High-Temperature Methane Sensors Based on ZnGa2O4:Er Ceramics for Combustion Monitoring
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Structural Properties
3.2. Gas-Sensitive Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aldhafeeri, T.; Tran, M.K.; Vrolyk, R.; Pope, M.; Fowler, M. A Review of Methane Gas Detection Sensors: Recent Developments and Future Perspectives. Inventions 2020, 5, 28. [Google Scholar] [CrossRef]
- Gautam, Y.K.; Sharma, K.; Tyagi, S.; Ambedkar, A.K.; Chaudhary, M.; Pal Singh, B. Nanostructured metal oxide semiconductor-based sensors for greenhouse gas detection: Progress and challenges. R. Soc. Open Sci. 2021, 8, 201324. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Parisi, J.; Sun, X.; Lei, Y. Solid-state gas sensors for high temperature applications—A review. J. Mater. Chem. A 2014, 2, 9919–9943. [Google Scholar] [CrossRef]
- Ghosh, A.; Zhang, C.; Shi, S.Q.; Zhang, H. High-Temperature Gas Sensors for Harsh Environment Applications: A Review. Clean—Soil Air Water 2019, 47, 1800491. [Google Scholar] [CrossRef]
- Wu, H.; Zhong, S.; Bin, Y.; Jiang, X.; Cui, H. Ni-decorated WS2-WSe2 heterostructure as a novel sensing candidate upon C2H2 and C2H4 in oil-filled transformers: A first-principles investigation. Mol. Phys. 2025, e2492391. [Google Scholar] [CrossRef]
- Fleischer, M.; Meixner, H. A Selective CH4 Sensor Using Semiconducting Ga2O3 Thin Films Based on Temperature Switching of Multigas Reactions. Sens. Actuators B Chem. 1995, 25, 544–547. [Google Scholar] [CrossRef]
- Frank, J.; Fleischer, M.; Meixner, H.; Feltz, A. Enhancement of Sensitivity and Conductivity of Semiconducting Ga2O3 Gas Sensors by Doping with SnO2. Sens. Actuators B Chem. 1998, 49, 110–114. [Google Scholar] [CrossRef]
- Moseley, P.T.; Oprea, A.; Merdrignac-Conanec, O.; Kerlau, M.; Bârsan, N.; Weimar, U. Limitations on the Use of Perovskite-Structure Oxides in Gas Sensing as a Result of the Concurrent Operation of Separate Mechanisms. Sens. Actuators B Chem. 2008, 133, 543–546. [Google Scholar] [CrossRef]
- Chikoidze, E.; Sartel, C.; Madaci, I.; Mohamed, H.; Vilar, C.; Ballesteros, B.; Belarre, F.; Corro, E.; Vales-Castro, P.; Sauthier, G.; et al. p-Type Ultrawide-Band-Gap Spinel ZnGa2O4: New Perspectives for Energy Electronics. Cryst. Growth Des. 2020, 20, 2535–2546. [Google Scholar] [CrossRef]
- Byun, H.J.; Kim, J.U.; Yang, H. Blue, Green, and Red Emission from Undoped and Doped ZnGa2O4 Colloidal Nanocrystals. Nanotechnology 2009, 20, 495602. [Google Scholar] [CrossRef]
- Wu, M.R.; Li, W.Z.; Tung, C.Y.; Huang, C.Y.; Chiang, Y.H.; Liu, P.L.; Horng, R.H. NO Gas Sensor Based on ZnGa2O4 Epilayer Grown by Metalorganic Chemical Vapor Deposition. Sci. Rep. 2019, 9, 7459. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Li, G.; Liu, Y. Synthesis of ZnGa2O4 Assisted by High-Energy Ball Milling and Its Gas-Sensing Characteristics. Powder Technol. 2015, 281, 7–11. [Google Scholar] [CrossRef]
- Mushtaq, U.; Ayoub, I.; Yagoub, M.Y.A.; Shivaramu, N.J.; Coetsee, E.; Swart, H.C.; Kumar, V. Effect of Li+ monovalent ion on the structural and optical properties of Dy3+ doped ZnGa2O4 phosphor. Appl. Phys. A 2024, 130, 494. [Google Scholar] [CrossRef]
- Wang, B.; Wang, H.; Tu, B.; Zheng, K.; Gu, H.; Wang, W.; Fu, Z. Optical transmission, dispersion, and transition behavior of ZnGa2O4 transparent ceramic. J. Am. Ceram. Soc. 2023, 106, 1230–1239. [Google Scholar] [CrossRef]
- Kawazoe, H.; Ueda, K. Transparent Conducting Oxides Based on the Spinel Structure. J. Am. Ceram. Soc. 1999, 82, 3330–3336. [Google Scholar] [CrossRef]
- Safeera, T.A.; Khanal, R.; Medvedeva, J.E.; Martinez, A.I.; Vinitha, G.; Anila, E.I. Low Temperature Synthesis and Characterization of Zinc Gallate Quantum Dots for Optoelectronic Applications. J. Alloys Compd. 2018, 740, 567–573. [Google Scholar] [CrossRef]
- Reshmi, R.; Krishna, K.M.; Manoj, R.; Jayaraj, M.K. Pulsed Laser Deposition of ZnGa2O4 Phosphor Films. Surf. Coat. Technol. 2005, 198, 345–349. [Google Scholar] [CrossRef]
- Han, D.; Liu, K.; Hou, Q.; Chen, X.; Yang, J.; Li, B.; Zhang, Z.; Liu, L.; Shen, D. Self-Powered Solar-Blind ZnGa2O4 UV Photodetector with Ultra-Fast Response Speed. Sens. Actuators A Phys. 2020, 315, 112354. [Google Scholar] [CrossRef]
- Lin, W.; Zhang, D.; Liu, S.; Li, Y.; Zheng, W.; Huang, F. ZnGa2O4 Deep-Ultraviolet Photodetector Based on Si Substrate. Mater. Lett. 2021, 283, 128805. [Google Scholar] [CrossRef]
- Cheng, L.C.; Huang, C.Y.; Horng, R.H. Thickness Effect on Operational Modes of ZnGa2O4 MOSFETs. IEEE J. Electron Devices Soc. 2018, 6, 432–437. [Google Scholar] [CrossRef]
- Shen, Y.S.; Wang, W.K.; Horng, R.H. Characterizations of Metal-Oxide-Semiconductor Field-Effect Transistors of ZnGaO Grown on Sapphire Substrate. IEEE J. Electron Devices Soc. 2017, 5, 112–116. [Google Scholar] [CrossRef]
- An, S.; Park, S.; Ko, H.; Jin, C.; Lee, C. NO₂ Gas Sensing Properties of Multiple Networked ZnGa2O4 Nanorods Coated with TiO2. J. Nanosci. Nanotechnol. 2015, 15, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Pathania, A.; Dhanda, N.; Verma, R.; Sun, A.C.A.; Thakur, P.; Thakur, A. Review—Metal Oxide Chemoresistive Gas Sensing Mechanism, Parameters, and Applications. ECS Sens. Plus 2024, 3, 013401. [Google Scholar] [CrossRef]
- Bulowski, W.; Knura, R.; Socha, R.P.; Basiura, M.; Skibińska, K.; Wojnicki, M. Thin Film Semiconductor Metal Oxide Oxygen Sensors: Limitations, Challenges, and Future Progress. Electronics 2024, 13, 3409. [Google Scholar] [CrossRef]
- Zhai, H.; Wu, Z.; Fang, Z. Recent Progress of Ga2O3-Based Gas Sensors. Ceram. Int. 2022, 48, 24213–24233. [Google Scholar] [CrossRef]
- Almaev, A.V.; Yakovlev, N.N.; Erzakova, N.N.; Mochalov, L.A.; Kudryashov, M.A.; Kudryashova, Y.P.; Nesov, S.N. Gas Sensitivity of PECVD β-Ga2O3 Films with Large Active Surface. Mater. Chem. Phys. 2024, 320, 129430. [Google Scholar] [CrossRef]
- Almaev, A.V.; Yakovlev, N.N.; Verkholetov, M.G.; Rudakov, G.A.; Litvinova, K.I. High Oxygen Sensitivity of TiO2 Thin Films Deposited by ALD. Micromachines 2023, 14, 1875. [Google Scholar] [CrossRef]
- Almaev, A.; Yakovlev, N.; Kopyev, V.; Nikolaev, V.; Butenko, P.; Deng, J.; Pechnikov, A.; Korusenko, P.; Koroleva, A.; Zhizhin, E. High Sensitivity Low-Temperature Hydrogen Sensors Based on SnO2/κ(ε)-Ga2O3:Sn Heterostructure. Chemosensors 2023, 11, 325. [Google Scholar] [CrossRef]
- Dimitrova, Z.; Gogova, D. On the Structure, Stress and Optical Properties of CVD Tungsten Oxide Films. Mater. Res. Bull. 2005, 40, 333–340. [Google Scholar] [CrossRef]
- Yurchenko, O.; Diehle, P.; Altmann, F.; Schmitt, K.; Wöllenstein, J. Co3O4-Based Materials as Potential Catalysts for Methane Detection in Catalytic Gas Sensors. Sensors 2024, 24, 2599. [Google Scholar] [CrossRef]
- Zhan, H.; Li, H.; Yang, X.; Zhao, R.; Liu, Q.; Duan, Y.; Shen, Z. Pt-functionalized ZnO nanosheets gas sensor for highly sensitive detecting of methane. J. Mater. Sci. Mater. Electron. 2024, 35, 1871. [Google Scholar] [CrossRef]
- Furuta, D.; Sayahi, T.; Li, J.; Wilson, B.; Presto, A.A.; Li, J. Characterization of inexpensive metal oxide sensor performance for trace methane detection. Atmos. Meas. Tech. 2022, 15, 5117–5128. [Google Scholar] [CrossRef]
- Shaposhnik, A.V.; Moskalev, P.V.; Arefieva, O.A.; Zvyagin, A.A.; Kul, O.V.; Vasiliev, A.A. Selective determination of hydrogen in a mixture with methane using a single metal oxide sensor. Int. J. Hydrogen Energy 2024, 82, 523–530. [Google Scholar] [CrossRef]
- Yablokov, M.Y.; Vasiliev, A.A.; Gainutdinov, R.V.; Sokolov, A.V. Determination of Methane Dissolved in Water Using Metal-Oxide Sensors. J. Anal. Chem. 2023, 78, 385–389. [Google Scholar] [CrossRef]
- Santos, J.P.; Sanchez-Vicente, C.; Sayago, I. Rare Earth Doped Metal Oxide Sensors for the Detection of Methane at Room Temperature. Chem. Eng. Trans. 2024, 112, 109–114. [Google Scholar] [CrossRef]
- Mirzaei, A.; Alizadeh, M.; Ansari, H.R.; Moayedi, M.; Kordrostami, Z.; Safaeian, H.; Lee, M.L.; Kim, T.-U.; Kim, J.-Y.; Kim, H.W.; et al. Resistive gas sensors for the detection of NH3 gas based on 2D WS2, WSe2, MoS2, and MoSe2: A review. Nanotechnology 2024, 35, 332002. [Google Scholar] [CrossRef] [PubMed]
- Horng, R.H.; Lin, S.H.; Hung, D.R.; Chao, P.H.; Fu, P.K.; Chen, C.H.; Chen, Y.C.; Shao, J.H.; Huang, C.Y.; Tarntair, F.G.; et al. Structure Effect on the Response of ZnGa2O4 Gas Sensor for Nitric Oxide Applications. Nanomaterials 2022, 12, 3759. [Google Scholar] [CrossRef]
- Munusami, V.; Arutselvan, K.; Vadivel, S. Development of High Sensitivity LPG and NO2 Gas Sensor Based ZnGa2O4/Graphene Nanoplates Hybrid Structure—A Novel Approach. Diam. Relat. Mater. 2021, 111, 108167. [Google Scholar] [CrossRef]
- Sousa Filho, I.A.; Dagnone Figueiredo, J.F.; Bouquet, V.; Oliveira, A.L.M.; Lebullenger, R.; Garcia Santos, I.M.; Guilloux-Viry, M.; Merdrignac-Conanec, O.; Weber, I.T. ZnGa2O4 and ZnGa2O4:N Thin Films Applied as Sensors for Detection of Acetaldehyde in Ethanol. Phys. B Condens. Matter 2023, 658, 414834. [Google Scholar] [CrossRef]
- Chen, I.C.; Lin, S.S.; Lin, T.J.; Hsu, C.L.; Hsueh, T.J.; Shieh, T.Y. The Assessment for Sensitivity of a NO2 Gas Sensor with ZnGa2O4/ZnO Core-Shell Nanowires—A Novel Approach. Sensors 2010, 10, 3057–3072. [Google Scholar] [CrossRef]
- Park, S.; An, S.; Mun, Y.; Lee, C. UV-Enhanced Room-Temperature Gas Sensing of ZnGa2O4 Nanowires Functionalized with Au Catalyst Nanoparticles. Appl. Phys. A 2014, 114, 903–910. [Google Scholar] [CrossRef]
- Figaro Engineering Inc. Available online: https://www.figaro.co.jp/en/company/history.html (accessed on 19 February 2025).
- Tomchenko, A.A. Thick-Film Semiconductor Chemical Sensors. In Encyclopedia of Sensors; Grimes, C.A., Dickey, E.C., Pishko, M.V., Eds.; American Scientific Publishers: Stevenson Ranch, CA, USA, 2006; Volume 10, pp. 279–290. [Google Scholar]
- Ménil, F.; Coillard, P.; Lucat, C. Critical Review of Nitrogen Monoxide Sensors for Exhaust Gases of Lean Burn Engines. Sens. Actuators B Chem. 2000, 67, 1–23. [Google Scholar] [CrossRef]
- Li, Q.; Zeng, W.; Li, Y. Metal Oxide Gas Sensors for Detecting NO2 in Industrial Exhaust Gas: Recent Developments. Sens. Actuators B Chem. 2022, 359, 131579. [Google Scholar] [CrossRef]
- Aishwarya, K.; Nirmala, R.; Navamathavan, R. Recent Advancements in Liquefied Petroleum Gas Sensors: A Topical Review. Sens. Int. 2021, 2, 100091. [Google Scholar] [CrossRef]
- Luchechko, A.; Zhydachevskyy, Y.; Ubizskii, S.; Kravets, O.; Popov, A.; Rogulis, U.; Elsts, E.; Bulur, E.; Suchocki, A. Afterglow, TL and OSL Properties of Mn2+-Doped ZnGa2O4 Phosphor. Sci. Rep. 2019, 9, 9544. [Google Scholar] [CrossRef] [PubMed]
- Allix, M.; Chenu, S.; Véron, E.; Poumeyrol, T.; Kouadri-Boudjelthia, E.; Alahrache, S. Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4. Chem. Mater. 2013, 25, 1600–1606. [Google Scholar] [CrossRef]
- Ueda, J.; Back, M.; Brik, M.G.; Zhuang, Y.; Grinberg, M.; Tanabe, S. Ratiometric Optical Thermometry Using Deep Red Luminescence from 4T2 and 2E States of Cr3+ in ZnGa2O4 Host. Opt. Mater. 2018, 85, 510–516. [Google Scholar] [CrossRef]
- Chen, Q.L.; Shang, L.B.; Xu, H.M.; Ma, C.G.; Duan, C.K. Multi-Valence and Visible to Near-Infrared Photoluminescence of Manganese in ZnGa2O4: A First-Principles Study. J. Phys. Chem. C 2021, 125, 21780–21790. [Google Scholar] [CrossRef]
- Shiu, W.T.; Li, X.; Chang, L.Y.; Chen, J.L.; Lin, Y.Y.; Lin, B.H.; Sterbinsky, G.E.; Wu, T.; McLeod, J.A.; Li, L. The Influence of Hydro-Thermal Synthesis Temperature on the Electronic Structure and Luminescence Property of Cr-Doped ZnGa2O4 Nanoparticles. J. Lumin. 2023, 263, 120113. [Google Scholar] [CrossRef]
- Brik, M.G.; Ma, C.G.; Yamamoto, T.; Piasecki, M.; Popov, A.I. First-Principles Methods as a Powerful Tool for Fundamental and Applied Research in the Field of Optical Materials. In Phosphor Handbook: Experimental Methods for Phosphor Evaluation and Characterization; CRC Press: Boca Raton, FL, USA, 2022; pp. 1–26. [Google Scholar]
- Mushtaq, U.; Kumar, V. Host-Sensitized Colour-Tunable Emission and Judd-Ofelt Analysis for Dy3+-Doped ZnGa2O4 Phosphor through Exciton-Mediated Energy Transfer. Opt. Mater. 2023, 146, 114554. [Google Scholar] [CrossRef]
- Suchikova, Y.; Nazarovets, S.; Popov, A.I. Ga2O3 Solar-Blind Photodetectors: From Civilian Applications to Missile Detection and Research Agenda. Opt. Mater. 2024, 157, 116397. [Google Scholar] [CrossRef]
- Fritzen, D.L.; Nardy, G.; Portes, M.C.; Giordano, L.; Bonturim, E.; Teixeira, V.C.; Rodrigues, L.C.V. From Synthesis to Fabrication: Engineering Thin Translucent Films with Green Persistent Luminescence Nanoparticles. Opt. Mater. X 2023, 20, 100271. [Google Scholar] [CrossRef]
- Singh, G.; Virpal; Singh, R.C. Highly Sensitive Gas Sensor Based on Er-Doped SnO2 Nanostructures and Its Temperature Dependent Selectivity towards Hydrogen and Ethanol. Sens. Actuators B Chem. 2019, 282, 373–383. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Guo, L.; Wang, G. Highly Sensitive Acetone Gas Sensors Based on Erbium-Doped Bismuth Ferrite Nanoparticles. Nanomaterials 2022, 12, 3679. [Google Scholar] [CrossRef] [PubMed]
- Jiao, M.Z.; Chen, X.Y.; Hu, K.X.; Qian, D.Y.; Zhao, X.H.; Ding, E.J. Recent Developments of Nanomaterials-Based Conductive Type Methane Sensors. Rare Met. 2021, 40, 1515–1527. [Google Scholar] [CrossRef]
- Basu, S.; Basu, P.K. Nanocrystalline Metal Oxides for Methane Sensors: Role of Noble Metals. J. Sens. 2009, 2009, 861968. [Google Scholar] [CrossRef]
- Fu, L.; You, S.; Li, G.; Li, X.; Fan, Z. Application of Semiconductor Metal Oxide in Chemiresistive Methane Gas Sensor: Recent Developments and Future Perspectives. Molecules 2023, 28, 6710. [Google Scholar] [CrossRef]
- Chen, L.; Yu, Q.; Pan, C.; Song, Y.; Dong, H.; Xie, X.; Li, Y.; Liu, J.; Wang, D.; Chen, X. Chemiresistive gas sensors based on electrospun semiconductor metal oxides: A review. Talanta 2022, 246, 12352. [Google Scholar] [CrossRef]
- Kekana, M.T.M.; Mosuang, T.E.; Ntsendwana, B.; Sikhwivhilu, L.M.; Mahladisa, M.A. Notable synthesis, properties and chemical gas sensing trends on molybdenum disulphides and diselenides two-dimensional nanostructures: A critical review. Chemosphere 2024, 366, 143497. [Google Scholar] [CrossRef]
- Chen, M.I.; Singh, A.K.; Chiang, J.L.; Horng, R.H.; Wuu, D.S. Zinc Gallium Oxide—A Review from Synthesis to Applications. Nanomaterials 2020, 10, 2208. [Google Scholar] [CrossRef]
- Wang, Y.P.; Zhang, H.S.; Lin, L.T.; Zhou, S.F.; Yao, Y.; Yang, X.B.; Zhao, Y.J. Role of Intrinsic Defects on the Persistent Luminescence of Pristine and Mn Doped ZnGa2O4. J. Appl. Phys. 2019, 125, 095701. [Google Scholar] [CrossRef]
- Ponzoni, A.; Baratto, C.; Cattabiani, N.; Falasconi, M.; Galstyan, V.; Nunez-Carmona, E.; Rigoni, F.; Sberveglieri, V.; Zambotti, G.; Zappa, D. Metal Oxide Gas Sensors, a Survey of Selectivity Issues Addressed at the SENSOR Lab, Brescia, Italy. Sensors 2017, 17, 714. [Google Scholar] [CrossRef]
- Almaev, A.V.; Chernikov, E.V.; Davletkildeev, N.A.; Sokolov, D.V. Oxygen Sensors Based on Gallium Oxide Thin Films with Addition of Chromium. Superlattices Microstruct. 2020, 139, 106392. [Google Scholar] [CrossRef]
- Gaman, V.I.; Almaev, A.V. Dependences of Characteristics of Sensors Based on Tin Dioxide on the Hydrogen Concentration and Humidity of Gas Mixture. Russ. Phys. J. 2017, 60, 90–100. [Google Scholar] [CrossRef]
- Gurlo, A. Interplay between O2 and SnO2: Oxygen Ionosorption and Spectroscopic Evidence for Adsorbed Oxygen. ChemPhysChem 2006, 7, 2041–2052. [Google Scholar] [CrossRef] [PubMed]
- Sopiha, K.V.; Malyi, O.I.; Persson, C.; Wu, P. Chemistry of Oxygen Ionosorption on SnO2 Surfaces. ACS Appl. Mater. Interfaces 2021, 13, 33664–33676. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Wilson, M.N.; Beare, J.; Lygouras, C.; Thomas, G.; Yahne, D.R.; Ross, K.M.; Taddei, K.M.; Sala, G.; Dabkowska, H.A.; et al. Crystal Fields and Magnetic Structure of the Ising Antiferromagnet Er3Ga5O12. Phys. Rev. B 2019, 100, 184415. [Google Scholar] [CrossRef]
- Nogales, E.; García, J.A.; Mendez, B.; Piqueras, J.; Lorenz, K.; Alves, E. Visible and Infrared Luminescence Study of Er Doped β-Ga2O3 and Er3Ga5O12. J. Phys. D Appl. Phys. 2008, 41, 065406. [Google Scholar] [CrossRef]
- Nakayama, A.; Asai, K.; Nagayasu, Y.; Iwamoto, S.; Yagasaki, E.; Inoue, M. Effect of Support Particle Morphology of Ni Catalysts on Growth of Carbon Nanotubes by Methane Decomposition. J. Jpn. Pet. Inst. 2006, 49, 308–314. [Google Scholar] [CrossRef]
- Weber, I.T.; Valentini, A.; Probst, L.F.D.; Longo, E.; Leite, E.R. Catalytic Activity of Nanometric Pure and Rare Earth-Doped SnO2 Samples. Mater. Lett. 2008, 62, 1677–1680. [Google Scholar] [CrossRef]
- Wolkenstein, T. Electronic Processes on Semiconductor Surfaces During Chemisorption; Springer: New York, NY, USA, 1991. [Google Scholar] [CrossRef]
- Kozhushner, M.A.; Trakhtenberg, L.I.; Landerville, A.C.; Oleynik, I.I. Theory of Sensing Response of Nanostructured Tin-Dioxide Thin Films to Reducing Hydrogen Gas. J. Phys. Chem. C 2013, 117, 11562–11568. [Google Scholar] [CrossRef]
- Postica, V.; Lupan, O.; Gapeeva, A.; Hansen, L.; Khaledialidusti, R.; Mishra, A.K.; Drewes, J.; Kersten, H.; Faupel, F.; Adelung, R.; et al. Improved Long-Term Stability and Reduced Humidity Effect in Gas Sensing: SiO2 Ultra-Thin Layered ZnO Columnar Films. Adv. Mater. Technol. 2021, 6, 2001137. [Google Scholar] [CrossRef]
- Fleischer, M.; Seth, M.; Kohl, C.-D.; Meixner, H. A selective H2 sensor implemented using Ga2O3 thin-films which are covered with a gas-filtering SiO2 layer. Sens. Actuators B Chem. 1996, 36, 297–302. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y. Recent Progress on Anti-Humidity Strategies of Chemiresistive Gas Sensors. Materials 2022, 15, 8728. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Cho, B.K. Instability of Metal Oxide-Based Conductometric Gas Sensors and Approaches to Stability Improvement (Short Survey). Sens. Actuators B Chem. 2011, 156, 527–538. [Google Scholar] [CrossRef]
- Yakovlev, N.N.; Almaev, A.V.; Nikolaev, V.I.; Kushnarev, B.O.; Pechnikov, A.I.; Stepanov, S.I.; Chikiryaka, A.V.; Timashov, R.B.; Scheglov, M.P.; Butenko, P.N.; et al. Low-Resistivity Gas Sensors Based on the In2O3-Ga2O3 Mixed Compounds Films. Mater. Today Commun. 2023, 34, 105241. [Google Scholar] [CrossRef]
Material | Gas | Gas Concentration (ppm) | Temperature (°C) | Response (a.u.) | Refs. |
---|---|---|---|---|---|
ZnGa2O4 thin films | NO | 6.25 | 300 | 22.21 | [11] |
ZnGa2O4 | LPG * | 50 | 340 | 7.9 | [12] |
ZnGa2O4 nanorods | NO2 | 10 | 300 | 2.85 | [22] |
ZnGa2O4-core/TiO2-shell nanorods | 8.76 | ||||
ZnGa2O4 thin films | NO | 10 | 300 | 11.647 | [37] |
ZnGa2O4 | LPG * | 1000 | 25 | 1.32 | [38] |
ZnGa2O4/Graphene | 1.56 | ||||
ZnGa2O4 thin films | C2H4O | 300 | 450 | 1450 | [39] |
ZnGa2O4:N thin films | 400 | 11,000 | |||
ZnGa2O4-core/ZnO-shell nanowires | NO2 | 5 | 250 | 12 | [40] |
ZnGa2O4 nanowires | NO2 | 5 | 25 + ultraviolet exposure | 2.91 | [41] |
ZnGa2O4 nanowires with Au nanoparticles | 8.61 |
Material | Concentration, at.% | ||||
---|---|---|---|---|---|
[Zn] | [Ga] | [O] | [Er] | [C] | |
ZGO | 12.1 | 31.8 | 52.3 | - | 3.8 |
ZGO + Er | 11.9 | 31.5 | 52.9 | 0.2 | 3.5 |
Transition from 4I15/2 | Spectral Interval (nm) |
---|---|
4G11/2 | 355.0–387.0 |
2H9/2 | 407.84 |
4F3/2, 5/2 | 438.0–463.0 |
4F7/2 | 476.2–506.0 |
2H11/2 | 504.0–530.0 |
4S3/2 | 538–564 |
4F9/2 | 630.0–683.0 |
4I9/2 | 781–842 |
Gas | Response Ratio at 100 ppm |
---|---|
NO2 | 1.16 |
H2 | 1.64 |
CO | 0.47 |
CO2 | 0.58 |
NH3 | 0.71 |
C2H4 | 2.41 |
C3H8 | 2.75 |
C4H10 | 3.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almaev, A.V.; Karipbayev, Z.T.; Kakimov, A.B.; Yakovlev, N.N.; Kukenov, O.I.; Korchemagin, A.O.; Akmetova-Abdik, G.A.; Kumarbekov, K.K.; Zhunusbekov, A.M.; Mochalov, L.A.; et al. High-Temperature Methane Sensors Based on ZnGa2O4:Er Ceramics for Combustion Monitoring. Technologies 2025, 13, 286. https://doi.org/10.3390/technologies13070286
Almaev AV, Karipbayev ZT, Kakimov AB, Yakovlev NN, Kukenov OI, Korchemagin AO, Akmetova-Abdik GA, Kumarbekov KK, Zhunusbekov AM, Mochalov LA, et al. High-Temperature Methane Sensors Based on ZnGa2O4:Er Ceramics for Combustion Monitoring. Technologies. 2025; 13(7):286. https://doi.org/10.3390/technologies13070286
Chicago/Turabian StyleAlmaev, Aleksei V., Zhakyp T. Karipbayev, Askhat B. Kakimov, Nikita N. Yakovlev, Olzhas I. Kukenov, Alexandr O. Korchemagin, Gulzhanat A. Akmetova-Abdik, Kuat K. Kumarbekov, Amangeldy M. Zhunusbekov, Leonid A. Mochalov, and et al. 2025. "High-Temperature Methane Sensors Based on ZnGa2O4:Er Ceramics for Combustion Monitoring" Technologies 13, no. 7: 286. https://doi.org/10.3390/technologies13070286
APA StyleAlmaev, A. V., Karipbayev, Z. T., Kakimov, A. B., Yakovlev, N. N., Kukenov, O. I., Korchemagin, A. O., Akmetova-Abdik, G. A., Kumarbekov, K. K., Zhunusbekov, A. M., Mochalov, L. A., Slapovskaya, E. A., Korusenko, P. M., Koroleva, A. V., Zhizhin, E. V., & Popov, A. I. (2025). High-Temperature Methane Sensors Based on ZnGa2O4:Er Ceramics for Combustion Monitoring. Technologies, 13(7), 286. https://doi.org/10.3390/technologies13070286