A Perspective on Terahertz Next-Generation Wireless Communications
Abstract
:1. Introduction
2. The Terahertz Channel
3. Terahertz Devices
4. Space-Based Terahertz Systems
5. Forward View
Author Contributions
Funding
Conflicts of Interest
Abbreviations
5G | fifth generation |
6G | sixth generation |
IoT | Internet of Things |
MIMO | multi-in, multi-out |
ITU | International Telecommunication Union |
IMT | International Mobile Telecommunications |
RF | radio frequency |
Tx | transmitter |
Rx | receiver |
HITRAN | high-resolution transmission molecular absorption database |
NLOS | non-line-of-sight |
LOS | line-of-sight |
BER | bit error rate |
CIR | channel impulse response |
THz-TDS | terahertz time-domain spectroscopy |
VNA | vector network analyzer |
SC | sliding correlator |
Rb | rubidium |
Cs | cesium |
PAPR | peak-to-average power ratio |
DSSS | direct sequence spread spectrum |
ADC | analog-to-digital converter |
QCL | quantum cascade laser |
CMOS | complementary metal-oxide-semiconductor |
PA | power amplifier |
HEMT | high electron mobility transistor |
HBT | hetrojunction bipolar transistor |
FET | field effect transistor |
SBD | Schottky barrier diode |
GaN | gallium nitride |
GaAs | gallium arsenide |
InP | indium phosphide |
GaN | gallium nitride |
IC | integrated circuit |
SiGe | silicon germanium |
frequency of transistor unity power gain | |
frequency of transistor cutoff | |
QPSK | quadrature phase shift keying |
QAM | quadrature amplitude modulation |
UTC-PD | uni-travelling-carrier photodiode |
SWaP | size, weight, and power |
JPL | Jet Propulsion Laboratory |
TID | total ionizing dose |
SEE | single-event effect |
References
- Shafi, M.; Molisch, A.F.; Smith, P.J.; Haustein, T.; Zhu, P.; De Silva, P.; Tufvesson, F.; Benjebbour, A.; Wunder, G. 5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice. IEEE J. Sel. Areas Commun. 2017, 35, 1201–1221. [Google Scholar] [CrossRef]
- Yu, H.; Lee, H.; Jeon, H. What is 5G? Emerging 5G Mobile Services and Network Requirements. Sustainability 2017, 9, 1848. [Google Scholar] [CrossRef]
- Byung-yeul, B. Korea launches 5G Service Today. Available online: https://www.koreatimes.co.kr/www/tech/2018/12/133_259642.html (accessed on 24 March 2019).
- Segan, S. What Is 5G? Available online: https://www.pcmag.com/article/345387/what-is-5g (accessed on 24 March 2019).
- Fact Sheet: Spectrum Frontiers Rules Identify, Open up Vast amounts of New High-Band Spectrum for Next Generation (5G) Wireless Broadband. Available online: http://transition.fcc.gov/Daily_Releases/Daily_Business/2016/db0714/DOC-340310A1.pdf (accessed on 24 March 2019).
- Nagatsuma, T. Terahertz communications: Past, present and future. In Proceedings of the 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Hong Kong, China, 23–28 August 2015; pp. 1–2. [Google Scholar]
- Crowe, T.W.; Deal, W.R.; Schröter, M.; Tzuang, C.K.C.; Wu, K. Terahertz RF Electronics and System Integration. Proc. IEEE 2017, 105, 985–989. [Google Scholar] [CrossRef]
- Siles, J.V.; Kawamura, J.; Hayton, D.; Hoh, J.; Croppi, C.; Mehdi, I. An Ultra-Compact 520–600 GHz/1100–1200 GHz Receiver with <10 W Power Consumption for High-Spectral Resolution Spectroscopy from Small-Sat Platforms. In Proceedings of the 43rd International Conference on Infrared, Millimeter, and Terahertz Waves, Nagoya, Japan, 9–14 September 2018; pp. 1–2. [Google Scholar]
- Suen, J.Y.; Fang, M.T.; Lubin, P.M. Global Distribution of Water Vapor and Cloud Cover–Sites for High-Performance THz Applications. IEEE Trans. Terahertz Sci. Technol. 2014, 4, 86–100. [Google Scholar] [CrossRef]
- You, R.; Lu, Z.; Hou, Q.; Jiang, T. Study of Pollution Air Monitoring System Based on Space-borne Terahertz Radiometer. In Proceedings of the 10th UK-Europe Workshop on Millimetre Waves and Terahertz Technologies, Liverpool, UK, 11–13 September 2017; pp. 1–4. [Google Scholar]
- Zhu, Z.; Dong, S.; Wang, Y.; Dong, Y. The way of THz signal generation and THz detection techniques for remote sensing. In Proceedings of the 2011 International Conference on Electronics, Communications and Control (ICECC), Ningbo, China, 9–11 September 2011; pp. 4601–4604. [Google Scholar]
- Rey, S.; Eckhardt, J.M.; Peng, B.; Guan, K.; Kürner, T. Channel Sounding Techniques for Applications in THz Communications—A first correlation based channel sounder for ultra-wideband dynamic channel measurements at 300 GHz. In Proceedings of the 2017 9th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Munich, Germany, 6–8 November 2017; pp. 449–453. [Google Scholar]
- MacCartney, G.R.; Rappaport, T.S. A Flexible Millimeter-Wave Channel Sounder With Absolute Timing. IEEE J. Sel. Areas Commun. 2017, 35, 1402–1418. [Google Scholar] [CrossRef]
- Pirkl, R.J.; Durgin, G.D. Optimal Sliding Correlator Channel Sounder Design. IEEE Trans. Wireless Commun. 2008, 7, 3488–3497. [Google Scholar] [CrossRef]
- Pirkl, R.J. A Sliding Correlator Channel Sounder for Ultra-wideband Measurements. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2007. [Google Scholar]
- Xing, Y.; Rappaport, T.S. Propagation Measurement System and Approach at 140 GHz-Moving to 6G and Above 100 GHz. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [Google Scholar]
- Ben-Dor, E.; Rappaport, T.S.; Qiao, Y.; Lauffenburger, S.J. Millimeter-Wave 60 GHz Outdoor and Vehicle AOA Propagation Measurements Using a Broadband Channel Sounder. In Proceedings of the 2011 IEEE Global Telecommunications Conference, Houston, TX, USA, 5–9 December 2011; pp. 1–6. [Google Scholar]
- Cheng, C.L.; Kim, S.; Zajić, A. Comparison of path loss models for indoor 30 GHz, 140 GHz, and 300 GHz channels. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; pp. 716–720. [Google Scholar]
- Khalid, N.; Akan, O.B. Wideband THz communication channel measurements for 5G indoor wireless networks. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–6. [Google Scholar]
- Priebe, S.; Kannicht, M.; Jacob, M.; Kürner, T. Ultra broadband indoor channel measurements and calibrated ray tracing propagation modeling at THz frequencies. J. Commun. Netw. 2013, 15, 547–558. [Google Scholar] [CrossRef]
- Priebe, S.; Jastrow, C.; Jacob, M.; Kleine-Ostmann, T.; Schrader, T.; Kürner, T. Channel and Propagation Measurements at 300 GHz. IEEE Trans. Antennas Propag. 2011, 59, 1688–1698. [Google Scholar] [CrossRef]
- Jornet, J.M.; Akyildiz, I.F. Channel Modeling and Capacity Analysis for Electromagnetic Wireless Nanonetworks in the Terahertz Band. IEEE Trans. Wirel. Commun. 2011, 10, 3211–3221. [Google Scholar] [CrossRef]
- Barros, M.T.; Mullins, R.; Balasubramaniam, S. Integrated Terahertz Communication With Reflectors for 5G Small-Cell Networks. IEEE Trans. Veh. Technol. 2017, 66, 5647–5657. [Google Scholar] [CrossRef]
- Shin, J.Y.; Sirer, E.G.; Weatherspoon, H.; Kirovski, D. On the feasibility of completely wireless datacenters. In Proceedings of the 2012 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Austin, TX, USA, 29–30 October 2019; pp. 3–14. [Google Scholar]
- Yang, Y.; Shutler, A.; Grischkowsky, D. Measurement of the transmission of the atmosphere from 0.2 to 2 THz. Opt. Express 2011, 19, 8830–8838. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Mandehgar, M.; Grischkowsky, D. Determination of the water vapor continuum absorption by THz-TDS and Molecular Response Theory. Opt. Express 2014, 22, 4388–4403. [Google Scholar] [CrossRef] [PubMed]
- Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.; et al. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [Google Scholar] [CrossRef]
- O’Hara, J.F.; Grischkowsky, D.R. Comment on the Veracity of the ITU-R Recommendation for Atmospheric Attenuation at Terahertz Frequencies. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 372–375. [Google Scholar] [CrossRef]
- Piesiewicz, R.; Jansen, C.; Mittleman, D.; Kleine-Ostmann, T.; Koch, M.; Kürner, T. Scattering Analysis for the Modeling of THz Communication Systems. IEEE Trans. Antennas Propag. 2007, 55, 3002–3009. [Google Scholar] [CrossRef]
- Ma, J.; Shrestha, R.; Moeller, L.; Mittleman, D.M. Invited Article: Channel performance for indoor and outdoor terahertz wireless links. APL Photonics 2018, 3, 051601. [Google Scholar] [CrossRef] [Green Version]
- Goldsmith, A. Wireless Communications; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Grischkowsky, D.; Yang, Y.; Mandehgar, M. Zero-frequency refractivity of water vapor, comparison of Debye and van-Vleck Weisskopf theory. Opt. Express 2013, 21, 18899–18908. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Mandehgar, M.; Grischkowsky, D.R. Broadband THz Signals Propagate Through Dense Fog. IEEE Photonics Technol. Lett. 2015, 27, 383–386. [Google Scholar] [CrossRef]
- Mandehgar, M.; Yang, Y.; Grischkowsky, D. Atmosphere characterization for simulation of the two optimal wireless terahertz digital communication links. Opt. Lett. 2013, 38, 3437–3440. [Google Scholar] [CrossRef]
- Yang, Y.; Mandehgar, M.; Grischkowsky, D.R. Understanding THz Pulse Propagation in the Atmosphere. IEEE Trans. Terahertz Sci. Technol. 2012, 2, 406–415. [Google Scholar] [CrossRef]
- Federici, J.F.; Su, K.; Moeller, L.; Barat, R.B. Experimental comparison of terahertz and infrared data signal attenuation in dust clouds. JOSA A 2012, 29, 2360–2366. [Google Scholar]
- Federici, J.F.; Su, K.; Moeller, L.; Barat, R.B. Experimental comparison of performance degradation from terahertz and infrared wireless links in fog. JOSA A 2012, 29, 179–184. [Google Scholar] [Green Version]
- Ma, J.; Vorrius, F.; Lamb, L.; Moeller, L.; Federici, J.F. Experimental Comparison of Terahertz and Infrared Signaling in Laboratory-Controlled Rain. J. Infrared Millim. Terahertz Waves 2015, 36, 856–865. [Google Scholar] [CrossRef]
- Mendis, R.; Nagai, M.; Zhang, W.; Mittleman, D.M. Artificial dielectric polarizing-beamsplitter and isolator for the terahertz region. Sci. Rep. 2017, 7, 5909. [Google Scholar] [CrossRef] [PubMed]
- Mendis, R.; Nagai, M.; Wang, Y.; Karl, N.; Mittleman, D.M. Terahertz Artificial Dielectric Lens. Sci. Rep. 2016, 6, 23023. [Google Scholar] [CrossRef] [PubMed]
- Holloway, C.L.; Dienstfrey, A.; Kuester, E.F.; O’Hara, J.F.; Azad, A.K.; Taylor, A.J. A discussion on the interpretation and characterization of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials. Metamaterials 2009, 3, 100–112. [Google Scholar] [CrossRef]
- Chen, H.T.; O’Hara, J.F.; Azad, A.K.; Taylor, A.J.; Averitt, R.D.; Shrekenhamer, D.B.; Padilla, W.J. Experimental demonstration of frequency-agile terahertz metamaterials. Nat. Photonics 2008, 2, 295–298. [Google Scholar] [CrossRef]
- Li, Q.; Tian, Z.; Zhang, X.; Singh, R.; Du, L.; Gu, J.; Han, J.; Zhang, W. Active graphene–silicon hybrid diode for terahertz waves. Nat. Commun. 2015, 6, 7082. [Google Scholar] [CrossRef]
- Zhou, F.; Cao, W.; Dong, B.; Reissman, T.; Zhang, W.; Sun, C. Additive Manufacturing of a 3D Terahertz Gradient-Refractive Index Lens. Adv. Opt. Mater. 2016, 4, 1034–1040. [Google Scholar] [CrossRef]
- Yu, Q.; Gu, J.; Yang, Q.; Zhang, Y.; Li, Y.; Tian, Z.; Ouyang, C.; Han, J.; O’Hara, J.F.; Zhang, W. All-Dielectric Meta-lens Designed for Photoconductive Terahertz Antennas. IEEE Photonics J. 2017, 9, 1–9. [Google Scholar] [CrossRef]
- Liang, G.; Liu, T.; Wang, Q.J. Recent Developments of Terahertz Quantum Cascade Lasers. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1–18. [Google Scholar] [CrossRef]
- Stöhr, A.; Jäger, D. Photonic millimeter-wave and terahertz source technologies. In Proceedings of the 2006 International Topical Meeting on Microwave Photonics, Grenoble, France, 3–6 October 2006; pp. 1–4. [Google Scholar]
- Shumyatsky, P.; Alfano, R.R. Terahertz sources. J. Biomed. Opt. 2011, 16, 033001. [Google Scholar] [CrossRef] [PubMed]
- Hebling, J.; Yeh, K.L.; Hoffmann, M.C.; Nelson, K.A. High-Power THz Generation, THz Nonlinear Optics, and THz Nonlinear Spectroscopy. IEEE J. Sel. Top. Quantum Electron. 2008, 14, 345–353. [Google Scholar] [CrossRef]
- Leong, K.M.K.H.; Mei, X.; Yoshida, W.H.; Zamora, A.; Padilla, J.G.; Gorospe, B.S.; Nguyen, K.; Deal, W.R. 850 GHz Receiver and Transmitter Front-Ends Using InP HEMT. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 466–475. [Google Scholar] [CrossRef]
- Song, H.J.; Kim, J.Y.; Ajito, K.; Kukutsu, N.; Yaita, M. 50-Gb/s Direct Conversion QPSK Modulator and Demodulator MMICs for Terahertz Communications at 300 GHz. IEEE Trans. Microw. Theory Tech. 2014, 62, 600–609. [Google Scholar] [CrossRef]
- El-Gabaly, A.M.; Stewart, D.; Saavedra, C.E. 2-W Broadband GaN Power-Amplifier RFIC Using the fT Doubling Technique and Digitally Assisted Distortion Cancellation. IEEE Trans. Microw. Theory Tech. 2013, 61, 525–532. [Google Scholar] [CrossRef]
- Sarmah, N.; Aufinger, K.; Lachner, R.; Pfieffer, U.R. A 200–225 GHz SiGe Power Amplifier with peak Psat of 9.6 dBm using wideband power combination. In Proceedings of the ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference, Lausanne, Switzerland, 12–15 September 2016; pp. 193–196. [Google Scholar]
- Schmalz, K.; Borngraber, J.; Mao, Y.; Rucker, H.; Weber, R. A 245 GHz LNA in SiGe Technology. IEEE Microw. Wirel. Compon. Lett. 2012, 22, 533–535. [Google Scholar] [CrossRef]
- Rodríguez-Vázquez, P.; Grzyb, J.; Sarmah, N.; Heinemann, B.; Pfeiffer, U.R. Towards 100 Gbps: A Fully Electronic 90 Gbps One Meter Wireless Link at 230 GHz. In Proceedings of the 2018 48th European Microwave Conference (EuMC), Paris, France, 1–3 October 2019; pp. 1389–1392. [Google Scholar]
- Wang, Z.; Chiang, P.-Y.; Nazari, P.; Wang, C.-C.; Chen, Z.; Heydari, P. A CMOS 210-GHz Fundamental Transceiver with OOK Modulation. IEEE J. Solid-State Circuits 2014, 49, 564–580. [Google Scholar] [CrossRef]
- Jameson, S.; Halpern, E.; Socher, E. A 300 GHz wirelessly locked 2×3 array radiating 5.4 dBm with 5.1% DC-to-RF efficiency in 65 nm CMOS. In Proceedings of the 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 31 January–4 February 2016; pp. 348–349. [Google Scholar]
- Varonen, M.; Safaripour, A.; Parveg, D.; Kangaslahti, P.; Gaier, T.; Hajimiri, A. 200-GHz CMOS amplifier with 9-dB noise figure for atmospheric remote sensing. Electron. Lett. 2016, 52, 369–371. [Google Scholar] [CrossRef]
- Zhong, Q.; Choi, W.; Miller, C.; Henderson, R. A 210-to-305 GHz CMOS receiver for rotational spectroscopy. In Proceedings of the 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 31 January–4 February 2016; pp. 426–427. [Google Scholar]
- Takano, K.; Amakawa, S.; Katayama, K.; Hara, S.; Dong, R.; Kasamatsu, A.; Hosako, I.; Mizuno, K.; Takahashi, K.; Yoshida, T.; et al. A 105Gb/s 300GHz CMOS transmitter. In Proceedings of the 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017; pp. 308–309. [Google Scholar]
- Zhong, Q.; Chen, Z.; Sharma, N.; Kshattry, S.; Choi, W.; Kenneth, K.O. 300-GHz CMOS QPSK transmitter for 30-Gbps dielectric waveguide communication. In Proceedings of the 2018 IEEE Custom Integrated Circuits Conference (CICC), San Diego, CA, USA, 8–11 April 2018; pp. 1–4. [Google Scholar]
- Lee, S.; Dong, R.; Yoshida, T.; Amakawa, S.; Hara, S.; Kasamatsu, A.; Sato, J.; Fujishima, M. 9.5 An 80 Gb/s 300 GHz-Band Single-Chip CMOS Transceiver. In Proceedings of the 2019 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 17–21 February 2019; pp. 170–172. [Google Scholar]
- Kang, S.; Thyagarajan, S.V.; Niknejad, A.M. A 240 GHz Fully Integrated Wideband QPSK Transmitter in 65 nm CMOS. IEEE J. Solid-State Circuits 2015, 50, 2256–2267. [Google Scholar] [CrossRef]
- Thyagarajan, S.V.; Kang, S.; Niknejad, A.M. A 240 GHz Fully Integrated Wideband QPSK Receiver in 65 nm CMOS. IEEE J. Solid-State Circuits 2015, 50, 2268–2280. [Google Scholar] [CrossRef]
- Daly, D.C.; Fujino, L.C.; Smith, K.C. Through the Looking Glass—The 2018 Edition: Trends in Solid-State Circuits from the 65th ISSCC. IEEE J. Solid-State Circuits 2018, 10, 30–46. [Google Scholar] [CrossRef]
- Murmann, B. ADC Performance Survey 19972018 (ISSCC & VLSI Symposium). Available online: http://web.stanford.edu/~murmann/adcsurvey.html (accessed on 24 March 2019).
- Schmid, R.L.; Ulusoy, A.Ç.; Zeinolabedinzadeh, S.; Cressler, J.D. A Comparison of the Degradation in RF Performance Due to Device Interconnects in Advanced SiGe HBT and CMOS Technologies. IEEE Trans. Electron Devices 2015, 62, 1803–1810. [Google Scholar] [CrossRef]
- Yau, K.; Dacquay, E.; Sarkas, I.; Voinigescu, S.P. Device and IC Characterization Above 100 GHz. IEEE Microwave Mag. 2012, 13, 30–54. [Google Scholar] [CrossRef]
- Balteanu, F. Linear Front End Module for 4G/5G LTE Advanced Applications. In Proceedings of the 2018 48th European Microwave Conference (EuMC), Madrid, Spain, 23–27 September 2018; pp. 251–254. [Google Scholar]
- Young, J.P. Mobile RF Front End Integration. In Proceedings of the CS MANTECH Conference, Arizona, AZ, USA, 18–21 May 2015; pp. 23–28. [Google Scholar]
- Hilbert, J.L. Tunable RF Components and Circuits, 1st ed.; Applications in Mobile Handsets; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Mei, X.; Yoshida, W.; Lange, M.; Lee, J.; Zhou, J.; Liu, P.-H.; Leong, K.; Zamora, A.; Padilla, J.; Sarkozy, S.; et al. First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process. IEEE Electron Device Lett. 2015, 36, 327–329. [Google Scholar] [CrossRef]
- Schellenberg, J.; Tran, A.; Bui, L.; Cuevas, A.; Watkins, E. 37 W, 75–100 GHz GaN power amplifier. In Proceedings of the 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 22–27 May 2016; pp. 1–4. [Google Scholar]
- Popovic, Z. Amping Up the PA for 5G: Efficient GaN Power Amplifiers with Dynamic Supplies. IEEE Microw. Mag. 2017, 18, 137–149. [Google Scholar] [CrossRef]
- Lachner, R. (Invited) Towards 0.7 Terahertz Silicon Germanium Heterojunction Bipolar Technology–The DOTSEVEN Project. ECS Trans. 2014, 64, 21–37. [Google Scholar] [CrossRef]
- Schröter, M.; Rosenbaum, T.; Chevalier, P.; Heinemann, B.; Voinigescu, S.P.; Preisler, E.; Bock, J.; Mukherjee, A. SiGe HBT Technology: Future Trends and TCAD-Based Roadmap. IEEE Proc. 2017, 105, 1068–1086. [Google Scholar] [CrossRef]
- Mehdi, I.; Siles, J.V.; Lee, C.; Schlecht, E. THz Diode Technology: Status, Prospects, and Applications. Proc. IEEE 2017, 105, 990–1007. [Google Scholar] [CrossRef]
- Sankaran, S. Schottky barrier diodes for millimeter wave detection in a foundry CMOS process. IEEE Electron Device Lett. 2005, 26, 492–494. [Google Scholar] [CrossRef]
- Ahmad, Z.; Kim, I.; Kenneth, K.O. 0.39-0.45THz symmetric MOS-varactor frequency tripler in 65-nm CMOS. In Proceedings of the 2015 IEEE Radio Frequency Integrated Circuits Symposium, Phoenix, AZ, USA, 17–19 May 2015; pp. 275–278. [Google Scholar]
- Sengupta, K.; Nagatsuma, T.; Mittleman, D.M. Terahertz integrated electronic and hybrid electronic-photonic systems. Nat. Electron. 2018, 1, 622–635. [Google Scholar]
- Nagatsuma, T.; Ducournau, G.; Renaud, C.C. Advances in terahertz communications accelerated by photonics. Nat. Photonics 2016, 10, 371–379. [Google Scholar] [CrossRef]
- Federici, J.; Moeller, L. Review of terahertz and subterahertz wireless communications. J. Appl. Phys. 2010, 107, 111101. [Google Scholar] [CrossRef]
- Yu, X.; Asif, R.; Piels, M.; Zibar, D.; Galili, M.; Morioka, T.; Jepsen, P.U.; Oxenløwe, L.K. 400-GHz Wireless Transmission of 60-Gb/s Nyquist-QPSK Signals Using UTC-PD and Heterodyne Mixer. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 765–770. [Google Scholar] [CrossRef] [Green Version]
- Koenig, S.; Lopez-Diaz, D.; Antes, J.; Boes, F.; Henneberger, R.; Leuther, A.; Tessmann, A.; Schmogrow, R.; Hillerkuss, D.; Palmer, R.; et al. Wireless sub-THz communication system with high data rate. Nat. Photonics 2013, 7, 977–981. [Google Scholar] [CrossRef]
- Carpintero, G.; Hisatake, S.; de Felipe, D.; Guzman, R.; Nagatsuma, T.; Keil, N. Wireless Data Transmission at Terahertz Carrier Waves Generated from a Hybrid InP-Polymer Dual Tunable DBR Laser Photonic Integrated Circuit. Sci. Rep. 2019, 8, 3018. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Nagatsuma, T.; Ishibashi, T. Uni-traveling-carrier photodiodes for high-speed detection and broadband sensing. In Proceedings of the SPIE Quantum Sensing and Nanophotonic Devices IV, San Jose, CA, USA, 20–25 January 2007. [Google Scholar] [CrossRef]
- Wakatsuki, A.; Muramoto, Y.; Ishibashi, T. Development of Terahertz-wave Photomixer Module Using a Uni-traveling-carrier Photodiode. NTT Tech. Rev. 2012, 10, 1–7. [Google Scholar]
- Ishibashi, T.; Shimizu, N.; Kodama, S.; Ito, H.; Nagatsuma, T.; Furuta, T. Uni-Traveling-Carrier Photodiodes. In Proceedings of the OSA TOPS on Ultrafast Electronics and Optoelectronics, Incline Village, NV, USA, 17 March 1997; pp. 83–87. [Google Scholar]
- Mohammad, A.W.; Shams, H.; Balakier, K.; Graham, C.; Natrella, M.; Seeds, A.J.; Renaud, C.C. 5 Gbps wireless transmission link with an optically pumped uni-traveling carrier photodiode mixer at the receiver. Opt. Express 2018, 26, 2884–2890. [Google Scholar] [CrossRef]
- Mohammad, A.W.; Shams, H.; Liu, C.-P.; Graham, C.; Natrella, M.; Seeds, A.J.; Renaud, C.C. 60-GHz Transmission Link Using Uni-Traveling Carrier Photodiodes at the Transmitter and the Receiver. J. Lightwave Technol. 2018, 36, 4507–4513. [Google Scholar] [CrossRef]
- Harter, T.; Ummethala, S.; Blaicher, M.; Muehlbrandt, S.; Wolf, S.; Weber, M.; Adib, M.M.H.; Kemal, J.N.; Merboldt, M.; Boes, F.; et al. Wireless THz link with optoelectronic transmitter and receiver. arXiv 2019, arXiv:1901.03140. [Google Scholar]
- Umezawa, T.; Kanno, A.; Akahane, K.; Matsumoto, A.; Yamamoto, N.; Kawanishi, T. Study of high power generation in UTC-PD at 110-210 GHz. In Proceedings of the SPIE OPTO, Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XI, San Francisco, CA, USA, 27 January–1 February 2018. [Google Scholar] [CrossRef]
- Pang, X.; Jia, S.; Ozolins, O.; Yu, X.; Hu, H.; Marcon, L.; Guan, P.; Da Ros, F.; Popov, S.; Jacobsen, G.; et al. 260 Gbit/s photonic-wireless link in the THz band. In Proceedings of the 2016 IEEE Photonics Conference (IPC), Waikoloa, HI, USA, 2–6 October 2016; pp. 1–2. [Google Scholar]
- Song, H.-J. Packages for Terahertz Electronics. IEEE Proc. 2017, 105, 1121–1138. [Google Scholar] [CrossRef] [Green Version]
- Dickie, R.; Cahill, R.; Fusco, V.; Gamble, H.S.; Mitchell, N. THz Frequency Selective Surface Filters for Earth Observation Remote Sensing Instruments. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 450–461. [Google Scholar] [CrossRef]
- Nagatsuma, T.; Kasamatsu, A. Terahertz Communications for Space Applications. In Proceedings of the 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018; pp. 73–75. [Google Scholar]
- Mehdi, I.; Siles, J.; Chen, C.P.; Jornet, J.M. THz Technology for Space Communications. In Proceedings of the 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018; pp. 76–78. [Google Scholar]
- Junxiao, M.; Xiaoliang, G.; Guixing, C.; Jifeng, W.; Min, W.; Yue, Z.; Haipeng, F. The implementation scheme and key technologies of the space-borne terahertz high-speed transmission system. In Proceedings of the 2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Yangzhou, China, 20–22 October 2017; pp. 571–575. [Google Scholar]
- Dong, S.W.; Zhu, Z.B.; Wang, Y. Advances of terahertz research and terahertz satellite communications. In Proceedings of the 2011 International Conference on Electronics, Communications and Control (ICECC), Ningbo, China, 9–11 September 2011; pp. 4122–4125. [Google Scholar]
- Shaik, K.S.; Hemmati, H. Wavelength selection criteria for laser communications. In Proceedings of the Photonics West ’95, San Jose, CA, USA, 1–28 February 1995; pp. 342–357. [Google Scholar]
- Federici, J.F.; Ma, J. Comparison of terahertz versus infrared free-space communications under identical weather conditions. In Proceedings of the 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Tucson, AZ, USA, 14–19 September 2014; pp. 1–3. [Google Scholar]
- Chattopadhyay, G. Terahertz Instruments for CubeSats. In Proceedings of the 2017 IEEE MTT-S International Microwave and RF Conference (IMaRC), Ahmedabad, India, 11–13 December 2017; pp. 1–5. [Google Scholar]
- Hwu, S.U.; deSilva, K.B.; Jih, C.T. Terahertz (THz) wireless systems for space applications. In Proceedings of the 2013 IEEE Sensors Applications Symposium Proceedings, Galveston, TX, USA, 19–21 February 2013; pp. 171–175. [Google Scholar]
- Tang, A.; Reck, T.; Chattopadhyay, G. CMOS system-on-chip techniques in millimeter-wave/THz instruments and communications for planetary exploration. IEEE Commun. Mag. 2016, 54, 176–182. [Google Scholar] [CrossRef]
- Priebe, S.; Britz, D.M.; Jacob, M.; Sarkozy, S.; Leong, K.M.K.H.; Logan, J.E.; Gorospe, B.S.; Kürner, T. Interference Investigations of Active Communications and Passive Earth Exploration Services in the THz Frequency Range. IEEE Trans. Terahertz Sci. Technol. 2012, 2, 525–537. [Google Scholar] [CrossRef]
- Ding, Y.; Shi, X.; Gao, S.; Wu, H.; Zhang, R. Analysis of tracking-pointing error and platform vibration effect in inter-satellite terahertz communication system. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; pp. 430–434. [Google Scholar]
- Cressler, J.D. Radiation Effects in SiGe Technology. IEEE Trans. Nucl. Sci. 2013, 60, 1992–2014. [Google Scholar] [CrossRef]
- Inanlou, F.; Lourenco, N.E.; Fleetwood, Z.E.; Song, I.; Howard, D.C.; Cardoso, A.; Zeinolabedinzadeh, S.; Zhang, E.; Zhang, C.X.; Paki-Amouzou, P.; et al. Impact of Total Ionizing Dose on a 4th Generation, 90 nm SiGe HBT Gaussian Pulse Generator. IEEE Trans. Nucl. Sci. 2014, 61, 3050–3054. [Google Scholar] [CrossRef]
- Song, I.; Cho, M.K.; Lourenco, N.E.; Fleetwood, Z.E.; Jung, S.; Roche, N.J.H.; Khachatrian, A.; Buchner, S.P.; McMorrow, D.; Paki, P.; et al. The Use of Inverse-Mode SiGe HBTs as Active Gain Stages in Low-Noise Amplifiers for the Mitigation of Single-Event Transients. IEEE Trans. Nucl. Sci. 2017, 64, 359–366. [Google Scholar] [CrossRef]
- Russell, D.; Weinreb, S. Low-Power Very Low-Noise Cryogenic SiGe IF Amplifiers for Terahertz Mixer Receivers. IEEE Trans. Microw. Theory Tech. 2012, 60, 1641–1648. [Google Scholar] [CrossRef]
- Song, I.; Cho, M.K.; Oakley, M.A.; Ildefonso, A.; Ju, I.; Buchner, S.P.; McMorrow, D.; Paki, P.; Cressler, J.D. On the Application of Inverse-Mode SiGe HBTs in RF Receivers for the Mitigation of Single-Event Transients. IEEE Trans. Nucl. Sci. 2017, 64, 1142–1150. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, S.; Zhao, J.; Li, X.; Dong, C.; Zheng, Y.; Yang, J. Performance Degradation of Typical 1550 nm Optical Intersatellite Communication Systems in Space Ionizing Radiation Environment. J. Lightwave Tech. 2017, 35, 3825–3835. [Google Scholar] [CrossRef]
- Dardaillon, R.; Thomas, J.; Myara, M.; Blin, S.; Pastouret, A.; Gonnet, C.; Signoret, P. Broadband Radiation-Resistant Erbium-Doped Optical Fibers for Space Applications. IEEE Trans. Nucl. Sci. 2017, 64, 1540–1548. [Google Scholar]
- Chen, Z.; Ma, X.; Zhang, B.; Zhang, Y.; Niu, Z.; Kuang, N.; Chen, W.; Li, L.; Li, S. A survey on terahertz communications. China Commun. 2019, 16, 1–35. [Google Scholar]
Type | Technologies | Frontend IC Performance | Comm. System Demonstration | Note | ||
---|---|---|---|---|---|---|
Noise Figure | ||||||
Compound Semiconductor | InP HEMT/HBT | THz | dBm at 850 GHz [50] | 12.7 dB at 850 GHz [50] | 50 Gbps QPSK at 300 GHz [51] | Highest |
GaN HEMT | GHz | 33 dBm at 100GHz [52] | N/A | Highest | ||
GaAs SBD | >3 THz () | dBm at 2 THz (harm.) | 14 dB at 2 THz (mixer 1st) | Highest frequency operation | ||
Silicon | SiGe HBT | GHz | 9.6 dBm at 215 GHz [53] | 11 dB at 245 GHz [54] | 90 Gbps QAM at 230 GHz [55] | Medium volume |
CMOS FET | GHz | dBm at 210 GHz (PA) [56] 5.4 dBm at 300 GHz (harm.) [57] | 9 dB at 200 GHz (LNA) [58] 14 dB at 280 GHz (mixer 1st) [59] | 105 Gbps QAM at 300 GHz [60] 30 Gbps QPSK at 300 GHz [61] | Large volume |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Hara, J.F.; Ekin, S.; Choi, W.; Song, I. A Perspective on Terahertz Next-Generation Wireless Communications. Technologies 2019, 7, 43. https://doi.org/10.3390/technologies7020043
O’Hara JF, Ekin S, Choi W, Song I. A Perspective on Terahertz Next-Generation Wireless Communications. Technologies. 2019; 7(2):43. https://doi.org/10.3390/technologies7020043
Chicago/Turabian StyleO’Hara, John F., Sabit Ekin, Wooyeol Choi, and Ickhyun Song. 2019. "A Perspective on Terahertz Next-Generation Wireless Communications" Technologies 7, no. 2: 43. https://doi.org/10.3390/technologies7020043
APA StyleO’Hara, J. F., Ekin, S., Choi, W., & Song, I. (2019). A Perspective on Terahertz Next-Generation Wireless Communications. Technologies, 7(2), 43. https://doi.org/10.3390/technologies7020043