The Remote Sensing Data Transmission Problem in Communication Constellations: Shop Scheduling-Based Model and Algorithm
Abstract
1. Introduction
2. Model
2.1. Nomenclature
2.2. Problem Description
2.3. Mixed-Integer Linear Programming Formulation
2.3.1. Objective Function
2.3.2. Tardiness Definition
2.3.3. Job–Processor Assignment
2.3.4. Stage-Precedence (Completion) Constraints
2.3.5. Processor-Capacity (Spatial) Constraints
2.3.6. Spatiotemporal Non-Overlap Constraints
2.3.7. Linking Constraint
2.4. Complexity Analysis of the MILP Model
3. Memetic Algorithm for HFSP-2D
3.1. Encoding and Decoding
3.1.1. Encoding
3.1.2. Decoding
Algorithm 1 Decoding for first stage (Decode1) |
Require: Global job order ; number of parallel processors ; processing times Ensure: Completion-time vector 1: for to do 2: Build a min-heap H of pairs 3: for to do 4: 5: 6: 7: 8: 9: end for 10: return |
Algorithm 2 Decoding for second stage (Decode2) |
Require: Completion times in first stage ; processing times ; due date ; job lists for every processor j in second stage, . Ensure: Total tardiness 1: 2: for to do 3: for all in given order do 4: 5: 6: 7: end for 8: end for 9: return |
Algorithm 3 Bottom-left placement (BL) |
Require: process space of processor w; spacing requirements of job r; processing time of job p; current set of placed jobs Ensure: completion time of new job c, update R 1: 2: while do 3: 4: 5: end while 6: Insert vertice into R in sorted order 7: 8: return c |
3.2. Initialization
Algorithm 4 NEHedd-2D |
Require: Jobs ordered by non-decreasing due dates, where ; Ensure: overall job sequence ; job sequence set on each processor 1: 2: for to do 3: Test job k in any possible position i of in first stage. 4: 5: for to do 6: Test job k in any possible position i of . 7: 8: end for 9: Select the best processor j and best insertion position in processor j. 10: Insert k to 11: Select the best insertion position in . 12: Insert k to . 13: end for return and |
3.3. Selection
3.4. Crossover
3.5. Mutate
3.6. Local Search
3.6.1. Inter-Processor Job Swapping Operator (IPJS)
Algorithm 5 Inter-processor job swapping operation |
Require: Set of processors J at second stage; current schedule of processors Ensure: A new schedule of processors at the second stage if the total tardiness does not increase 1: Randomly pick two distinct machines 2: Randomly choose start indices of 3: Determine crossover lengths from 4: , 5: , 6: Delete from and from 7: Insert at in , Insert at in 8: , 9: , 10: if then 11: 12: 13: end if return A new schedule of processors |
3.6.2. Intra-Processor Job Swapping Operator (IAJS)
Algorithm 6 Intra-processor job swapping operation |
Require: Set of processors J at second stage;current schedule of processors Ensure: A new schedule of processors at second stage if the total tardiness does not increase 1: A randomly processor in second stage 2: 3: Randomly remove a job from 4: Insert k reinserted into another position in . 5: , 6: 7: if then 8: 9: end if return |
4. Computational Comparison and Statistical Analysis
4.1. Computational Environment
4.2. Testbed
4.2.1. Analysis of Influencing Factors
- When max, any solution is an optimal solution.
- When , the objective shifts from minT to min.
- When , the problem reduces to a two-stage HFSP.
- When (indicating sufficient gateway station bandwidth), the second-stage scheduling becomes unnecessary, reducing the problem to a parallel machine scheduling problem.
- Relationships between due dates and processing times.
- Relationships between job space requirements and processor capacity constraints.
4.2.2. Due Date Parameter Design
4.2.3. Space Requirement Parameter Design
4.2.4. Problem Size Parameter Design
4.2.5. Performance Indicators
4.3. Analysis of Satellite–Gateway Access Constraints
4.4. Parameter Calibration
4.5. Analysis of TSMA Optimization Dynamics
4.6. Comparative Experiments for Different Algorithms
4.7. Effectiveness of Local Search Operators
- W/o IPJS—Keeps IAJS but removes IPJS.
- W/o IAJS—Keeps IPJS but removes IAJS.
- W/o LS—Removes both IAJS and IPJS, i.e., the entire local search component.
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AFSCN | Air Force Satellite Control Network |
ARPD | Average Relative Percentage Deviation |
ARV | Average Response Variable |
BL | Bottom-Left Placement |
CPLEX | IBM ILOG CPLEX Optimization Studio |
DTIC | Remote Sensing Data Transmission in Communication Constellations |
EDD | Earliest Due Date |
FAM | First Available Machine |
FIFO | First-In, First-Out |
GA | Genetic Algorithm |
GEO | Geostationary |
HFSP | Hybrid Flow Shop Scheduling Problem |
HFSP-2D | Hybrid Flow Shop Problem with Two-Dimensional Processor Space |
IAJS | Intra-Processor Job-Swapping |
IG | Iterated Greedy |
IPJS | Inter-Processor Job-Swapping |
LEO | Low-Earth-Orbit |
MILP | Mixed-Integer Linear Programming |
NEH | Nawaz–Enscore–Ham |
SA | Simulated Annealing |
TSMA | Two-Stage Memetic Algorithm |
References
- Vazquez, A.J.; Erwin, R.S. On the tractability of satellite range scheduling. Optim. Lett. 2015, 9, 311–327. [Google Scholar] [CrossRef]
- Zhu, W.; Hu, X.; Xia, W.; Jin, P. A two-stage genetic annealing method for integrated Earth observation satellite scheduling problems. Soft Comput. 2019, 23, 181–196. [Google Scholar] [CrossRef]
- He, L.; Liang, B.; Li, J.; Sheng, M. Joint Observation and Transmission Scheduling in Agile Satellite Networks. IEEE Trans. Mob. Comput. 2022, 21, 4381–4396. [Google Scholar] [CrossRef]
- Yang, W.; He, L.; Liu, X.; Meng, W.; Chen, Y. A Fast Insertion Tabu Search with Conflict-Avoidance Heuristic for the Multisatellite Multimode Crosslink Scheduling Problem. Tsinghua Sci. Technol. 2024, 29, 843–862. [Google Scholar] [CrossRef]
- Gooley, T.; Borsi, J.; Moore, J. Automating Air Force Satellite control Network (AFSCN) scheduling. Math. Comput. Model. 1996, 24, 91–101. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, J.; He, R.; Ou, J. An Efficient Local Search Heuristic for Earth Observation Satellite Integrated Scheduling. Appl. Sci. 2020, 10, 5616. [Google Scholar] [CrossRef]
- Zhang, J.; Xing, L. An improved genetic algorithm for the integrated satellite imaging and data transmission scheduling problem. Comput. Oper. Res. 2022, 139, 105626. [Google Scholar] [CrossRef]
- Deng, Y.; Yao, F.; Xing, L.; He, L. Inter-satellite data transmission method in satellite network based on hybrid evolutionary algorithm. Syst. Eng. Electron. 2023, 45, 2931–2940. [Google Scholar]
- Chen, X.; Gu, W.; Dai, G.; Xing, L.; Tian, T.; Luo, W.; Cheng, S.; Zhou, M. Data-Driven Collaborative Scheduling Method for Multi-Satellite Data-Transmission. Tsinghua Sci. Technol. 2024, 29, 1463–1480. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Wang, X.; Luo, Q.; Wu, G. Task Scheduling Method for Data Relay Satellite Network Considering Breakpoint Transmission. IEEE Trans. Veh. Technol. 2021, 70, 844–857. [Google Scholar] [CrossRef]
- Wu, G.; Luo, Q.; Zhu, Y.; Chen, X.; Feng, Y.; Pedrycz, W. Flexible Task Scheduling in Data Relay Satellite Networks. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 1055–1068. [Google Scholar] [CrossRef]
- Li, J.; Wu, G.; Liao, T.; Fan, M.; Mao, X.; Pedrycz, W. Task Scheduling Under a Novel Framework for Data Relay Satellite Network via Deep Reinforcement Learning. IEEE Trans. Veh. Technol. 2023, 72, 6654–6668. [Google Scholar] [CrossRef]
- Yan, Z.; Zhao, K.; Li, W.; Kang, C.; Zheng, J.; Yang, H.; Du, S. Topology Design for GNSSs Under Polling Mechanism Considering Both Inter-Satellite Links and Ground-Satellite Links. IEEE Trans. Veh. Technol. 2022, 71, 2084–2097. [Google Scholar] [CrossRef]
- Rigo, C.A.; Seman, L.O.; Morsch Filho, E.; Camponogara, E.; Bezerra, E.A. MPPT aware task scheduling for nanosatellites using MIP-based ReLU proxy models. Expert Syst. Appl. 2023, 234, 121022. [Google Scholar] [CrossRef]
- Ruiz, R.; Vázquez-Rodríguez, J.A. The hybrid flow shop scheduling problem. Eur. J. Oper. Res. 2010, 205, 1–18. [Google Scholar] [CrossRef]
- Choi, H.S.; Lee, D.H. Scheduling algorithms to minimize the number of tardy jobs in two-stage hybrid flow shops. Comput. Ind. Eng. 2009, 56, 113–120. [Google Scholar] [CrossRef]
- Lee, I.S. Minimizing total tardiness for the order scheduling problem. Int. J. Prod. Econ. 2013, 144, 128–134. [Google Scholar] [CrossRef]
- Nawaz, M.; Enscore, E.E.; Ham, I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 1983, 11, 91–95. [Google Scholar] [CrossRef]
- Lei, D.; Wang, T. Solving distributed two-stage hybrid flowshop scheduling using a shuffled frog-leaping algorithm with memeplex grouping. Eng. Optim. 2020, 52, 1461–1474. [Google Scholar] [CrossRef]
- Lu, C.; Zheng, J.; Yin, L.; Wang, R. An improved iterated greedy algorithm for the distributed hybrid flowshop scheduling problem. Eng. Optim. 2024, 56, 792–810. [Google Scholar] [CrossRef]
- Jemmali, M.; Hidri, L.; Alourani, A. Two-stage hybrid flowshop scheduling problem with independent setup times. Eng. Optim. 2022, 21, 5–16. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, S. A Q-learning multi-objective grey wolf optimizer for the distributed hybrid flowshop scheduling problem. Eng. Optim. 2024, 57, 2609–2628. [Google Scholar] [CrossRef]
- Chen, S.; Zheng, J. A Q-learning grey wolf optimizer for a distributed hybrid flowshop rescheduling problem with urgent job insertion. J. Appl. Math. Comput. 2025, 71, 3645–3670. [Google Scholar] [CrossRef]
- Allahverdi, A.; Ng, C.; Cheng, T.; Kovalyov, M.Y. A survey of scheduling problems with setup times or costs. Eur. J. Oper. Res. 2008, 187, 985–1032. [Google Scholar] [CrossRef]
- Naderi, B.; Ruiz, R.; Zandieh, M. Algorithms for a Realistic Variant of Flowshop Scheduling; Elsevier: Amsterdam, The Netherlands, 2010; Volume 37, pp. 236–246. [Google Scholar] [CrossRef]
- Lin, X.; Chen, Y.; Xue, J.; Zhang, B.; Chen, Y.; Chen, C. Parallel machine scheduling with job family, release time, and mold availability constraints: Model and two solution approaches. Memetic Comput. 2024, 16, 355–371. [Google Scholar] [CrossRef]
- Li, L.; Du, Y.; Yao, F.; Xu, S.; She, Y. Learning memetic algorithm based on variable population and neighborhood for multi-complex target scheduling of large-scale imaging satellites. Swarm Evol. Comput. 2025, 92, 101789. [Google Scholar]
- Du, Y.; Wang, L.; Xing, L.; Yan, J.; Cai, M. Data-Driven Heuristic Assisted Memetic Algorithm for Efficient Inter-Satellite Link Scheduling in the BeiDou Navigation Satellite System. IEEE/CAA J. Autom. Sin. 2021, 8, 1800–1816. [Google Scholar] [CrossRef]
- Fernandez-Viagas, V.; Framinan, J.M. NEH-based heuristics for the permutation flowshop scheduling problem to minimise total tardiness. Comput. Oper. Res. 2015, 60, 27–36. [Google Scholar] [CrossRef]
- Fernandez-Viagas, V.; Molina-Pariente, J.M.; Framinan, J.M. New efficient constructive heuristics for the hybrid flowshop to minimise makespan: A computational evaluation of heuristics. Expert Syst. Appl. 2018, 114, 345–356. [Google Scholar] [CrossRef]
- Ishibuchi, H.; Murata, T. A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. Syst. Man Cybern. Part C 1998, 28, 392–403. [Google Scholar] [CrossRef]
- Naderi, B.; Zandieh, M.; Roshanaei, V. Scheduling hybrid flowshops with sequence dependent setup times to minimize makespan and maximum tardiness. Int. J. Adv. Manuf. Technol. 2009, 41, 1186–1198. [Google Scholar] [CrossRef]
- Ruiz, R.; Stutzle, T. An Iterated Greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives. Eur. J. Oper. Res. 2008, 187, 1143–1159. [Google Scholar] [CrossRef]
Symbols | Definition |
---|---|
i | processing stage, |
j | processor in stage i, |
k | job, |
job list, | |
job list of processor j in stage i | |
m | number of processing stage |
number of jobs | |
number of parallel processors in stage i | |
processing time for job k in stage i | |
spacing requirements of job k in stage i | |
Q | a large number not less than the maximum completion Time |
P | a large number not less than the maximum space of processors |
M | a large number not less than 4 |
T | total tardiness |
completion time of job k in stage i | |
due time of job k in stage i | |
start of spacing requirements of job k in stage i | |
space of processor j in stage i | |
1, if job k is assigned to processor in stage ; otherwise | |
1, if job k precedes job l; otherwise | |
1, if job k is processed below job l; otherwise | |
1, if job k and job l in stage do not conflict under resource constraints; otherwise | |
1, if job k and job l is assigned to processor in stage ; otherwise |
DTIC Elements | HFSP-2D Elements |
---|---|
Remote sensing data transmission job | Job |
LEO communication satellite | Processor in first stage |
Ground gateway station | Processor in second stage |
Maximum bandwidth of gateway station | Processor maximum processing space |
Data transmission rate | Job space requirement |
Category | Parameter | Value |
---|---|---|
Orbital Elements of the Seed Satellite | Semi-major axis | 7178.14 km |
Eccentricity | 0 | |
Inclination | ||
Argument of perigee | ||
RAAN | ||
True anomaly | ||
Walker Constellation Layout | Number of orbital planes | 6 |
Satellites per plane | 4 | |
Inter-plane phasing | Uniform | |
Intra-plane phasing | Uniform |
Number of Visible Satellites | Time (s) | Percentage (%) |
---|---|---|
1 | 61,564.50 | 71.26 |
2 | 24,773.52 | 28.67 |
3 | 61.98 | 0.07 |
Total | 86,400.00 | 100.00 |
Parameter | Factor Level | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
0.1 | 0.2 | 0.3 | 0.4 | |
0.6 | 0.7 | 0.8 | 0.9 | |
0.1 | 0.2 | 0.3 | 0.4 |
No. | ARV (%) | |||
---|---|---|---|---|
1 | 0.1 | 0.6 | 0.1 | 6.945958 |
2 | 0.1 | 0.7 | 0.2 | 4.213748 |
3 | 0.1 | 0.8 | 0.3 | 3.512158 |
4 | 0.1 | 0.9 | 0.4 | 5.433704 |
5 | 0.2 | 0.6 | 0.2 | 4.833371 |
6 | 0.2 | 0.7 | 0.1 | 4.915886 |
7 | 0.2 | 0.8 | 0.4 | 2.882959 |
8 | 0.2 | 0.9 | 0.3 | 4.799043 |
9 | 0.3 | 0.6 | 0.3 | 4.241184 |
10 | 0.3 | 0.7 | 0.4 | 3.849483 |
11 | 0.3 | 0.8 | 0.1 | 3.691779 |
12 | 0.3 | 0.9 | 0.2 | 3.333150 |
13 | 0.4 | 0.6 | 0.4 | 3.780806 |
14 | 0.4 | 0.7 | 0.3 | 3.888193 |
15 | 0.4 | 0.8 | 0.2 | 1.433352 |
16 | 0.4 | 0.9 | 0.1 | 4.539569 |
Jobs () | Generations | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 | |
10 | 480 | 480 | 480 | 480 | 480 | 480 | 480 | 480 | 480 | 480 |
20 | 938 | 937 | 937 | 937 | 937 | 937 | 937 | 937 | 937 | 937 |
30 | 914 | 904 | 882 | 882 | 882 | 882 | 882 | 881 | 881 | 881 |
40 | 1161 | 1115 | 1086 | 1046 | 1021 | 1021 | 1019 | 1000 | 998 | 998 |
50 | 1604 | 1603 | 1603 | 1603 | 1594 | 1585 | 1561 | 1561 | 1561 | 1545 |
60 | 1416 | 1391 | 1360 | 1360 | 1336 | 1327 | 1322 | 1321 | 1317 | 1315 |
70 | 2165 | 2098 | 2041 | 1989 | 1905 | 1876 | 1874 | 1874 | 1873 | 1868 |
80 | 2244 | 2198 | 2162 | 2150 | 2140 | 2121 | 2121 | 2120 | 2113 | 2113 |
90 | 1883 | 1836 | 1819 | 1797 | 1785 | 1783 | 1724 | 1714 | 1706 | 1686 |
100 | 3288 | 2894 | 2854 | 2815 | 2807 | 2769 | 2755 | 2729 | 2729 | 2728 |
Jobs () | CPLEX | TSMA | ||
---|---|---|---|---|
Tardiness | CPU Time (s) | Tardiness | CPU Time (s) | |
10 | 482 | 30.06 | 482 | 11.31 |
20 | 979 | 600.00 | 937 | 22.79 |
30 | 1033 | 600.00 | 881 | 25.61 |
40 | 1623 | 600.00 | 998 | 26.32 |
50 | - | 600.00 | 1545 | 31.28 |
60 | - | 600.00 | 1315 | 31.01 |
70 | - | 600.00 | 1868 | 39.09 |
80 | - | 600.00 | 2113 | 44.33 |
90 | - | 600.00 | 1686 | 84.74 |
100 | - | 600.00 | 2728 | 81.27 |
Jobs () | GA | IG | TSMA | SA |
---|---|---|---|---|
10 | 0.00 | 0.42 | 0.00 | 0.42 |
20 | 0.00 | 11.85 | 0.00 | 4.48 |
30 | 1.59 | 19.86 | 0.00 | 2.04 |
40 | 23.35 | 55.91 | 0.00 | 14.33 |
50 | 6.54 | 8.41 | 0.00 | 7.57 |
60 | 4.79 | 20.38 | 0.00 | 56.35 |
70 | 7.55 | 20.34 | 0.00 | 31.16 |
80 | 1.51 | 11.78 | 0.00 | 47.33 |
90 | 8.13 | 11.92 | 0.00 | 115.48 |
100 | 14.00 | 22.21 | 0.00 | 63.27 |
Sum of Squares | F | p | ||
---|---|---|---|---|
C (Algorithm) | 5698.721 | 3.0 | 27.126 | |
Residual | 2450.990 | 35.0 | - | - |
Algorithm 1 | Algorithm 2 | Mean Diff. | CI Lower | CI Upper | |
---|---|---|---|---|---|
TSMA | w/o IAJS | 10.73 | 0.040 | 0.36 | 21.10 |
TSMA | w/o IPJS | 12.73 | 0.011 | 2.36 | 23.10 |
TSMA | w/o LS | 33.56 | <0.001 | 23.19 | 43.93 |
w/o IAJS | w/o IPJS | 2.00 | 0.950 | −8.09 | 12.10 |
w/o IAJS | w/o LS | 22.83 | <0.001 | 12.74 | 32.93 |
w/o IPJS | w/o LS | 20.83 | <0.001 | 10.74 | 30.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, J.; Chen, Y.; Lin, X.; Zhao, Q. The Remote Sensing Data Transmission Problem in Communication Constellations: Shop Scheduling-Based Model and Algorithm. Technologies 2025, 13, 384. https://doi.org/10.3390/technologies13090384
Yin J, Chen Y, Lin X, Zhao Q. The Remote Sensing Data Transmission Problem in Communication Constellations: Shop Scheduling-Based Model and Algorithm. Technologies. 2025; 13(9):384. https://doi.org/10.3390/technologies13090384
Chicago/Turabian StyleYin, Jiazhao, Yuning Chen, Xiang Lin, and Qian Zhao. 2025. "The Remote Sensing Data Transmission Problem in Communication Constellations: Shop Scheduling-Based Model and Algorithm" Technologies 13, no. 9: 384. https://doi.org/10.3390/technologies13090384
APA StyleYin, J., Chen, Y., Lin, X., & Zhao, Q. (2025). The Remote Sensing Data Transmission Problem in Communication Constellations: Shop Scheduling-Based Model and Algorithm. Technologies, 13(9), 384. https://doi.org/10.3390/technologies13090384