Emerging Roles of 3D Body Scanning in Human-Centric Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Selection Process
2.3. Inclusion and Exclusion Criteria
2.3.1. Inclusion Criteria
2.3.2. Exclusion Criteria
3. Review Findings and Discussion
3.1. Product Development
3.1.1. Pattern-Making in Apparel
3.1.2. Fit and Size in Apparel
3.1.3. Footwear in Apparel
3.1.4. Functional Apparel
3.2. Body Shape
3.2.1. Size and Shape
3.2.2. Body Classifications
3.3. Healthcare
3.3.1. Evaluation
3.3.2. Prediction
3.4. Anthropometry Measurements
3.5. Avatar Creation
3.6. Body Image
4. Conclusions and Future Recommendations
5. Study Limitation
Author Contributions
Funding
Conflicts of Interest
References
- Dziedzic, M.; Ostrowski, P.; Ghosh, S.K.; Balawender, K.; Koziej, M.; Bonczar, M. Exploring the Evolution of Anatomy: From Historical Foundations to Modern Insights. Transl. Res. Anat. 2024, 35, 100286. [Google Scholar] [CrossRef]
- Bartol, K.; Bojanić, D.; Petković, T.; Pribanić, T. A Review of Body Measurement Using 3D Scanning. IEEE Access 2021, 9, 67281–67301. [Google Scholar] [CrossRef]
- Scatliff, J.H.; Morris, P.J. From Roentgen to Magnetic Resonance Imaging: The History of Medical Imaging. North Carol. Med. J. 2014, 75, 111–113. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M. 3D Scanning Applications in Medical Field: A Literature-Based Review. Clin. Epidemiol. Glob. Health 2019, 7, 199–210. [Google Scholar] [CrossRef]
- Zeraatkar, M.; Khalili, K. A Fast and Low-Cost Human Body 3D Scanner Using 100 Cameras. J. Imaging 2020, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Edl, M.; Mizerák, M.; Trojan, J. 3D Laser Scanners: History and Applications. Acta Simulatio 2018, 4, 1–5. [Google Scholar] [CrossRef]
- The Evolution of 3D Laser Scanning. PointSCAN. Available online: https://www.pointscan.co.uk/the-evolution-of-3d-laser-scanning (accessed on 4 March 2025).
- Daanen, H.A.; Ter Haar, F.B. 3D Whole Body Scanners Revisited. Displays 2013, 34, 270–275. [Google Scholar] [CrossRef]
- Daanen, H.M.; van de Water, G.J. Whole Body Scanners. Displays 1998, 19, 111–120. [Google Scholar] [CrossRef]
- Wang, Y.; Han, C.; Zhang, L.; Liu, J.; An, Q.; Yang, F. Millimeter-Wave Radar Object Classification Using Knowledge-Assisted Neural Network. Front. Neurosci. 2022, 16, 1075538. [Google Scholar] [CrossRef]
- Verykokou, S.; Ioannidis, C. An Overview on Image-Based and Scanner-Based 3D Modeling Technologies. Sensors 2023, 23, 596. [Google Scholar] [CrossRef]
- Arbutina, M.; Dragan, D.; Mihic, S.; Anisic, Z. Review of 3d body scanning systems. Acta Tech. Corviniensis-Bull. Eng. 2017, 10, 17–34. [Google Scholar]
- Gangapurwala, P. Methods of Stereophotogrammetry: A Review. In Proceedings of the 4th International Conference on Advances in Science & Technology (ICAST2021), Mumbai, India, 7 May 2021; Available online: https://ssrn.com/abstract=3866518 (accessed on 4 March 2025). [CrossRef]
- Devnath, M.K.; Chakma, A.; Anwar, M.S.; Dey, E.; Hasan, Z.; Conn, M.; Pal, B.; Roy, N. A Systematic Study on Object Recognition Using Millimeter-Wave Radar. In Proceedings of the 2023 IEEE International Conference on Smart Computing (SMARTCOMP), Nashville, TN, USA, 26–30 June 2023; pp. 57–64. [Google Scholar] [CrossRef]
- Turppa, E.; Kortelainen, J.M.; Antropov, O.; Kiuru, T. Vital Sign Monitoring Using FMCW Radar in Various Sleeping Scenarios. Sensors 2020, 20, 6505. [Google Scholar] [CrossRef]
- Kurillo, G.; Hemingway, E.; Cheng, M.-L.; Cheng, L. Evaluating the Accuracy of the Azure Kinect and Kinect V2. Sensors 2022, 22, 2469. [Google Scholar] [CrossRef]
- Ashdown, S.P. Full Body 3-D Scanners. In Anthropometry, Apparel Sizing and Design; Elsevier: Amsterdam, The Netherlands, 2020; pp. 145–168. [Google Scholar] [CrossRef]
- Dathan-Stumpf, A.; Lia, M.; Meigen, C.; Bornmann, K.; Martin, M.; Aßmann, M.; Kiess, W.; Stepan, H. Novel Three-Dimensional Body Scan Anthropometry versus MR-Pelvimetry for Vaginal Breech Delivery Assessment. J. Clin. Med. 2023, 12, 6181. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Grünwald, A.T.; Alves-Pinto, A.; Maier, R.; Cremers, D.; Pfeiffer, D.; Lampe, R. A Noninvasive 3D Body Scanner and Software Tool towards Analysis of Scoliosis. BioMed Res. Int. 2019, 2019, 4715720. [Google Scholar] [CrossRef] [PubMed]
- Tian, I.Y.; Wong, M.C.; Nguyen, W.M.; Kennedy, S.; McCarthy, C.; Kelly, N.N.; Liu, Y.E.; Garber, A.K.; Heymsfield, S.B.; Curless, B. Automated Body Composition Estimation from Device-Agnostic 3D Optical Scans in Pediatric Populations. Clin. Nutr. 2023, 42, 1619–1630. [Google Scholar] [CrossRef]
- Lu, L.; Yick, K.-L.; Ng, S.P.; Yip, J.; Tse, C.Y. Evaluation of Body Geometry and Symmetry for Adolescent Idiopathic Scoliosis with 3D Body Scanning System: A 6-Month Follow-Up. Res. J. Text. Appar. 2017, 21, 276–292. [Google Scholar] [CrossRef]
- Simenko, J.; Ipavec, M.; Vodicar, J.; Rauter, S. Body Symmetry/Asymmetry in Youth Judokas in the under 73 Kg Category. Ido Mov. Cult. J. Martial Arts Anthropol. 2017, 17, 51–55. [Google Scholar] [CrossRef]
- Wagner, D.R.; Castañeda, F.; Bohman, B.; Sterr, W. Comparison of a 2D iP Ad Application and 3D Body Scanner to Air Displacement Plethysmography for Measurement of Body Fat Percentage. J. Hum. Nutr. Diet. 2019, 32, 781–788. [Google Scholar] [CrossRef]
- Su, J.; Watchravesringkan, K.; Zhou, J.; Gil, M. Sustainable Clothing: Perspectives from US and Chinese Young Millennials. Int. J. Retail Distrib. Manag. 2019, 47, 1141–1162. [Google Scholar] [CrossRef]
- Wu, X.; Kuzmichev, V.; Peng, T. Development of Female Torso Classification and Method of Patterns Shaping. Autex Res. J. 2018, 18, 419–428. [Google Scholar] [CrossRef]
- Yan, J.; Kuzmichev, V.E. A Virtual E-Bespoke Men’s Shirt Based on New Body Measurements and Method of Pattern Drafting. Text. Res. J. 2020, 90, 2223–2244. [Google Scholar] [CrossRef]
- Su, J.; Liu, G.; Xu, B. Development of Individualized Pattern Prototype Based on Classification of Body Features. Int. J. Cloth. Sci. Technol. 2015, 27, 895–907. [Google Scholar] [CrossRef]
- Olaru, S.; Popescu, G.; Anastasiu, A.; Mihăilă, G.; Săliştean, A. Innovative Concept for Personalized Pattern Design of Safety Equipment. Ind. Textila 2020, 71, 50–54. [Google Scholar] [CrossRef]
- Kim, H.S.; Choi, H.E. Corresponding Measurement-Based Patternmaking Method for Leggings Using Three-Dimensional Body Scanning Technology. J. Eng. Fibers Fabr. 2023, 18, 15589250231163773. [Google Scholar] [CrossRef]
- Lee, K.S.; Song, H.K.; Kim, S. Categorization of Lower Body Shapes of Abdominal Obese Men Using a Script-Based 3D Body Measurement Software. Fash. Text. 2020, 7, 3. [Google Scholar] [CrossRef]
- Ball, R.; Wang, H.; Luximon, Y. Scan and Print: A Digital Design Method for Wearable Products. Ergon. Des. 2019, 27, 26–34. [Google Scholar] [CrossRef]
- Buyukaslan, E.; Baytar, F.; Kalaoglu, F. Exploring the Factors Influencing Consumers’ Virtual Garment Fit Satisfactions. Res. J. Text. Appar. 2020, 24, 375–388. [Google Scholar] [CrossRef]
- Lagė, A.; Virvičiūtė, R.; Grinevičiūtė, D. Comparative Analysis of Real and Virtual Fitting of a Fitted Dress. Procedia CIRP 2020, 90, 569–574. [Google Scholar] [CrossRef]
- Markiewicz, Ł.; Witkowski, M.; Sitnik, R.; Mielicka, E. 3D Anthropometric Algorithms for the Estimation of Measurements Required for Specialized Garment Design. Expert Syst. Appl. 2017, 85, 366–385. [Google Scholar] [CrossRef]
- Kolose, S.; Stewart, T.; Hume, P.; Tomkinson, G.R. Cluster Size Prediction for Military Clothing Using 3D Body Scan Data. Appl. Ergon. 2021, 96, 103487. [Google Scholar] [CrossRef] [PubMed]
- Hatch, K.; Brubacher, K.; Gill, S.; Fernando, A. Using Advances in Technology to Develop Sizing Methodology for Women’s Sports Compression Garments. Int. J. Fash. Des. Technol. Educ. 2024, 17, 241–248. [Google Scholar] [CrossRef]
- Gu, B.; Su, J.; Liu, G.; Xu, B. Pattern Alteration of Women’s Suits Based on Ease Distribution. Int. J. Cloth. Sci. Technol. 2016, 28, 201–215. [Google Scholar] [CrossRef]
- Romeo, L.D.; Lee, Y. Exploring Current Ready-to-Wear Apparel Attributes for Plus-Size Female Teens. Fam. Consum. Sci. Res. J. 2014, 43, 145–159. [Google Scholar] [CrossRef]
- Romeo, L.D.; Lee, Y.-A. Exploring Apparel Purchase Issues with Plus-Size Female Teens. J. Fash. Mark. Manag. 2015, 19, 120–135. [Google Scholar] [CrossRef]
- Kim, I.H.; Han, H.; Shin, S.-J.H. Characteristics of Women’s Basic Bodice Pattern Formation in Relation to the Anthropometric References. Int. J. Cloth. Sci. Technol. 2021, 33, 188–198. [Google Scholar] [CrossRef]
- Dan, R.; Fan, X.; Shi, Z.; Zhang, M. Study on the Relationship between Pressure and Stiffness Coefficient, and Elastic Elongation of the Top Part of Men’s Socks Using Finite Element Method. Int. J. Cloth. Sci. Technol. 2015, 27, 751–766. [Google Scholar] [CrossRef]
- Lindell, E.; Tingsvik, H.; Guo, L.; Peterson, J. 3D Body Scan as Anthropometric Tool for Individualized Prosthetic Socks. Autex Res. J. 2022, 22, 350–357. [Google Scholar] [CrossRef]
- Irzmańska, E.; Okrasa, M. Evaluation of Protective Footwear Fit for Older Workers (60+): A Case Study Using 3D Scanning Technique. Int. J. Ind. Ergon. 2018, 67, 27–31. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Chen, Z. Evaluation on the Pressure Distribution and Body-Shaping Effectivity of Graduated Compression Shaping Pants. Int. J. Cloth. Sci. Technol. 2021, 33, 153–162. [Google Scholar] [CrossRef]
- Conroy, B.; Park, J. Codesigning a Ballistic Body Armour with an Industry Partner and Local Police Officers: Focused on Improving Ergonomic Fit and Comfort. Int. J. Fash. Des. Technol. Educ. 2022, 15, 308–321. [Google Scholar] [CrossRef]
- Kang, Y.H.; Kim, S. Development of Bulletproof Pad Design System Using 3D Body Scan Data. Int. J. Cloth. Sci. Technol. 2019, 31, 802–812. [Google Scholar] [CrossRef]
- Wen, C.-H.; Shih, Y.-C. Designing New Sizing Bulletproof Vests for Taiwanese Soldiers. Int. J. Cloth. Sci. Technol. 2021, 33, 321–335. [Google Scholar] [CrossRef]
- Hobbs-Murphy, K.; Morris, K.; Park, J. A Case Study of Developing a Paralympic Shooting Jacket for Disabled Athletes. Cloth. Text. Res. J. 2024, 42, 51–68. [Google Scholar] [CrossRef]
- Ciesielska-Wrobel, I.; DenHartog, E.; Barker, R. The Influence of Designs of Protective Uniforms on Firefighters’ Performance during Moderate Physical Exercises. Text. Res. J. 2018, 88, 1979–1991. [Google Scholar] [CrossRef]
- Nawaz, N.; Troynikov, O. Firefighters’ Protective Jackets: Fit to Female Form and Its Effects on Attributes Relevant to Thermal Comfort. J. Occup. Environ. Hyg. 2018, 15, 792–802. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y. Determination of Dynamic Air Gap Thickness and Analysis of Its Relationship with Firefighters’ Joint Movement. Int. J. Occup. Saf. Ergon. 2024, 30, 635–650. [Google Scholar] [CrossRef]
- Mert, E.; Psikuta, A.; Bueno, M.-A.; Rossi, R.M. The Effect of Body Postures on the Distribution of Air Gap Thickness and Contact Area. Int. J. Biometeorol. 2017, 61, 363–375. [Google Scholar] [CrossRef]
- Park, J.; Langseth-Schmidt, K. Anthropometric Fit Evaluation of Firefighters’ Uniform Pants: A Sex Comparison. Int. J. Ind. Ergon. 2016, 56, 1–8. [Google Scholar] [CrossRef]
- Bogović, S.; Stjepanovič, Z.; Cupar, A.; Jevšnik, S.; Rogina-Car, B.; Rudolf, A. The Use of New Technologies for the Development of Protective Clothing: Comparative Analysis of Body Dimensions of Static and Dynamic Postures and Its Application. AUTEX Res. J. 2019, 19, 301–311. [Google Scholar] [CrossRef]
- Wu, X.; Kuzmichev, V. A Design of Wetsuit Based on 3D Body Scanning and Virtual Technologies. Int. J. Cloth. Sci. Technol. 2021, 33, 477–494. [Google Scholar] [CrossRef]
- Gorea, A.; Baytar, F. Using 3D Body Scanning to Measure Compression Variations in a Seamless Knitted Sports Bra. Int. J. Fash. Des. Technol. Educ. 2020, 13, 111–119. [Google Scholar] [CrossRef]
- Gorea, A.; Baytar, F.; Sanders, E.A. Experimental Design and Evaluation of a Moisture Responsive Sports Bra. Fash. Text. 2020, 7, 20. [Google Scholar] [CrossRef]
- Yu, M.; Kim, D.-E. The Development of Dress Forms in Standing and Sitting Postures Using 3D Body Scanning and Printing. Fash. Text. 2023, 10, 25. [Google Scholar] [CrossRef]
- Maher, M.; Du Puis, J.L.; Goodge, K.; Frey, M.; Park, H.T.; Baytar, F. Children’s Cloth Face Mask Sizing and Digital Fit Analysis: Method Development. Fash. Text. 2024, 11, 3. [Google Scholar] [CrossRef]
- Rogina-Car, B.; Bogović, S. Functional Design of Medical Undershirt with Microbial Barrier. Text. Leather Rev. 2019, 2, 72–78. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, L. Patient-Specific Medical Compression Stockings (MCSs) Development Based on Mathematic Model and Non-Contact 3D Body Scanning. J. Text. Inst. 2023, 114, 1157–1166. [Google Scholar] [CrossRef]
- Park, S.; Kim, D.-E. The Application of 3D Printing Technology for Developing a Lumbar Support Garment for Obese Women. Text. Res. J. 2023, 93, 1712–1733. [Google Scholar] [CrossRef]
- Alrasheedi, N.H.; Ben Makhlouf, A.; Louhichi, B.; Tlija, M.; Hajlaoui, K. Customized Orthosis Design Based on Surface Reconstruction from 3D-Scanned Points. Prosthesis 2024, 6, 93–106. [Google Scholar] [CrossRef]
- Ringenbach, P.; Yu, A.; Zhang, Y. Analysis of Knee-Bending Motion through Three-Dimensional Scanning for Advanced Brace Design. Text. Res. J. 2024, 94, 2682–2694. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, J.R. Developing Fall-Impact Protection Pad with 3D Mesh Curved Surface Structure Using 3D Printing Technology. Polymers 2019, 11, 1800. [Google Scholar] [CrossRef] [PubMed]
- Szkudlarek, J.; Owczarek, G.; Jachowicz, M.; Zagrodny, B. Procedure for Determining Dimensional Allowances for PPE Using 3D Scanning Methods. Int. J. Environ. Res. Public Health 2022, 19, 2397. [Google Scholar] [CrossRef] [PubMed]
- Szkudlarek, J.; Owczarek, G.; Jachowicz, M.; Zagrodny, B.; Sencerek, J. Study of The Impact of Users’ Features on Dimensional Allowances Resulting from the Use of Personal Protective Equipment. Int. J. Environ. Res. Public Health 2023, 20, 3380. [Google Scholar] [CrossRef]
- Wu, J.; Yuan, H.; Li, X. A Novel Method for Comfort Assessment in a Supine Sleep Position Using Three-Dimensional Scanning Technology. Int. J. Ind. Ergon. 2018, 67, 104–113. [Google Scholar] [CrossRef]
- Smulders, M.; Berghman, K.; Koenraads, M.; Kane, J.; Krishna, K.; Carter, T.; Schultheis, U. Comfort and Pressure Distribution in a Human Contour Shaped Aircraft Seat (Developed with 3D Scans of the Human Body). Work 2016, 54, 925–940. [Google Scholar] [CrossRef] [PubMed]
- Crytzer, T.M.; Hong, E.-K.; Dicianno, B.E.; Pearlman, J.; Schmeler, M.; Cooper, R.A. Identifying Characteristic Back Shapes from Anatomical Scans of Wheelchair Users to Improve Seating Design. Med. Eng. Phys. 2016, 38, 999–1007. [Google Scholar] [CrossRef]
- Makhanya, B.P.; de Klerk, H.M.; Adamski, K.; Mastamet-Mason, A. Ethnicity, Body Shape Differences and Female Consumers’ Apparel Fit Problems. Int. J. Consum. Stud. 2014, 38, 183–191. [Google Scholar] [CrossRef]
- Park, S.; Nam, Y.; Choi, K. Parametric Virtual Lower Body of Elderly Women for Apparel Industry. Int. J. Cloth. Sci. Technol. 2015, 27, 129–147. [Google Scholar] [CrossRef]
- Pei, J.; Fan, J.; Ashdown, S.P. A Novel Method to Assess Breast Shape and Breast Asymmetry. J. Text. Inst. 2019, 110, 1229–1240. [Google Scholar] [CrossRef]
- Song, H.K.; Baytar, F.; Ashdown, S.P.; Kim, S. 3D Anthropometric Analysis of Women’s Aging Bodies: Upper Body Shape and Posture Changes. Fash. Pract. 2022, 14, 26–48. [Google Scholar] [CrossRef]
- Shin, E.; Saeidi, E. Whole Body Shapes and Fit Problems among Overweight and Obese Men in the United States. J. Fash. Mark. Manag. Int. J. 2023, 27, 100–117. [Google Scholar] [CrossRef]
- Chrimes, C.; Boardman, R.; McCormick, H.; Vignali, G. Investigating the Impact of Body Shape on Garment Fit. J. Fash. Mark. Manag. Int. J. 2023, 27, 741–759. [Google Scholar] [CrossRef]
- Shin, E.; Saeidi, E. Body Shapes and Apparel Fit for Overweight and Obese Women in the US: The Implications of Current Sizing System. J. Fash. Mark. Manag. Int. J. 2022, 26, 759–775. [Google Scholar] [CrossRef]
- Hamad, M.; Thomassey, S.; Bruniaux, P. A New Sizing System Based on 3D Shape Descriptor for Morphology Clustering. Comput. Ind. Eng. 2017, 113, 683–692. [Google Scholar] [CrossRef]
- Tan, Z.; Lin, S.; Wang, Z. Cluster Size Intelligence Prediction System for Young Women’s Clothing Using 3D Body Scan Data. Mathematics 2024, 12, 497. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Kouchi, M.; Mochimaru, M.; Wang, M.-J. Comparing 3D Foot Shape Models between Taiwanese and Japanese Females. J. Hum. Ergol. 2015, 44, 11–20. [Google Scholar] [CrossRef]
- Alcacer, A.; Epifanio, I.; Ibáñez, M.V.; Simó, A.; Ballester, A. A Data-Driven Classification of 3D Foot Types by Archetypal Shapes Based on Landmarks. PLoS ONE 2020, 15, e0228016. [Google Scholar] [CrossRef]
- Yamashita, T.; Yamashita, K.; Sato, M.; Kawasumi, M.; Ata, S. Analysis of Skeletal Characteristics of Flat Feet Using Three-Dimensional Foot Scanner and Digital Footprint. BioMed. Eng. OnLine 2022, 21, 56. [Google Scholar] [CrossRef]
- Stewart, A.; Ledingham, R.; Furnace, G.; Nevill, A. Body Size and Ability to Pass through a Restricted Space: Observations from 3D Scanning of 210 Male UK Offshore Workers. Appl. Ergon. 2015, 51, 358–362. [Google Scholar] [CrossRef]
- Stewart, A.; Ledingham, R.; Furnace, G.; Schranz, N.; Nevill, A. The Ability of UK Offshore Workers of Different Body Size and Shape to Egress through a Restricted Window Space. Appl. Ergon. 2016, 55, 226–233. [Google Scholar] [CrossRef]
- Stewart, A.; Ledingham, R.; Williams, H. Variability in Body Size and Shape of UK Offshore Workers: A Cluster Analysis Approach. Appl. Ergon. 2017, 58, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Shin, E.; Hwang, C.; Baytar, F. The Use of 3D Body Scanning Technology to Assess the Effectiveness of Shapewear: Changes in Body Shape and Attractiveness. Int. J. Fash. Des. Technol. Educ. 2017, 10, 190–199. [Google Scholar] [CrossRef]
- Wang, Y.; Ji, X.; Pang, C.; Zhai, L. The Effect of Bra Design on Wearing Appearance. Int. J. Cloth. Sci. Technol. 2024, 36, 84–101. [Google Scholar] [CrossRef]
- Yoon, M.K.; Nam, Y.J.; Kim, W. Classifying Male Upper Lateral Somatotypes Using Space Vectors. Int. J. Cloth. Sci. Technol. 2016, 28, 115–129. [Google Scholar] [CrossRef]
- Kousar, S.; Babar Ramzan, M.; Arif Cheema, S.; Ahmad, S.; Rasheed, A.; Nasir, N. Classification of Male Upper Body Shape: An Innovative Approach. J. Eng. Fibers Fabr. 2023, 18, 15589250231177447. [Google Scholar] [CrossRef]
- Sun, J.; Cai, Q.; Li, T.; Du, L.; Zou, F. Body Shape Classification and Block Optimization Based on Space Vector Length. Int. J. Cloth. Sci. Technol. 2019, 31, 115–129. [Google Scholar] [CrossRef]
- Yu, M.; Kim, D.-E. Body Shape Classification of Korean Middle-Aged Women Using 3D Anthropometry. Fash. Text. 2020, 7, 35. [Google Scholar] [CrossRef]
- Kim, K.W.; Park, Y.; Lee, Y.; Cho, M. Correlation between Low Skeletal Muscle Index and 3D Anthropometric Data Measured by 3D Body Scanner: Screening Sarcopenia. Front. Med. 2024, 11, 1296418. [Google Scholar] [CrossRef]
- Köhler, A.; Filges, B.; Völzke, H.; Felix, S.B.; Ewert, R.; Stubbe, B.; Markus, M.R.; Groß, S.; Dörr, M.; Ittermann, T. Body Surface Scan Anthropometrics Are Related to Cardiorespiratory Fitness in the General Population. Sci. Rep. 2022, 12, 22185. [Google Scholar] [CrossRef]
- Taniguchi, M.; Hirono, T.; Nakayama, T.; Kobayashi, K.; Ichihashi, N. Assessment of Edematous Changes Using Three-Dimensional Body Scanning and Segmental–Bioelectrical Impedance Spectroscopy. Lymphat. Res. Biol. 2021, 19, 524–530. [Google Scholar] [CrossRef]
- Vitali, A.; Togni, G.; Regazzoni, D.; Rizzi, C.; Molinero, G. A Virtual Environment to Evaluate the Arm Volume for Lymphedema Affected Patients. Comput. Methods Programs Biomed. 2021, 198, 105795. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhao, C.; Yang, X.; Tang, J.; Chen, J.; Tang, L.; Wu, J. Biomechanics of Transverse Axis of Medial Longitudinal Arch of Children’s Foot Based on 3D Scanning. Front. Pediatr. 2023, 11, 1197439. [Google Scholar] [CrossRef]
- Kosilek, R.P.; Ittermann, T.; Radke, D.; Schipf, S.; Nauck, M.; Friedrich, N.; Völzke, H. Laser-Based 3D Body Scanning Reveals a Higher Prevalence of Abdominal Obesity than Tape Measurements: Results from a Population-Based Sample. Diagnostics 2023, 13, 2594. [Google Scholar] [CrossRef]
- Wong, K.E.; Gorton III, G.E.; Tashjian, D.B.; Tirabassi, M.V.; Moriarty, K.P. Evaluation of the Treatment of Pectus Carinatum with Compressive Orthotic Bracing Using Three Dimensional Body Scans. J. Pediatr. Surg. 2014, 49, 924–927. [Google Scholar] [CrossRef]
- Uemura, S.; Yoshida, A.; Kuyama, H. Analysis of Chest Wall Elevation after the Nuss Procedure Using 3D Body Scanning Technique in Patients with Pectus Excavatum. Pediatr. Surg. Int. 2021, 37, 777–782. [Google Scholar] [CrossRef]
- Grünwald, A.T.; Roy, S.; Lampe, R. Scoliosis Assessment Tools to Reduce Follow-up X-Rays. J. Orthop. Transl. 2023, 38, 12–22. [Google Scholar] [CrossRef]
- Kurzydło, W.; Stach, B.; Bober, A.; Wodzińska, M.E.; Długosz, M.M. Structured-Light 3D Scanner in Use to Access the Human Body Posture in Physical Therapy: A Pilot Study. Folia Medica Cracoviensia 2014, 54, 21–35. [Google Scholar]
- DeBaun, M.R.; Lai, C.; Schultz, B.J.; Oquendo, Y.A.; Campbell, S.T.; Goodnough, L.H.; Bishop, J.A.; Gardner, M.J. White-Light Body Scanning Captures Three-Dimensional Shoulder Deformity After Displaced Diaphyseal Clavicle Fracture. J. Orthop. Trauma 2021, 35, e142–e147. [Google Scholar] [CrossRef] [PubMed]
- Tebbens, M.; Nota, N.M.; Liberton, N.P.; Meijer, B.A.; Kreukels, B.P.; Forouzanfar, T.; Verdaasdonk, R.M.; den Heijer, M. Gender-Affirming Hormone Treatment Induces Facial Feminization in Transwomen and Masculinization in Transmen: Quantification by 3D Scanning and Patient-Reported Outcome Measures. J. Sex. Med. 2019, 16, 746–754. [Google Scholar] [CrossRef]
- Sager, R.; Güsewell, S.; Rühli, F.; Bender, N.; Staub, K. Multiple Measures Derived from 3D Photonic Body Scans Improve Predictions of Fat and Muscle Mass in Young Swiss Men. PLoS ONE 2020, 15, e0234552. [Google Scholar] [CrossRef]
- Cavegn, C.; Rühli, F.; Bender, N.; Staub, K. Prediction of Muscle Mass in Arms and Legs Based on 3D Laser-Based Photonic Body Scans’ Standard Dimensions in a Homogenous Sample of Young Men. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2020, 8, 562–570. [Google Scholar] [CrossRef]
- Tinsley, G.M.; Moore, M.L.; Benavides, M.L.; Dellinger, J.R.; Adamson, B.T. 3-Dimensional Optical Scanning for Body Composition Assessment: A 4-Component Model Comparison of Four Commercially Available Scanners. Clin. Nutr. 2020, 39, 3160–3167. [Google Scholar] [CrossRef] [PubMed]
- Conkle, J.; Keirsey, K.; Hughes, A.; Breiman, J.; Ramakrishnan, U.; Suchdev, P.S.; Martorell, R. A Collaborative, Mixed-methods Evaluation of a Low-cost, Handheld 3D Imaging System for Child Anthropometry. Matern. Child Nutr. 2019, 15, e12686. [Google Scholar] [CrossRef]
- Choppin, S.; Bullas, A.; Thelwell, M. Torso Shape Improves the Prediction of Body Fat Magnitude and Distribution. Int. J. Environ. Res. Public Health 2022, 19, 8302. [Google Scholar] [CrossRef] [PubMed]
- Guarnieri Lopez, M.; Matthes, K.L.; Sob, C.; Bender, N.; Staub, K. Associations between 3D Surface Scanner Derived Anthropometric Measurements and Body Composition in a Cross-Sectional Study. Eur. J. Clin. Nutr. 2023, 77, 972–981. [Google Scholar] [CrossRef] [PubMed]
- Morse, S.; Talty, K.; Kuiper, P.; Scioletti, M.; Heymsfield, S.B.; Atkinson, R.L.; Thomas, D.M. Machine Learning Prediction of Combat Basic Training Injury from 3D Body Shape Images. PLoS ONE 2020, 15, e0235017. [Google Scholar] [CrossRef]
- Kwon, S.-H.; Choi, J.W.; Kim, H.J.; Lee, W.S.; Kim, M.; Shin, J.-W.; Na, J.-I.; Park, K.-C.; Huh, C.-H. Three-Dimensional Photogrammetric Study on Age-Related Facial Characteristics in Korean Females. Ann. Dermatol. 2021, 33, 52. [Google Scholar] [CrossRef]
- Rauter, S.; Simenko, J. Morphological Asymmetries Profile and the Difference between Low-and High-Performing Road Cyclists Using 3D Scanning. Biology 2021, 10, 1199. [Google Scholar] [CrossRef]
- Loeffler-Wirth, H.; Vogel, M.; Kirsten, T.; Glock, F.; Poulain, T.; Körner, A.; Loeffler, M.; Kiess, W.; Binder, H. Body Typing of Children and Adolescents Using 3D-Body Scanning. PLoS ONE 2017, 12, e0186881. [Google Scholar] [CrossRef]
- Goto, L.; Lee, W.; Molenbroek, J.F.; Cabo, A.J.; Goossens, R.H. Traditional and 3D Scan Extracted Measurements of the Heads and Faces of Dutch Children. Int. J. Ind. Ergon. 2019, 73, 102828. [Google Scholar] [CrossRef]
- Fu, F.; Luximon, Y. Head and Face Anthropometric Study for Chinese Children. Ind. Eng. Manag. Syst. 2019, 18, 619–629. [Google Scholar] [CrossRef]
- Tu, H.H.; Lo, V.E.W.; Liu, C.W.; Liu, Y.P.; Yu, C.Y.; Chen, C.Y.; Liu, L.W. Body Volume Estimation Equation for Male Laborers in Taiwan. Int. J. Occup. Saf. Ergon. 2021, 27, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
- Bonin, D.; Ackermann, A.; Radke, D.; Peters, M.; Wischniewski, S. Anthropometric Dataset for the German Working-Age Population Using 3D Body Scans from a Regional Epidemiological Health Study and a Weighting Algorithm. Ergonomics 2023, 66, 1057–1071. [Google Scholar] [CrossRef]
- Almousa, M. Body Measurements with 3D Body Scanner: The Case of Female Population in Saudi Arabia. Res. J. Text. Appar. 2021, 25, 380–395. [Google Scholar] [CrossRef]
- Balasubramanian, M.; Robinette, K. Longitudinal Anthropometric Changes of Pregnant Women: Dynamics and Prediction. Int. J. Fash. Des. Technol. Educ. 2020, 13, 231–237. [Google Scholar] [CrossRef]
- Griffin, L.; Juhnke, B.; Pokorny, C.; Seifert, E.; Savvateev, E.; Yu, M. Body–Product Relationship for Aging Women Examined through the Lens of Functional Anthropometry. Ergon. Des. 2023, 31, 13–25. [Google Scholar] [CrossRef]
- Brownridge, A.; Twigg, P. Body Scanning for Avatar Production and Animation. Int. J. Fash. Des. Technol. Educ. 2014, 7, 125–132. [Google Scholar] [CrossRef]
- Luximon, Y.; Ball, R.M.; Chow, E.H. A Design and Evaluation Tool Using 3D Head Templates. Comput.-Aided Des. Appl. 2016, 13, 153–161. [Google Scholar] [CrossRef]
- Mölbert, S.C.; Thaler, A.; Mohler, B.J.; Streuber, S.; Romero, J.; Black, M.J.; Zipfel, S.; Karnath, H.-O.; Giel, K.E. Assessing Body Image in Anorexia Nervosa Using Biometric Self-Avatars in Virtual Reality: Attitudinal Components Rather than Visual Body Size Estimation Are Distorted. Psychol. Med. 2018, 48, 642–653. [Google Scholar] [CrossRef]
- Park, J. Emotional Reactions to the 3D Virtual Body and Future Willingness: The Effects of Self-Esteem and Social Physique Anxiety. Virtual Real. 2018, 22, 1–11. [Google Scholar] [CrossRef]
- Rahman, O.; Navarro, H.D. Men’s Physical Stature: Tackling Heightism and Challenges in Fashion Consumption. Behav. Sci. 2022, 12, 270. [Google Scholar] [CrossRef]
- Grogan, S.; Storey, E.; Brownbridge, K.; Gill, S.; Templeton, C.; Gill, J.; Persson, S.; Armitage, C.J. Whole Body Scanning as a Tool for Clothing Sizing: Effects on Women’s Body Satisfaction. J. Text. Inst. 2020, 111, 862–868. [Google Scholar] [CrossRef]
- Park, J.; Ogle, J.P. How Virtual Avatar Experience Interplays with Self-Concepts: The Use of Anthropometric 3D Body Models in the Visual Stimulation Process. Fash. Text. 2021, 8, 28. [Google Scholar] [CrossRef]
- Nemeth, M.C.; Park, H.; Mendle, J. Collegiate Female Athletes’ Body Image and Clothing Behaviors. Fash. Text. 2020, 7, 16. [Google Scholar] [CrossRef]
- Cappozzo, A.; Della Croce, U.; Leardini, A.; Chiari, L. Human Movement Analysis Using Stereophotogrammetry: Part 1: Theoretical Background. Gait Posture 2005, 21, 186–196. [Google Scholar] [CrossRef]
- Peters, A.; Galna, B.; Sangeux, M.; Morris, M.; Baker, R. Quantification of Soft Tissue Artifact in Lower Limb Human Motion Analysis: A Systematic Review. Gait Posture 2010, 31, 1–8. [Google Scholar] [CrossRef]
- Donmezer, S.; Demircioglu, P.; Bogrekci, I.; Bas, G.; Durakbasa, M.N. Revolutionizing the Garment Industry 5.0: Embracing Closed-Loop Design, E-Libraries, and Digital Twins. Sustainability 2023, 15, 15839. [Google Scholar] [CrossRef]
- Srivathsan, K.; Bharath, S.; Kumaravel, R.; Prasad, V.; Malini, A. Customization of User Experience in Fashion Technology. In Proceedings of the 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM), Uttar Pradesh, India, 22–24 February 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Medina Inojosa, B.J.; Somers, V.K.; Lara-Breitinger, K.; Johnson, L.A.; Medina-Inojosa, J.R.; Lopez-Jimenez, F. Prediction of Presence and Severity of Metabolic Syndrome Using Regional Body Volumes Measured by a Multisensor White-Light 3D Scanner and Validation Using a Mobile Technology. Eur. Heart J.-Digit. Health 2024, 5, 582–590. [Google Scholar] [CrossRef]
- SZE, S. Revolutionizing Fashion with Industry-Specific AI and New Breakthrough 3D Technology. In Proceedings of the 3DBODY.TECH 2024, Lugano, Switzerland, 22–23 October 2024. [Google Scholar]
- Dai, X.; Zhao, R.; Hu, P.; Palade, V.; Munteanu, A. Measure4dhand: Dynamic Hand Measurement Extraction from 4D Scans. In Proceedings of the 2023 IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia, 8–11 October 2023; pp. 3543–3547. [Google Scholar] [CrossRef]
- Khalifa, M.; Albadawy, M. AI in Diagnostic Imaging: Revolutionising Accuracy and Efficiency. Comput. Methods Programs Biomed. Update 2024, 5, 100146. [Google Scholar] [CrossRef]
- El Kaid, A.; Brazey, D.; Barra, V.; Baïna, K. Top-down System for Multi-Person 3D Absolute Pose Estimation from Monocular Videos. Sensors 2022, 22, 4109. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balasubramanian, M.; Sheykhmaleki, P. Emerging Roles of 3D Body Scanning in Human-Centric Applications. Technologies 2025, 13, 126. https://doi.org/10.3390/technologies13040126
Balasubramanian M, Sheykhmaleki P. Emerging Roles of 3D Body Scanning in Human-Centric Applications. Technologies. 2025; 13(4):126. https://doi.org/10.3390/technologies13040126
Chicago/Turabian StyleBalasubramanian, Mahendran, and Pariya Sheykhmaleki. 2025. "Emerging Roles of 3D Body Scanning in Human-Centric Applications" Technologies 13, no. 4: 126. https://doi.org/10.3390/technologies13040126
APA StyleBalasubramanian, M., & Sheykhmaleki, P. (2025). Emerging Roles of 3D Body Scanning in Human-Centric Applications. Technologies, 13(4), 126. https://doi.org/10.3390/technologies13040126