrofitting and Protection Applications. J. Mater. Civ. Eng. 2025, 37, 04024539. [Google Scholar] [CrossRef]
- Chen, X.; Jiao, H.; Liu, J.; Yang, Y.; Chen, X.; Yang, L.; Zhang, W.; Yang, T. The Influence of Multi-Size Basalt Fiber on Cemented Paste Backfill Mechanical Properties and Meso-Structure Characteristics. Minerals 2023, 13, 1215. [Google Scholar] [CrossRef]
- Liu, W.; Yin, S.; Hou, Y.; Zhang, M. Study on Mechanical and Flow Properties of Cemented Sulfur Tailings Backfill Considering the Influence of Fiber Type, Fiber Content and Addition Method. Minerals 2023, 13, 1105. [Google Scholar] [CrossRef]
- Jafari, M.M.; Jahandari, S.; Ozbakkaloglu, T.; Rasekh, H.; Armaghani, D.J.; Rahmani, A. Mechanical Properties of Polyamide Fiber-Reinforced Lime–Cement Concrete. Sustainability 2023, 15, 11484. [Google Scholar] [CrossRef]
- Edianto, A.; Trencher, G.; Manych, N.; Matsubae, K. Forecasting coal power plant retirement ages and lock-in with random forest regression. Patterns 2023, 4, 100776. [Google Scholar] [CrossRef] [PubMed]
- Klyuev, R.V.; Morgoeva, A.D.; Gavrina, O.A.; Bosikov, I.I.; Morgoev, I.D. Forecasting planned electricity consumption for the united power system using machine learning. J. Min. Inst. 2023, 261, 392–402. [Google Scholar]
- Morgoeva, A.D.; Morgoev, I.D.; Klyuev, R.V.; Kochkovskaya, S.S. Forecasting hourly electricity generation by a solar power plant using machine learning algorithms. Bull. Tomsk Polytech. Univ. Geo Assets Eng. 2023, 334, 7–19. [Google Scholar] [CrossRef]
- Dong, L.; Shu, H.; Tang, Z.; Yan, X. Microseismic event waveform classification using CNN-based transfer learning models. Int. J. Min. Sci. Technol. 2023, 33, 1203–1216. [Google Scholar] [CrossRef]
- Fu, D.; Shi, H.; Gueymard, C.A.; Yang, D.; Zheng, Y.; Che, H.; Fan, X.; Han, X.; Gao, L.; Bian, J.; et al. A Deep-Learning and Transfer-Learning Hybrid Aerosol Retrieval Algorithm for FY4-AGRI: Development and Verification over Asia. Engineering 2024, 38, 164–174. [Google Scholar] [CrossRef]
- Guo, Y.-J.; Cui, Y.-A.; Chen, H.; Xie, J.; Zhang, C.; Liu, J.-X. Self-potential inversion based on Attention U-Net deep learning network. J. Cent. South Univ. 2024, 31, 3156–3167. [Google Scholar] [CrossRef]
- Nikitin, V.I. Mathematical modeling of drilling fluid filter penetration into the bottom-hole of formation taking into account oil viscoplastic properties. Bull. Tomsk. Polytech. Univ. Geo Assets Eng. 2023, 334, 130–137. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, X.; Qu, Q.; Huang, Y. Enhancing stability graphs for stope design in deep metal mines using machine learning. Int. J. Rock Mech. Min. Sci. 2024, 181, 105837. [Google Scholar] [CrossRef]
- Avkopashvili, M.; Avkopashvili, I.; Avkopashvili, G.; Ayo-Bali, A.E. 50 years of mining-induced environmental changes: Topography, hydrology, and vegetation health in Kazreti, Georgia. Environ. Res. Commun. 2024, 6, 085008. [Google Scholar] [CrossRef]
- Kaldybayev, N.; Teshebayeva, Z.; Akkulov, A.; Abdulazizov, T.; Bektashov, B. Substantiation of Rational Parameters of Rock Salt Extraction in High-Altitude Conditions Using Environmentally Friendly Combined Geotechnologies. E3S Web Conf. 2024, 537, 10004. [Google Scholar] [CrossRef]
- Bykowa, E.; Banikevich, T.; Zalivatskaya, N.; Pirogova, O. Modeling the Cadastral Value of Land Plots of Gardening and Horticultural Non-Profit Partnerships Taking into Account the Influence of Local Factors of the Territory. Land 2024, 13, 1004. [Google Scholar] [CrossRef]
- Banikevich, T.D.; Bykowa, E.N.; Zalivatskaya, N.V.; Pirogova, O.E. Pattern determination of the territory local factors influence on the land plots’ cadastral value of gardening and horticultural non-profit partnerships. Popul. Econ. 2024, 8, 86–107. [Google Scholar] [CrossRef]
- Tan, X.; Ren, G.; Zhang, L.; Zhang, C.; Jiang, K.; Ge, Y. Research on temperature distribution rule and influencing factors of integrated mechanized stope in potassium salt mine. Case Stud. Therm. Eng. 2024, 61, 104942. [Google Scholar] [CrossRef]
- Quan, W.; Fall, M. Temperature-driven crack self-healing and performance recovery in cemented tailings materials. Case Stud. Constr. Mater. 2024, 21, e04105. [Google Scholar] [CrossRef]
- Egoshin, A.M.; Afanasyev, A.S.; Alekseev, S.V. Procedure of mineral delivery system selection based on economic analysis of alternatives. MIAB Min. Inf. Anal. Bull. 2024, 6, 135–148. [Google Scholar] [CrossRef]
- Trigueros, E.; Cánovas, M.; Arzúa, J.; Baraibar, J.M. Evaluating the influence of backfilling on the stability of an abandoned room-and-pillar mine: A case study in northern Spain. Geomech. Geophys. Geo-Energy Geo-Resour. 2024, 10, 116. [Google Scholar] [CrossRef]
Mine | Binder, kg/m3 | Aggregate | Strength, MPa |
---|---|---|---|
Achisaisky (Kazakhstan) | Cement (100–140) | Tailings | 1.42–4.9 |
Gaisky (Russia) | Cement (40–210) + blast furnace slag (360) | Sand + tailings | 5.0–6.0 |
Graund Mine (Germany) | Cement (66) | Tailings | 2.0 |
Zapolyarny (Russia) | Cement (350–500) | Sand + crushed rock | 20.0 |
Zyryanovsky (Kazakhstan) | Cement (102) | Sand and gravel mix | 5.0–9.0 |
Mines of the Irtysh Polymetallic Combine (Kazakhstan) | Cement (25) | Tailings | 4.1 |
Kauldy (Uzbekistan) | Cement + ash | Sand + marble quarry waste | 4.3–5.1 |
Krasnogvardeysky (Russia) | Cement (120) + slag (2300) | 3–4 | |
Macassa (Canada) | Cement (66–330) + ash | Tailings + sand | 0.6–3.4 |
Maleevsky (Kazakhstan) | Cement (250) + blast furnace slag | Light fraction of heavy slurry from concentrators + rock | 5.0 |
Norilsk Nickel (Russia) | Cement (60–180) (clinker (80–300)) + slag (600–800) + anhydrite (350–900) | Crushed rock | 4.0–5.0 |
Orlovsky (Kazakhstan) | Cement (230) | Tailings + crushed rock | 4.5 |
Ridder-Sokolsky (Kazakhstan) | Cement (100–200) | Sand + tailings | 4.0–5.0 |
Severouralsk Bauxite Mine (Russia) | Cement (100–200) + slag/ash (150) | Crushed rock | 6.0–8.0 |
Tekeli (Kazakhstan) | Cement (250) | Sand + crushed rock | 10.0 |
Tishinsky (Kazakhstan) | Cement (360–475) | Product of sifting + tailings | 10.0–14.0 |
Uchalinsky (Russia) | Cement (100–400) | Product of crushing plant sifting | 1.0–11.0 |
Yakovlevsky (Russia) | Cement (150) | Sand | 5.0–6.0 |
Yaregsky (Russia) | Cement (30–200) + slag (200–370) | Sand + tailings | 1.7–7.0 |
Dzhezkazgan (Kazakhstan) | Portland cement (120) +ash (280) | Rock + tailings | 4.0–8.0 |
Magnetite (Russia) | Cement (40–65) + slag (360) | Limestone + tailings | 3.0–6.0 |
Content, % | ||||
---|---|---|---|---|
NaCl | KCl | CaSO4 | MgCl | IR |
90–98 | 0.3–2.6 | 1.1–1.9 | 0.03–0.07 | 0.07–2 |
Particle Size, mm | ||||||
---|---|---|---|---|---|---|
<5 | 5–3 | 3–2 | 2–1 | 1–0.5 | 0.5–0.25 | >0.25 |
Fractional Content, % | ||||||
0 | 2.3 | 9.1 | 15.3 | 20.1 | 49.3 | 3.9 |
31.1 | 10.2 | 50.6 | 4.3 | 1.4 | 0.2 | - | - | - | 2.2 | 1.33 | 3.04 |
No. | Component | Content, % |
---|---|---|
1 | A | 100 |
A + B | A + F | ||||
---|---|---|---|---|---|
No. | Component | Content, % | No. | Component | Content, % |
1 | A B | rest 5 | 1 | A BF/CF/PF | rest 0.1/0.1/0.1 |
2 | A B | rest 10 | 2 | A BF/CF/PF | rest 0.3/0.3/0.3 |
3 | A B | rest 20 | 3 | A BF/CF/PF | rest 0.5/0.5/0.5 |
4 | A B | rest 25 | 4 | A BF/CF/PF | rest 0.7/0.7/0.7 |
5 | A B | rest 30 | 5 | A BF/CF/PF | rest 0.9/0.9/0.9 |
6 | A B | rest 40 | 6 | A BF/CF/PF | rest 1.1/1.1/1.1 |
7 | A BF/CF/PF | rest 1.3/1.3/1.3 | |||
8 | A BF/CF/PF | rest 1.5/1.5/1.5 |
No. | Component | Content, % | No. | Component | Content, % | No. | Component | Content, % |
---|---|---|---|---|---|---|---|---|
1.1 | A B BF/CF | rest 10 0.3/0.7 | 1.2 | A B BF/CF | rest 10 0.5/0.9 | 1.3 | A B BF/CF | rest 10 0.7/1.1 |
2.1 | A B BF/CF | rest 20 0.3/0.7 | 2.2 | A B BF/CF | rest 20 0.5/0.9 | 2.3 | A B BF/CF | rest 20 0.7/1.1 |
3.1 | A B BF/CF | rest 25 0.3/0.7 | 2.2 | A B BF/CF | rest 25 0.5/0.9 | 2.3 | A B BF/CF | rest 25 0.7/1.1 |
4.1 | A B BF/CF | rest 30 0.3/0.7 | 3.2 | A B BF/CF | rest 30 0.5/0.9 | 3.3 | A B BF/CF | rest 30 0.7/1.1 |
No. | Component | Content, % |
---|---|---|
1 | A B BF/CF | rest 5; 40 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5/0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 |
2 | A B BF/CF | Rest 10; 20; 25; 30 0.1 0.9 1.1 1.3 1.5/0.1 0.3 0.5 1.3 1.5 |
Sign | Description |
---|---|
sigma_A | Sample strength (A), MPa |
percent_B | Slag content, % |
sigma_A_B | Sample strength (A + B), MPa |
Type_F | Type of fiber (BF/CF) |
percent_F | Content of fiber, % |
sigma_A_F | Sample strength (A + F), MPa |
Model | Hyperparameters |
---|---|
LR | Intercept = 9.49; β = [0.02, 1.75, 1.16, 1.68] |
RFR | max_depth = 15; n_estimators = 40 |
XGBoost | learning_rate = 0.03; n_estimators = 3.14; |
CatBoost | max_depth = 9; iterations = 2325 |
MLP | number of hidden layers = 9; number of neurons in the hidden layers = [142, 870, 1366, 1172, 942, 1178, 1860, 956, Dropout (0.2)]; EarlyStopping (monitor = ‘val_loss’, patience = 3); activation function = SELU; optimizer = Adamax |
RBFNN | β = 2; RBF = Gaussian function; loss function = MSE; optimizer = Adam; number of neurons in the hidden layer = 55; iterations = 1000 |
LSTM | layers = LSTM, Dense, LSTM, Dense, Dropout, output; number of neurons in the hidden layers = [50, 50, 25, 25, 0.2]; EarlyStopping (monitor = ‘val_loss’, patience = 5); optimizer = Adam; activation function = ReLU; number of iterations = 1000 |
Model | Training Dataset | Test Dataset | ||||
---|---|---|---|---|---|---|
MAPE, % | R2 | MAE | MAPE, % | R2 | MAE | |
LR | 7.18 | 0.87 | 0.67 | 6.94 | 0.90 | 0.64 |
RFR | 0.71 | 0.99 | 0.07 | 1.86 | 0.99 | 0.16 |
XGBoost | 0.58 | 0.99 | 0.06 | 2.05 | 0.99 | 0.18 |
CatBoost | 0.01 | 0.99 | 0.001 | 2.03 | 0.99 | 0.17 |
LSTM | 1.45 | 0.99 | 0.13 | 1.79 | 0.99 | 0.16 |
RBFNN | 2.71 | 0.98 | 0.23 | 2.9 | 0.98 | 0.24 |
MLP | 1.59 | 0.99 | 0.14 | 1.93 | 0.99 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovalsky, E.; Kongar-Syuryun, C.; Morgoeva, A.; Klyuev, R.; Khayrutdinov, M. Backfill for Advanced Potash Ore Mining Technologies. Technologies 2025, 13, 60. https://doi.org/10.3390/technologies13020060
Kovalsky E, Kongar-Syuryun C, Morgoeva A, Klyuev R, Khayrutdinov M. Backfill for Advanced Potash Ore Mining Technologies. Technologies. 2025; 13(2):60. https://doi.org/10.3390/technologies13020060
Chicago/Turabian StyleKovalsky, Evgeny, Cheynesh Kongar-Syuryun, Angelika Morgoeva, Roman Klyuev, and Marat Khayrutdinov. 2025. "Backfill for Advanced Potash Ore Mining Technologies" Technologies 13, no. 2: 60. https://doi.org/10.3390/technologies13020060
APA StyleKovalsky, E., Kongar-Syuryun, C., Morgoeva, A., Klyuev, R., & Khayrutdinov, M. (2025). Backfill for Advanced Potash Ore Mining Technologies. Technologies, 13(2), 60. https://doi.org/10.3390/technologies13020060