Investigating How Exchange Rates Impact Japan’s Machinery Exports since 1990
Abstract
:1. Introduction
2. Data and Methodology
3. Results
4. Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. GDP Elasticities for Japan’s Machinery Exports to 15 Countries
Export Category | Share of Machinery Exports in 2020 | Sample Period | |||
---|---|---|---|---|---|
1990–2020 | 1990–2000 | 2000–2010 | 2010–2020 | ||
(1) | (2) | (3) | (4) | (5) | (6) |
Machinery (All) | 1.00 | 1.855 ** | 2.131 *** | 2.988 *** | 3.091 |
(0.746) | (0.644) | (0.922) | (0.669) | ||
Electrical apparatuses | 0.227 | 1.435 | 0.706 | 3.026 ** | 2.425 ** |
(0.877) | (0.702) | (1.381) | (1.078) | ||
Specialized machines | 0.206 | 2.881 *** | 3.820 *** | 4.107 *** | 5.102 *** |
(1.124) | (0.758) | (1.445) | (1.319) | ||
Precision instruments | 0.142 | 0.895 | 0.679 | 4.475 *** | 2.064 * |
(0.861) | (0.546) | (1.157) | (1.229) | ||
Construction equipment | 0.075 | 6.679 *** | 7.262 *** | 2.022 | 8.051 *** |
(1.129) | (1.299) | (1.903) | (2.128) | ||
Computer equipment | 0.059 | 0.238 | 0.082 | 3.830 ** | 3.299 *** |
(1.221) | (1.021) | (1.470) | (0.535) | ||
Ships | 0.052 | 1.322 | −5.425 | 7.386 | 13.409 * |
(3.287) | (3.320) | (4.632) | (7.105) | ||
Machine tools | 0.052 | 4.266 *** | 3.827 *** | 4.475 ** | 6.831 *** |
(1.194) | (0.987) | (1.806) | (2.560) | ||
Electrical equipment | 0.050 | 1.652 | 1.391 | 1.354 | 0.717 |
(1.053) | (1.072) | (1.357) | (1.436) | ||
Commercial vehicles | 0.049 | 5.599 *** | 4.766 ** | 3.433 | 3.067 |
(1.594) | (2.078) | (3.253) | (2.560) | ||
Telecommunications equipment | 0.045 | −1.485 | 0.061 | 0.801 | −0.213 |
(1.503) | (1.573) | (2.584) | (1.762) | ||
Aeronautics | 0.032 | 4.867 ** | 6.720 ** | 1.610 | −2.197 |
(1.999) | (2.704) | (3.953) | (3.706) | ||
Agricultural equipment | 0.010 | 4.178 *** | 3.376 ** | −4.690 * | 7.663 *** |
(1.602) | (1.543) | (2.661) | (2.001) |
1 | |
2 | These countries are Australia, Canada, China, France, Germany, Hong Kong, Indonesia, Malaysia, the Netherlands, Singapore, South Korea, Taiwan, Thailand, the United Kingdom, and the United States. |
References
- Abiad, Abdul, Kristina Baris, John Arvin Bernabe, Donald Jay Bertulfo, Sheila Camingue, Paul Neilmer Feliciano, Mahinthan Mariasingham, and Valerie Mercer-Blackman. 2018. The Impact of Trade Conflict on Developing Asia. (ADB Economic Working Paper No. 566). Manila: Asian Development Bank. [Google Scholar]
- Baek, Jungho. 2013. Does the Exchange Rate Matter to Bilateral Trade between Korea and Japan? Evidence from Commodity Trade Data. Economic Modelling 30: 856–62. [Google Scholar] [CrossRef]
- Bayoumi, Tamim, and Gabrielle Lipworth. 1998. Japanese Foreign Direct Investment and Regional Trade. Journal of Asian Economics 9: 581–607. [Google Scholar] [CrossRef]
- Breitung, Jörg. 2000. The Local Power of Some Unit Root Tests for Panel Data. In Advances in Econometrics, Vol. 15: Nonstationary Panels, Panel Cointegration, and Dynamic Panels. Edited by Badi Baltagi. Amsterdam: JAI Press. [Google Scholar]
- Chinn, Menzie D. 2004. Incomes, Exchange Rates and the U.S. Trade Deficit, Once Again. International Finance 7: 451–69. [Google Scholar] [CrossRef]
- Chinn, Menzie D. 2013. Export and Import Elasticities for Japan: New Estimates. (La Follette School Working Paper No. 2013–004). Madison: La Follette School of Public Affairs. [Google Scholar]
- Choi, In. 2001. Unit Root Tests for Panel Data. Journal of International Money and Finance 20: 249–72. [Google Scholar] [CrossRef]
- Hidalgo, César A., and Ricardo Hausmann. 2009. The Building Blocks of Economic Complexity. Proceedings of the National Academy of Sciences of the United States of America 106: 10570–75. [Google Scholar] [CrossRef] [PubMed]
- Im, Kyung So, M. Hashem Pesaran, and Yongcheol Shin. 2003. Testing for Unit Roots in Heterogeneous Panels. Journal of Econometrics 115: 53–74. [Google Scholar] [CrossRef]
- Ito, Keiko, Kenta Ikeuchi, Chiara Criscuolo, Jonathan Timmis, and Antonin Bergeaud. 2023. Global Value Chains and Domestic Innovation. Research Policy 52: 104699. [Google Scholar] [CrossRef]
- Kwan, Chi Hung. 2004. Japan’s Exports to China Increasing Not Despite but Because of the Yen’s Appreciation. (China in Transition Working Paper). Tokyo: Research Institute of Economy, Trade and Industry. [Google Scholar]
- Levin, Andrew, Chien-Fu Lin, and Chia-Shang James Chu. 2002. Unit Root Tests in Panel Data: Asymptotic and Finite-sample Properties. Journal of Econometrics 108: 1–24. [Google Scholar] [CrossRef]
- Maddala, Gangadharrao S., and Shaowen Wu. 1999. A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test. Oxford Bulletin of Economics and Statistics 61: 631–52. [Google Scholar] [CrossRef]
- Nguyen, Thi-Ngoc Anh, and Kiyotaka Sato. 2019. Firm Predicted Exchange Rates and Nonlinearities in Pricing-to-market. Journal of the Japanese and International Economies 53: 1–16. [Google Scholar] [CrossRef]
- Obstfeld, Maurice, and Kenneth Rogoff. 2000. Perspectives on OECD Economic Integration: Implications for U.S. Current Account Adjustment. In Global Economic Integration: Opportunities and Challenges. Kansas City: Federal Reserve Bank of Kansas City. [Google Scholar]
- Sasaki, Yuri, Yushi Yoshida, and Piotr Kansho Otsubo. 2022. Exchange Rate Pass-through to Japanese Prices: Import Prices, Producer Prices, and the Core CPI. Journal of International Money and Finance 123: 102599. [Google Scholar] [CrossRef]
- Sato, Kiyotaka, Junko Shimizu, Nagendra Shrestha, and Shajuan Zhang. 2013. Industry-specific Real Effective Exchange Rates and Export Price Competitiveness: The Case of Japan, China and Korea. Asian Economic Policy Review 8: 298–321. [Google Scholar] [CrossRef]
- Shimizu, Junko, and Kiyotaka Sato. 2015. Abenomics, Yen Depreciation, Trade Deficit, and Export Competitiveness. (RIETI Discussion Paper Series 15-E-020). Tokyo: Research Institute of Economy, Trade and Industry. [Google Scholar]
- Tang, Hsiao Chink. 2014. Exchange Rate Volatility and Intra-Asian Trade: Evidence by Type of Goods. The World Economy 37: 335–52. [Google Scholar] [CrossRef]
- Thorbecke, Willem. 2008. Global Imbalances, Triangular Trading Patterns, and the Yen/dollar exchange rate. Journal of the Japanese and International Economies 22: 503–17. [Google Scholar] [CrossRef]
- Thorbecke, Willem. 2015. Understanding Japan’s Capital Goods Exports. The Japanese Economic Review 66: 536–49. [Google Scholar] [CrossRef]
- Thorbecke, Willem. 2023. The East Asian Electronics Sector: The Roles of Exchange Rates, Technology Transfer, and Global Value Chains. Cambridge: Cambridge University Press. [Google Scholar]
- Urata, Shujiro, and Hiroki Kawai. 1999. The Determinants of the Location of Foreign Direct Investment by Japanese Small and Medium-sized Enterprises. Keizai Bunseki 158: 1–40. [Google Scholar]
- Walter, Jason, Jungho Baek, and Won W. Koo. 2012. International Trade and Macroeconomic Dynamics: The Case of U.S. Bilateral Trade with G-7 Countries. Research in Economics 66: 398–405. [Google Scholar] [CrossRef]
- Yoshitomi, Masaru. 2007. Global Imbalances and East Asian Monetary Cooperation. In Toward and East Asian Exchange Rate Regime. Edited by Duck-Koo Chung and Barry Eichengreen. Washington, DC: Brookings Institution Press. [Google Scholar]
Unit Root Test | Real GDP | Real Exchange Rate | Machinery Exports | |||
---|---|---|---|---|---|---|
Test Statistic | Test Statistic | Test Statistic | p-Value | Test Statistic | p-Value | |
Levin, Lin, and Chu t * | 3.84 | 0.999 | −5.31 | 0.000 | −5.04 | 0.000 |
Breitung t-stat | 6.83 | 1.000 | −4.59 | 0.000 | −0.744 | 0.228 |
Im, Pesaran, and Shin W-stat | 5.23 | 1.000 | −4.61 | 0.000 | −3.61 | 0.000 |
Augmented Dickey–Fuller Fisher Chi-square | 14.24 | 0.993 | 69.74 | 0.000 | 59.30 | 0.001 |
Phillips–Perron Fisher Chi-square | 15.48 | 0.987 | 48.28 | 0.019 | 46.25 | 0.029 |
Unit Root Test | Electrical Apparatuses | Specialized Machinery | Precision Instruments | |||
Test Statistic | p-value | Test Statistic | p-value | Test Statistic | p-value | |
Levin, Lin, and Chu t * | −4.15 | 0.000 | −7.01 | 0.000 | −1.48 | 0.068 |
Breitung t-stat | 1.56 | 0.940 | −4.91 | 0.000 | 1.55 | 0.939 |
Im, Pesaran, and Shin W-stat | −2.62 | 0.004 | −4.77 | 0.000 | −0.485 | 0.314 |
Augmented Dickey–Fuller Fisher Chi-square | 54.13 | 0.004 | 70.50 | 0.000 | 38.03 | 0.149 |
Phillips–Perron Fisher Chi-square | 61.75 | 0.001 | 69.61 | 0.000 | 41.96 | 0.072 |
Unit Root Test | Construction Equipment | Computer Equipment | Ships | |||
Test Statistic | p-value | Test Statistic | p-value | Test Statistic | p-value | |
Levin, Lin, and Chu t * | −3.18 | 0.001 | −3.05 | 0.001 | −10.99 | 0.000 |
Breitung t-stat | −2.89 | 0.002 | −0.744 | 1.000 | −6.19 | 0.000 |
Im, Pesaran, and Shin W-stat | −2.38 | 0.009 | −1.74 | 0.041 | −9.30 | 0.000 |
Augmented Dickey–Fuller Fisher Chi-square | 45.22 | 0.037 | 44.25 | 0.045 | 136.06 | 0.000 |
Phillips–Perron Fisher Chi-square | 39.09 | 0.124 | 289.47 | 0.000 | 135.84 | 0.000 |
Unit Root Test | Machine Tools | Electrical Equipment | Commercial Vehicles | |||
Test Statistic | p-value | Test Statistic | p-value | Test Statistic | p-value | |
Levin, Lin, and Chu t * | −6.04 | 0.000 | −2.60 | 0.005 | −4.59 | 0.000 |
Breitung t-stat | −2.00 | 0.023 | −2.52 | 0.006 | −3.49 | 0.000 |
Im, Pesaran, and Shin W-stat | −4.34 | 0.000 | −3.54 | 0.000 | −4.79 | 0.000 |
Augmented Dickey–Fuller Fisher Chi-square | 71.13 | 0.000 | 64.34 | 0.000 | 74.49 | 0.000 |
Phillips–Perron Fisher Chi-square | 58.45 | 0.014 | 57.96 | 0.002 | 66.64 | 0.000 |
Unit Root Test | Telecommunications Equipment | Aeronautics | Agricultural Equipment | |||
Test Statistic | p-value | Test Statistic | p-value | Test Statistic | p-value | |
Levin, Lin, and Chu t * | 0.14 | 0.557 | −4.09 | 0.000 | −0.80 | 0.212 |
Breitung t-stat | 2.21 | 0.986 | −0.96 | 0.162 | −0.53 | 0.299 |
Im, Pesaran, and Shin W-stat | 1.18 | 0.880 | −5.97 | 0.000 | −1.10 | 0.136 |
Augmented Dickey–Fuller Fisher Chi-square | 25.87 | 0.682 | 97.10 | 0.000 | 45.06 | 0.038 |
Phillips–Perron Fisher Chi-square | 26.73 | 0.638 | 104.35 | 0.000 | 35.20 | 0.236 |
Export Category | Share of Machinery Exports in 2020 | Sample Period | |||
---|---|---|---|---|---|
1990–2020 | 1990–2000 | 2000–2010 | 2010–2020 | ||
(1) | (2) | (3) | (4) | (5) | (6) |
Machinery (All) | 1.00 | −0.764 *** | −0.577 *** | −0.601 *** | −0.274 |
(0.115) | (0.176) | (0.120) | (0.171) | ||
Electrical apparatuses | 0.227 | −0.660 *** | −0.665 *** | −0.215 | 0.354 |
(0.146) | (0.191) | (0.174) | (0.279) | ||
Specialized machines | 0.206 | −0.455 ** | −0.745 *** | −0.283 | 0.387 |
(0.207) | (0.214) | (0.213) | (0.460) | ||
Precision instruments | 0.142 | −1.427 *** | −0.930 *** | −1.268 *** | −1.057 *** |
(0.170) | (0.155) | (0.217) | (0.396) | ||
Construction equipment | 0.075 | −1.400 *** | −1.204 *** | −1.929 *** | −0.465 |
(0.139) | (0.363) | (0.339) | (0.432) | ||
Computer equipment | 0.059 | −1.871 *** | 0.361 | −1.541 *** | 0.441 |
(0.173) | (0.336) | (0.258) | (0.535) | ||
Ships | 0.052 | 0.955 ** | −1.220 | 1.120 | 1.878 |
(0.400) | (1.045) | (0.790) | (1.567) | ||
Machine tools | 0.052 | −0.965 *** | −0.689 *** | −0.836 *** | 1.717 * |
(0.180) | (0.257) | (0.232) | (0.906) | ||
Electrical equipment | 0.050 | −0.429 *** | 0.070 | −0.531 ** | −0.958 ** |
(0.148) | (0.413) | (0.219) | (0.440) | ||
Commercial vehicles | 0.049 | −0.904 *** | −2.286 *** | −0.966 ** | 0.522 |
(0.251) | (0.608) | (0.396) | (0.756) | ||
Telecommunications equipment | 0.045 | −0.329 | 0.896 | 0.698 | −1.921 *** |
(0.311) | (0.807) | (0.574) | (0.422) | ||
Aeronautics | 0.032 | −0.205 | −0.900 | 0.162 | −2.026 *** |
(0.341) | (0.644) | (0.597) | (0.739) | ||
Agricultural equipment | 0.010 | −1.01 *** | −1.261 *** | −0.377 | −1.170 ** |
(0.191) | (0.473) | (0.292) | (0.564) |
Export Category | Sample Period: | |||||||
---|---|---|---|---|---|---|---|---|
1990–2020 | 1990–2000 | 2000–2010 | 2010–2020 | |||||
Exports to: | ||||||||
Asian Countries | Non- Asian Countries | Asian Countries | Non- Asian Countries | Asian Countries | Non- Asian Countries | Asian Countries | Non- Asian Countries | |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
Machinery (All) | −0.953 *** | −0.295 *** | −0.350 | −0.860 *** | −0.792 *** | −0.410 *** | −0.201 | −0.583 *** |
(0.117) | (0.097) | (0.022) | (0.177) | (0.144) | (0.134) | (0.171) | (0.187) | |
Electrical apparatuses | −0.887 *** | −0.095 | −0.388 | −0.101 *** | −0.527 *** | 0.098 | 0.515* | −0.329 |
(0.149) | (0.117) | (0.244) | (0.211) | (0.201) | (0.190) | (0.266) | (0.263) | |
Specialized machines | −0.633 *** | −0.009 | −0.630 ** | −0.889 *** | 0.402 | −0.164 | 0.478 | 0.085 |
(0.204) | (0.208) | (0.293) | (0.290) | (0.360) | (0.269) | (0.502) | (0.355) | |
Precision instruments | −1.627 *** | −0.930 *** | −0.750 *** | −1.154 *** | −1.534 *** | −1.000 *** | −1.113 *** | −0.770 ** |
(0.167) | (0.103) | (0.190) | (0.203) | (0.258) | (0.196) | (0.422) | (0.370) | |
Construction equipment | −1.166 *** | −1.971 *** | −1.526 *** | −0.803 ** | −2.160 *** | −1.699 *** | −0.158 | −1.774 *** |
(0.141) | (0.159) | (0.508) | (0.372) | (0.371) | (0.339) | (0.437) | (0.420) | |
Computer Equipment | −2.273 *** | −0.822 *** | 0.798 | −0.188 | −1.619 *** | −1.463 *** | 0.343 | 0.764 |
(0.186) | (0.179) | (0.405) | (0.344) | (0.310) | (0.269) | (0.593) | (0.459) | |
Ships | 0.338 | 2.495 *** | −1.702 | −0.613 | −0.010 | 2.252 ** | 1.589 | 3.123 |
(0.440) | (0.538) | (1.214) | (1.425) | (0.726) | 1.100 | (1.528) | (2.395) | |
Machine Tools | −1.059 *** | −0.733 *** | −0.477 | −0.954 *** | −1.049 *** | −0.622 *** | 2.050 ** | 0.726 |
(0.186) | (0.222) | (0.377) | (0.262) | (0.262) | (0.265) | (0.961) | (0.827) | |
Electrical equipment | −0.392 ** | −0.527 *** | 0.496 | −0.461 | −0.745 *** | −0.348 | −0.822 * | −1.316 ** |
0.159 | (0.194) | (0.479) | (0.417) | (0.238) | (0.238) | (0.450) | (0.506) | |
Commercial Vehicles | −1.087 *** | −0.450* | −2.256 *** | −2.323 *** | −1.374 *** | −0.557 | 0.943 | −1.266 |
(0.285) | (0.262) | (0.777) | (0.684) | (0.430) | (0.414) | (0.756) | (0.992) | |
Telecomm- unications equipment | −0.442 | −0.047 | 1.808 * | −0.241 | 1.083 | 0.313 | −2.132 *** | −1.024 ** |
(0.314) | (0.338) | (0.992) | (0.684) | (0.609) | (0.577) | (0.443) | (0.394) | |
Aeronautics | −0.437 | 0.373 | −0.763 | −1.070 | 0.320 | 0.004 | −2.196 *** | −1.301 |
(0.358) | (0.403) | (0.801) | (0.852) | (0.800) | (0.393) | (0.732) | (0.971) | |
Agricultural equipment | −0.965 *** | −1.128 *** | −1.633 ** | −0.798 * | −0.827 * | 0.075 | −1.117 * | −1.395 ** |
(0.223) | (0.209) | (0.642) | (0.472) | (0.432) | (0.302) | (0.595) | (0.597) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thorbecke, W. Investigating How Exchange Rates Impact Japan’s Machinery Exports since 1990. Economies 2024, 12, 133. https://doi.org/10.3390/economies12060133
Thorbecke W. Investigating How Exchange Rates Impact Japan’s Machinery Exports since 1990. Economies. 2024; 12(6):133. https://doi.org/10.3390/economies12060133
Chicago/Turabian StyleThorbecke, Willem. 2024. "Investigating How Exchange Rates Impact Japan’s Machinery Exports since 1990" Economies 12, no. 6: 133. https://doi.org/10.3390/economies12060133
APA StyleThorbecke, W. (2024). Investigating How Exchange Rates Impact Japan’s Machinery Exports since 1990. Economies, 12(6), 133. https://doi.org/10.3390/economies12060133