Optimisation of Ultrasonic Conditions as an Advanced Extraction Technique for Recovery of Phenolic Compounds and Antioxidant Activity from Macadamia (Macadamia tetraphylla) Skin Waste
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Chemicals
2.3. Ultrasonic-Assisted Extraction (UAE)
2.4. Methods for the Determination of Chemical Properties
2.4.1. Total Phenolic Content (TPC)
2.4.2. Total Flavonoids
2.4.3. Proanthocyanidins
2.5. Methods for the Determination of Antioxidant Properties
2.5.1. ABTS Radical Scavenging Capacity
2.5.2. DPPH Radical Scavenging Activity
2.5.3. Cupric Reducing Antioxidant Capacity (CUPRAC)
2.5.4. Ferric Reducing Antioxidant Power (FRAP)
2.6. Response Surface Methodology
Run | Experimental Conditions | Experimental Results | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | TPC | Flavon-Oids | Proantho-Cyanidins | ABTS | DPPH | CUPRAC | FRAP | |
1 | 30 | 30 | 60 | 144.28 | 120.80 | 155.58 | 123.46 | 912.40 | 2678.23 | 1099.37 |
2 | 30 | 10 | 80 | 138.28 | 109.81 | 143.48 | 123.63 | 890.36 | 2524.60 | 1062.25 |
3 | 30 | 50 | 80 | 155.13 | 123.31 | 163.20 | 123.32 | 969.60 | 2848.05 | 1278.35 |
4 | 30 | 30 | 100 | 161.46 | 127.70 | 172.13 | 123.47 | 995.60 | 2857.49 | 1306.06 |
5 | 40 | 10 | 60 | 145.82 | 108.83 | 153.42 | 123.60 | 938.73 | 2398.47 | 1076.15 |
6 | 40 | 50 | 60 | 164.29 | 124.61 | 179.62 | 123.26 | 1007.87 | 2752.79 | 1338.07 |
7 | 40 | 30 | 80 | 220.17 | 127.58 | 189.71 | 123.49 | 1082.87 | 2705.35 | 1746.36 |
8 | 40 | 30 | 80 | 173.08 | 131.57 | 191.43 | 123.42 | 1047.40 | 2903.49 | 1545.67 |
9 | 40 | 30 | 80 | 174.10 | 132.36 | 251.16 | 123.39 | 1055.47 | 2909.49 | 1795.67 |
10 | 40 | 10 | 100 | 167.55 | 128.66 | 190.67 | 123.59 | 1061.96 | 2925.49 | 1343.73 |
11 | 40 | 50 | 100 | 177.55 | 128.97 | 200.86 | 123.17 | 1056.20 | 2885.16 | 1304.95 |
12 | 50 | 30 | 60 | 170.09 | 132.89 | 196.08 | 123.27 | 1006.20 | 2754.54 | 1229.62 |
13 | 50 | 10 | 80 | 159.00 | 129.15 | 173.11 | 123.57 | 1005.13 | 2613.07 | 1164.46 |
14 | 50 | 50 | 80 | 180.45 | 151.20 | 210.82 | 123.26 | 1021.42 | 3037.35 | 1313.26 |
15 | 50 | 30 | 100 | 180.17 | 146.43 | 211.62 | 123.33 | 1035.93 | 3011.91 | 1305.24 |
2.7. Statistical Analyses
3. Results and Discussion
3.1. Statistical Analysis and Fitting of the Model
TPC | Flavon-Oids | Proantho-Cyanidins | Antioxidant Capacity | ||||
---|---|---|---|---|---|---|---|
ABTS | DPPH | CUPRAC | FRAP | ||||
Lack of fit | 0.998 | 0.198 | 0.987 | 0.380 | 0.647 | 0.618 | 0.980 |
R2 | 0.73 | 0.94 | 0.76 | 0.94 | 0.97 | 0.87 | 0.94 |
Adjusted R2 | 0.24 | 0.84 | 0.32 | 0.84 | 0.91 | 0.65 | 0.84 |
PRESS | 3573 | 1353 | 7804 | 0.21 | 12,605 | 540,637 | 123,793 |
F ratio of Model | 1.50 | 9.41 | 1.72 | 8.92 | 17.52 | 3.83 | 9.25 |
Prob > F | 0.34 | 0.01 | 0.29 | 0.01 | 0.00 | 0.08 | 0.01 |
3.2. Effect of Extraction Independent Variables on TPC, Flavonoids and Proanthocyanidins
Parameter | DF | TPC | Flavonoids | Proanthocyanidins | |||
---|---|---|---|---|---|---|---|
Estimate | Prob > |t| | Estimate | Prob > |t| | Estimate | Prob > |t| | ||
β0 | 1 | 189.115 | <0.0001 * | 130.503 | <0.0001 * | 210.765 | <0.0001 * |
β1 | 1 | 11.320 | 0.121 | 9.756 | 0.002 * | 19.656 | 0.059 |
β2 | 1 | 8.347 | 0.227 | 6.455 | 0.009 * | 11.728 | 0.205 |
β3 | 1 | 7.781 | 0.255 | 5.579 | 0.016 * | 11.321 | 0.219 |
β12 | 1 | 1.151 | 0.898 | 2.138 | 0.374 | 4.498 | 0.709 |
β13 | 1 | −1.776 | 0.844 | 1.661 | 0.482 | −0.253 | 0.983 |
β23 | 1 | −2.115 | 0.815 | −3.868 | 0.138 | −4.004 | 0.739 |
β11 | 1 | −15.350 | 0.146 | 3.525 | 0.183 | −17.700 | 0.196 |
β22 | 1 | −15.552 | 0.142 | −5.661 | 0.056 | −20.412 | 0.146 |
β33 | 1 | −9.761 | 0.323 | −2.074 | 0.405 | −9.212 | 0.472 |
3.3. Effect of Extraction Independent Variables on the Antioxidant Capacity of Macadamia Tetraphylla Skin
Parameter | DF | ABTS | DPPH | CUPRAC | FRAP | ||||
---|---|---|---|---|---|---|---|---|---|
Estimate | Prob>|t| | Estimate | Prob>|t| | Estimate | Prob>|t| | Estimate | Prob>|t| | ||
β0 | 1 | 123.433 | <.0001 * | 1061.911 | <.0001 * | 2839.442 | <.0001 * | 1695.903 | <.0001 * |
β1 | 1 | −0.057 | 0.039 * | 37.592 | 0.001 * | 63.562 | 0.153 | 33.318 | 0.328 |
β2 | 1 | −0.171 | 0.000 * | 19.864 | 0.020 * | 132.715 | 0.017 * | 73.505 | 0.063 |
β3 | 1 | −0.003 | 0.878 | 35.561 | 0.002 * | 137.002 | 0.015 * | 64.595 | 0.090 |
β12 | 1 | −0.001 | 0.986 | −15.739 | 0.117 | 25.209 | 0.657 | −16.824 | 0.715 |
β13 | 1 | 0.012 | 0.705 | −13.367 | 0.169 | 19.527 | 0.730 | −32.770 | 0.485 |
β23 | 1 | −0.018 | 0.556 | −18.722 | 0.074 | −98.663 | 0.124 | −75.179 | 0.145 |
β11 | 1 | −0.006 | 0.841 | −59.469 | 0.001 * | 0.696 | 0.991 | −260.986 | 0.002 * |
β22 | 1 | 0.017 | 0.600 | −30.814 | 0.016 * | −84.370 | 0.189 | −230.335 | 0.004 * |
β33 | 1 | −0.045 | 0.195 | −14.908 | 0.146 | −14.595 | 0.803 | −199.844 | 0.007 * |
3.4. Optimisation and Validation of Ultrasonic Extraction Conditions
Values | ||
---|---|---|
Predicted | Experimental (n = 3) | |
TPC (mg GAE/g) | 190.23 ± 24.96 a | 168.22 ± 0.77 a |
Flavonoids (mg RE/g) | 131.76 ± 6.38 a | 135.01 ± 3.18 a |
Proanthocyanidins (mg CE/g) | 212.42 ± 33.18 a | 187.71 ± 14.04 a |
ABTS (µM TE/g) | 123.39 ± 0.09 a | 102.36 ± 0.16 a |
DPPH (µM TE/g) | 1064.95 ± 24.23 a | 1128.76 ± 12.33 a |
CUPRAC (µM TE/g) | 2867.35 ± 155.57 a | 2736.31 ± 22.28 a |
FRAP (µM TE/g) | 1699.88 ± 126.83 a | 1607.82 ± 7.89 a |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kammerer, D.R.; Kammerer, J.; Valet, R.; Carle, R. Recovery of polyphenols from the by-products of plant food processing and application as valuable food ingredients. Food Res. Int. 2014, 65, 2–12. [Google Scholar] [CrossRef]
- Kumar, H.; Choudhary, N.; Varsha; Kumar, N.; Suman; Seth, R. Phenolic compounds and their health benefits: A review. J. Food Res. Technol. 2014, 2, 46–59. [Google Scholar]
- Aviram, M.; Dornfeld, L.; Rosenblat, M.; Volkova, N.; Kaplan, M.; Coleman, R.; Hayek, T.; Presser, D.; Fuhrman, B. Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to ldl, and platelet aggregation: Studies in humans and in atherosclerotic apolipoprotein e–deficient mice. Am. J. Clin. Nutr. 2000, 71, 1062–1076. [Google Scholar] [PubMed]
- Boyer, H.; Cock, I.E. Evaluation of the potential of macadamia integriflora extracts as antibacterial food agents. Pharmacogn. Commun. 2013, 3, 53–62. [Google Scholar]
- Australian-Macadamia-Society. The Macadamia Industry. Available online: http://www.australian-macadamias.org/industry/about-aussie-macadamias/the-macadamia-industry?lang=en (accessed on 20 October 2015).
- Wechsler, A.; Ramírez, M.; Crosky, A.; Zaharia, M.; Jones, H.; Ballerini, A.; Núñez, M.; Sahajwalla, V. Physical properties of furniture panels from macadamia shells. In Proceedings of the 18th International Conference on Composite Materials, The Korean Society for Composite Materials, Jeju Island, Korea, 9–13 July 2011.
- Alasalvar, C.; Shahidi, F. Natural antioxidants in tree nuts. Eur. J. Lipid Sci. Technol. 2009, 111, 1056–1062. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Z.; Wang, J. Ultrasound-assisted extraction of five isoflavones from iris tectorum maxim. Sep. Purif. Technol. 2011, 78, 49–54. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, Y.; Yu, S. Optimisation of ultrasonic-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from sugar beet molasses. Food Chem. 2015, 172, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Dahmoune, F.; Spigno, G.; Moussi, K.; Remini, H.; Cherbal, A.; Madani, K. Pistacia lentiscus leaves as a source of phenolic compounds: Microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Ind. Crops Prod. 2014, 61, 31–40. [Google Scholar] [CrossRef]
- Li, W.; Wang, Z.; Wang, Y.-P.; Jiang, C.; Liu, Q.; Sun, Y.-S.; Zheng, Y.-N. Pressurised liquid extraction combining lc–dad–esi/ms analysis as an alternative method to extract three major flavones in citrus reticulata “chachi” (guangchenpi). Food Chem. 2012, 130, 1044–1049. [Google Scholar] [CrossRef]
- Baiano, A. Recovery of biomolecules from food wastes-a review. Molecules 2014, 19, 14821–14842. [Google Scholar] [CrossRef] [PubMed]
- Danlami, J.M.; Arsad, A.; Zaini, M.A.A.; Sulaiman, H. A comparative study of various oil extraction techniques from plants. Rev. Chem. Eng. 2014, 30, 605–626. [Google Scholar] [CrossRef]
- Vuong, Q.V.; Goldsmith, C.D.; Dang, T.T.; Nguyen, V.T.; Bhuyan, D.J.; Sadeqzadeh, E.; Scarlett, C.J.; Bowyer, M.C. Optimisation of ultrasound-assisted extraction conditions for phenolic content and antioxidant capacity from euphorbia tirucalli using response surface methodology. Antioxidants 2014, 3, 604–617. [Google Scholar] [CrossRef]
- Vuong, Q.; Goldsmith, C.; Dang, T.; Nguyen, V.; Bhuyan, D.; Sadeqzadeh, E.; Scarlett, C.; Bowyer, M. Optimisation of ultrasound-assisted extraction conditions for phenolic content and antioxidant capacity from euphorbia tirucalli using response surface methodology. Antioxidants 2014, 3, 604–617. [Google Scholar] [CrossRef]
- Meyers, R.H.; Montgomery, D.C. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 2nd ed.; Wiley: New York, NY, USA, 2002. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Li, Y.; Guo, C.; Yang, J.; Wei, J.; Xu, J.; Cheng, S. Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chem. 2006, 96, 254–260. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of abts, dpph, frap, and orac assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Kamonwannasit, S.; Nantapong, N.; Kumkrai, P.; Luecha, P.; Kupittayanant, S.; Chudapongse, N. Antibacterial activity of aquilaria crassna leaf extract against staphylococcus epidermidis by disruption of cell wall. Ann. Clin. Microbiol. Antimicrob. 2013, 12. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins c and e, using their cupric ion reducing capability in the presence of neocuproine: Cuprac method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef] [PubMed]
- Vuong, Q.V.; Stathopoulos, C.E.; Golding, J.B.; Nguyen, M.H.; Roach, P.D. Optimum conditions for the water extraction of l-theanine from green tea. J. Sep. Sci. 2011, 34, 2468–2474. [Google Scholar] [CrossRef] [PubMed]
- JMP. Regression Reports. Available online: http://www.jmp.com/support/help/Regression_Reports.shtml (accessed on 20 October 2015).
- Teh, S.-S.; Birch, E.J. Effect of ultrasonic treatment on the polyphenol content and antioxidant capacity of extract from defatted hemp, flax and canola seed cakes. Ultrason. Sonochem. 2014, 21, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Sahin, S.; Samli, R. Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrason. Sonochem. 2013, 20, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, Y.-M.; Guo, C.-Y.; Zhang, S.-M.; Liu, C.-L.; Zhang, D.-S.; Bai, X.-M. Ultrasound-assisted extraction of total flavonoids from inula helenium. Pharmacogn. Mag. 2012, 8, 166–170. [Google Scholar] [PubMed]
- Pisoschi, A.M.; Negulescu, G.P. Methods for total antioxidant activity determination: A review. Biochem. Anal. Biochem. 2011, 1, 1–5. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic-Malinovska, R.; Kuzmanova, S.; Winkelhausen, E. Application of ultrasound for enhanced extraction of prebiotic oligosaccharides from selected fruits and vegetables. Ultrason. Sonochem. 2015, 22, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wei, S.; Liao, M. Optimization of ultrasonic extraction of phenolic compounds from euryale ferox seed shells using response surface methodology. Ind. Crops Prod. 2013, 49, 837–843. [Google Scholar] [CrossRef]
- Vuong, Q.V.; Hirun, S.; Phillips, P.A.; Chuen, T.L.; Bowyer, M.C.; Goldsmith, C.D.; Scarlett, C.J. Fruit-derived phenolic compounds and pancreatic cancer: Perspectives from australian native fruits. J. Ethnopharmacol. 2014, 152, 227–242. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dailey, A.; Vuong, Q.V. Optimisation of Ultrasonic Conditions as an Advanced Extraction Technique for Recovery of Phenolic Compounds and Antioxidant Activity from Macadamia (Macadamia tetraphylla) Skin Waste. Technologies 2015, 3, 302-320. https://doi.org/10.3390/technologies3040302
Dailey A, Vuong QV. Optimisation of Ultrasonic Conditions as an Advanced Extraction Technique for Recovery of Phenolic Compounds and Antioxidant Activity from Macadamia (Macadamia tetraphylla) Skin Waste. Technologies. 2015; 3(4):302-320. https://doi.org/10.3390/technologies3040302
Chicago/Turabian StyleDailey, Adriana, and Quan V. Vuong. 2015. "Optimisation of Ultrasonic Conditions as an Advanced Extraction Technique for Recovery of Phenolic Compounds and Antioxidant Activity from Macadamia (Macadamia tetraphylla) Skin Waste" Technologies 3, no. 4: 302-320. https://doi.org/10.3390/technologies3040302
APA StyleDailey, A., & Vuong, Q. V. (2015). Optimisation of Ultrasonic Conditions as an Advanced Extraction Technique for Recovery of Phenolic Compounds and Antioxidant Activity from Macadamia (Macadamia tetraphylla) Skin Waste. Technologies, 3(4), 302-320. https://doi.org/10.3390/technologies3040302