Development of a CMOS Route for Electron Pumps to Be Used in Quantum Metrology
Abstract
:1. Introduction
2. Samples Requirements: 65 nm Gate Pitch
3. Electron Pumps Layout and Processing with FDSOI Technology
3.1. Active Area Patterning
3.2. Gate Patterning with a 65 nm Pitch
4. Electrical Characterizations at 300 K
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Blumenthal, M.D.; Kaestner, B.; Li, L.; Giblin, S.; Janssen, T.J.B.M.; Pepper, M.; Anderson, D.; Jones, G.; Ritchie, D.A. Gigahertz quantized charge pumping. Nat. Phys. 2007, 3, 343–347. [Google Scholar] [CrossRef]
- Giblin, S.; Kataoka, M.; Fletcher, J.; See, P.; Janssen, T.; Griffiths, J.; Jones, G.; Farrer, I.; Ritchie, D. Towards a quantum representation of the ampere using single electron pumps. Nat. Commun. 2012, 3, 930. [Google Scholar]
- Fricke, L.; Wulf, M.; Kaestner, B.; Hohls, F.; Mirovsky, P.; Mackrodt, B.; Dolata, R.; Weimann, T.; Pierz, K.; Siegner, U.; et al. Self-Referenced Single-Electron Quantized Current Source. Phys. Rev. Lett. 2014, 112, 226803. [Google Scholar]
- Kaestner, B.; Kashcheyevs, V. Non-adiabatic quantized charge pumping with tunable-barrier quantum dots: A review of current progress. Rep. Prog. Phys. 2015, 78, 103901. [Google Scholar] [CrossRef] [PubMed]
- Jehl, X.; Voisin, B.; Charron, T.; Clapera, P.; Ray, S.; Roche, B.; Sanquer, M.; Djordjevic, S.; Devoille, L.; Wacquez, R.; et al. Hybrid Metal-Semiconductor Electron Pump for Quantum Metrology. Phys. Rev. X 2013, 3, 021012. [Google Scholar] [CrossRef]
- Clapera, P. Design and operation of CMOS-compatible electron pumps fabricated with optical lithography. IEEE Electron Device Lett. 2016. submitted. [Google Scholar]
- Rossi, A.; Tanttu, T.; Tan, K.Y.; Iisakka, I.; Zhao, R.; Chan, K.W.; Tettamanzi, G.C.; Rogge, S.; Dzurak, A.S.; et al. An Accurate Single-Electron Pump Based on a Highly Tunable Silicon Quantum Dot. Nano Lett. 2014, 14, 3405–3411. [Google Scholar] [CrossRef] [PubMed]
- Yamahata, G.; Karasawa, T.; Fujiwara, A. Gigahertz single-hole transfer in Si tunable-barrier pumps. Appl. Phys. Lett. 2015, 106, 023112. [Google Scholar] [CrossRef]
- Barraud, S.; Coquand, R.; Casse, M.; Koyama, M.; Hartmann, J.; Maffini-Alvaro, V.; Comboroure, C.; Vizioz, C.; Aussenac, F.; Faynot, O.; et al. Performance of Omega-Shaped-Gate Silicon Nanowire MOSFET With Diameter Down to 8 nm. IEEE Electron. Device Lett. 2012, 33, 1526–1528. [Google Scholar] [CrossRef]
- Gaben, L.; Barraud, S.; Pimenta-Barros, P.; Morand, Y.; Pradelles, J.; Samson, M.P.; Previtali, B.; Besson, P.; Allain, F.; Monfray, S.; et al. Omega-Gate Nanowire Transistors Realized by Sidewall Image Transfer Patterning: 35 nm channel pitch and opportunities for stacked-Nanowires architectures. In Proceedings of the International Conference on Solid-State Devices and Materials, Sapporo, Japan, 27–30 September 2015.
- Pierre, M.; Roche, B.; Wacquez, R.; Jehl, X.; Sanquer, M.; Vinet, M. Intrinsic and doped coupled quantum dots created by local modulation of implantation in a silicon nanowire. J. Appl. Phys. 2011, 109, 084346. [Google Scholar] [CrossRef]
- Clapera, P.; Ray, S.; Jehl, X.; Sanquer, M.; Valentian, A.; Barraud, S. Design and Cryogenic Operation of a Hybrid Quantum-CMOS Circuit. Phys. Rev. Appl. 2015, 4, 044009. [Google Scholar] [CrossRef]
- Roche, B.; Voisin, B.; Jehl, X.; Wacquez, R.; Sanquer, M.; Vinet, M.; Deshpande, V.; Previtali, B. A tunable, dual mode field-effect or single electron transistor. Appl. Phys. Lett. 2012, 100, 032107. [Google Scholar] [CrossRef]
- Natarajan, S.; Agostinelli, M.; Akbar, S.; Bost, M.; Bowonder, A.; Chikarmane, V.; Chouksey, S.; Dasgupta, A.; Fischer, K.; Fu, Q.; et al. A 14 nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 μm2 SRAM cell size. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 15–17 December 2014.
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barraud, S.; Lavieville, R.; Hutin, L.; Bohuslavskyi, H.; Vinet, M.; Corna, A.; Clapera, P.; Sanquer, M.; Jehl, X. Development of a CMOS Route for Electron Pumps to Be Used in Quantum Metrology. Technologies 2016, 4, 10. https://doi.org/10.3390/technologies4010010
Barraud S, Lavieville R, Hutin L, Bohuslavskyi H, Vinet M, Corna A, Clapera P, Sanquer M, Jehl X. Development of a CMOS Route for Electron Pumps to Be Used in Quantum Metrology. Technologies. 2016; 4(1):10. https://doi.org/10.3390/technologies4010010
Chicago/Turabian StyleBarraud, Sylvain, Romain Lavieville, Louis Hutin, Heorhii Bohuslavskyi, Maud Vinet, Andrea Corna, Paul Clapera, Marc Sanquer, and Xavier Jehl. 2016. "Development of a CMOS Route for Electron Pumps to Be Used in Quantum Metrology" Technologies 4, no. 1: 10. https://doi.org/10.3390/technologies4010010
APA StyleBarraud, S., Lavieville, R., Hutin, L., Bohuslavskyi, H., Vinet, M., Corna, A., Clapera, P., Sanquer, M., & Jehl, X. (2016). Development of a CMOS Route for Electron Pumps to Be Used in Quantum Metrology. Technologies, 4(1), 10. https://doi.org/10.3390/technologies4010010