Signal Intensity Estimation in Transdermal Optical Wireless Links with Stochastic Pointing Errors Effect
Abstract
:1. Introduction
2. Estimator and Channel Model
3. Analytical Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gil, Y.; Rotter, N.; Arnon, S. Feasibility of retroreflective transdermal optical wireless communication. Appl. Opt. 2012, 51, 4232–4239. [Google Scholar] [CrossRef] [PubMed]
- Guillory, K.S.; Misener, A.K.; Pungor, A. Hybrid RF/IR transcutaneous telemetry for power and high-bandwidth data. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; IEEE: Piscataway, NJ, USA, 2004; pp. 4338–4340. [Google Scholar]
- Varotsos, G.K.; Nistazakis, H.E.; Petkovic, M.I.; Djordjevic, G.T.; Tombras, G.S. SIMO Optical Wireless Links with Nonzero Boresight Pointing Errors over M modeled Turbulence Channels. Elsevier Opt. Commun. 2017, 403, 391–400. [Google Scholar] [CrossRef]
- Abualhoul, M.Y.; Svenmarker, P.; Wang, Q.; Andersson, J.Y.; Johansson, A.J. Free space optical link for biomedical applications. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1667–1670. [Google Scholar]
- Parmentier, S.; Fontaine, R.; Roy, Y. Laser diode used in 16 Mb/s, 10 mW optical transcutaneous telemetry system. In Proceedings of the Biomedical Circuits and Systems Conference, BioCAS, Baltimore, MD, USA, 20–22 November 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 377–380. [Google Scholar]
- Liu, T.; Bihr, U.; Anis, S.M.; Ortmanns, M. Optical transcutaneous link for low power, high data rate telemetry. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), San Diego, CA, USA, 28 August–1 September 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 3535–3538. [Google Scholar]
- Liu, T.; Anders, J.; Ortmanns, M. System level model for transcutaneous optical telemetric link. In Proceedings of the 2013 IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, 19–23 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 865–868. [Google Scholar]
- Liu, T.; Bihr, U.; Becker, J.; Anders, J.; Ortmanns, M. In vivo verification of a 100 Mbps transcutaneous optical telemetric link. In Proceedings of the Biomedical Circuits and Systems Conference (BioCAS), Lausanne, Switzerland, 22–24 October 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 580–583. [Google Scholar]
- Goto, K.; Nakagawa, T.; Nakamura, O.; Kawata, S. Transcutaneous photocoupler for transmission of biological signals. Opt. Lett. 2002, 27, 1797–1799. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.M.; Tillery, S.I.H.; Schwartz, A.B. Direct cortical control of 3D neuroprosthetic devices. Science 2002, 296, 1829–1832. [Google Scholar] [CrossRef] [PubMed]
- Chae, M.; Liu, W.; Yang, Z.; Chen, T.; Kim, J.; Sivaprakasam, M.; Yuce, M. A 128-channel 6mw wireless neural recording ic with on-the-fly spike sorting and uwbtansmitter. In Proceedings of the2008 IEEE International Solid-State Circuits Conference-Digest of Technical Papers, San Francisco, CA, USA, 3–7 February 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 146–603. [Google Scholar]
- Ackermann, D.M.; Smith, B.; Kilgore, K.L.; Peckham, P.H. Design of a high speed transcutaneous optical telemetry link. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 2932–2935. [Google Scholar]
- Ackermann, D.M.; Smith, B.; Wang, X.F.; Kilgore, K.L.; Peckham, P.H. Designing the optical interface of a transcutaneous optical telemetry link. IEEE Trans. Biomed. Eng. 2008, 55, 1365–1373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abita, J.L.; Schneider, W. Transdermal Optical Communications; John Hopkins APL Tech: Laurel, MD, USA, 2004; Volume 25, pp. 261–268. [Google Scholar]
- Ritter, R.; Handwerker, J.; Liu, T.; Ortmanns, M. Telemetry for implantable medical devices: Part 1-media properties and standards. IEEE Solid-State Circuits Mag. 2014, 6, 47–51. [Google Scholar]
- Trevlakis, S.E.; Boulogeorgos, A.A.A.; Karagiannidis, G.K. On the impact of misalignment fading in transdermal optical wireless communications. In Proceedings of the 7th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 7–9 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4. [Google Scholar]
- Trevlakis, S.E.; Boulogeorgos, A.A.A.; Karagiannidis, G.K. Outage Performance of Transdermal Optical Wireless Links in the Presence of Pointing Errors. In Proceedings of the 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, 25–28 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar]
- Trevlakis, S.; Boulogeorgos, A.A.; Karagiannidis, G. Signal Quality Assessment for Transdermal Optical Wireless Communications under Pointing Errors. Technologies 2018, 6, 109. [Google Scholar] [CrossRef] [Green Version]
- Trevlakis, S.E.; Boulogeorgos, A.A.A.; Sofotasios, P.C.; Muhaidat, S.; Karagiannidis, G.K. Optical wireless cochlear implants. Biomed. Opt. Express 2019, 10, 707–730. [Google Scholar] [CrossRef] [PubMed]
- Varotsos, G.K.; Nistazakis, H.E.; Tombras, G.S.; Aidinis, K.; Jaber, F.; Rahman, M. On the use of diversity in transdermal optical wireless links with nonzero boresight pointing errors for outage performance estimation. In Proceedings of the 2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 7–9 May 2018; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4. [Google Scholar]
- Varotsos, G.K.; Nistazakis, H.E.; Aidinis, K.; Jaber, F.; Rahman, K.K. Transdermal Optical Wireless Links with Multiple Receivers in the Presence of Skin-Induced Attenuation and Pointing Errors. Computation 2019, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Varotsos, G.K.; Nistazakis, H.E.; Aidinis, K.; Roumelas, G.D.; Jaber, F.; Rahman, K.K.M. Modulated Retro-ReflectorTransdermal Optical Wireless Communication Systems with Wavelength Diversity over Skin-Induced Attenuation and Pointing Errors. In Proceedings of the2019 IEEE International Symposium on Signal Processing and Information Technology(ISSPIT), Ajman, UAE, 10–12 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Varotsos, G.K.; Stassinakis, A.N.; Nistazakis, H.E.; Tsigopoulos, A.D.; Peppas, K.P.; Aidinis, C.J.; Tombras, G.S. Probability of fade estimation for FSO links with time dispersion and turbulence modeled with the gamma–gamma or the IK distribution. Opt. Int. J. Light Electron. Opt. 2014, 125, 7191–7197. [Google Scholar] [CrossRef]
- Manea, V.; Dragomir, R.; Puscoci, S. OOK and PPM modulations effects on bit error rate in terrestrial laser transmissions. Telecomunicat II Anul. LIV 2011, 2, 55–61. [Google Scholar]
- Elganimi, T.Y. Performance comparison between OOK, PPM and pam modulation schemes for free space optical (FSO) communication systems: Analytical study. Int. J. Comput. Appl. 2013, 79, 22–27. [Google Scholar]
- Cole, M.; Kiasaleh, K. Signal intensity estimators for free-space optical communications through turbulent atmosphere. IEEE Photonics Technol. Lett. 2004, 16, 2395–2397. [Google Scholar] [CrossRef]
- Cole, M.; Kiasaleh, K. Signal estimators for pin and APD-based free-space optical communication systems. In Proceedings of theIEEE Global Telecommunications Conference (GLOBECOM’04), Dallas, TX, USA, 29 November–3 December 2004; IEEE: Piscataway, NJ, USA, 2004; pp. 1221–1224. [Google Scholar]
- Cole, M.; Kiasaleh, K. Signal intensity estimators for free-space optical communication with array detectors. IEEE Trans. Commun. 2007, 55, 2341–2350. [Google Scholar] [CrossRef]
- Muhammad, S.S.; Rashid, B.; Raza, A.D. Signal estimation for the gamma–gamma turbulence model. Opt. Eng. 2013, 52, 120501. [Google Scholar] [CrossRef]
- Khatoon, A.; Cowley, W.G.; Letzepis, N. Channel measurement and estimation for free space optical communications. In Proceedings of the2011 Australian Communications Theory Workshop, Melbourne, VIC, Australia, 31 January–3 February 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 112–117. [Google Scholar]
- Dabiri, M.T.; Sadough, S.M.S.; Khalighi, M.A. FSO channel estimation for OOK modulation with APD receiver over atmospheric turbulence and pointing errors. Opt. Commun. 2017, 402, 577–584. [Google Scholar] [CrossRef] [Green Version]
- Ghassemlooy, Z.; Arnon, S.; Uysal, M.; Xu, Z.; Cheng, J. Emerging optical wireless communications-advances and challenges. IEEE J. Sel. Areas Commun. 2015, 33, 1738–1749. [Google Scholar] [CrossRef]
- Arnon, S. Effects of atmospheric turbulence and building sway on optical wireless-communication systems. Opt. Lett. 2003, 28, 129–131. [Google Scholar] [CrossRef] [PubMed]
- Farid, A.A.; Hranilovic, S. Outage capacity optimization for free space optical links with pointing errors. IEEE/OSA J. Lightwave Technol. 2007, 25, 1702–1710. [Google Scholar] [CrossRef] [Green Version]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 6th ed.; Academic: New York, NY, USA, 2000. [Google Scholar]
- Yang, F.; Cheng, J.; Tsiftsis, T.A. Free-space optical communication with nonzero boresight pointing errors. IEEE Trans. Commun. 2014, 62, 713–725. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series, Volume 3: More Special Functions; Gordon & Breach: New York, NY, USA, 1990. [Google Scholar]
- The Wolfram Functions Site. 2008. Available online: http://functions.wolfram.com (accessed on 15 June 2020).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varotsos, G.K.; Nistazakis, H.E.; Aidinis, K.; Jaber, F.; Mujeeb Rahman, K.K. Signal Intensity Estimation in Transdermal Optical Wireless Links with Stochastic Pointing Errors Effect. Technologies 2020, 8, 60. https://doi.org/10.3390/technologies8040060
Varotsos GK, Nistazakis HE, Aidinis K, Jaber F, Mujeeb Rahman KK. Signal Intensity Estimation in Transdermal Optical Wireless Links with Stochastic Pointing Errors Effect. Technologies. 2020; 8(4):60. https://doi.org/10.3390/technologies8040060
Chicago/Turabian StyleVarotsos, George K., Hector E. Nistazakis, Konstantinos Aidinis, Fadi Jaber, and K. K. Mujeeb Rahman. 2020. "Signal Intensity Estimation in Transdermal Optical Wireless Links with Stochastic Pointing Errors Effect" Technologies 8, no. 4: 60. https://doi.org/10.3390/technologies8040060
APA StyleVarotsos, G. K., Nistazakis, H. E., Aidinis, K., Jaber, F., & Mujeeb Rahman, K. K. (2020). Signal Intensity Estimation in Transdermal Optical Wireless Links with Stochastic Pointing Errors Effect. Technologies, 8(4), 60. https://doi.org/10.3390/technologies8040060