Does Investor Sentiment Influence South African ETF Flows During Different Market Conditions?
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Sampling and Data Collection
3.2. Empirical Model
4. Empirical Results and Discussion
4.1. Graphical Representation
4.2. Descriptive Statistics
4.3. Unit Root and Stationarity Tests
4.4. Correlation Analysis Results
4.5. Empirical Findings Results
4.5.1. Principal Component Analysis
4.5.2. Markov Regime-Switching Model
4.6. Discussion of the Findings
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adamson, M. (2017). Investor sentiment as a market-timing tool [Ph.D. thesis, University of Pretoria]. [Google Scholar]
- Ahmed, B. (2020). Understanding the impact of investor sentiment on the price formation process: A review of the conduct of American stock markets. The Journal of Economic Asymmetries, 22, 00172. [Google Scholar] [CrossRef]
- Andleeb, R. (2024). Investor sentiment dynamics and returns in emerging equity markets [Ph.D. thesis, Capital University]. [Google Scholar]
- Baker, M., & Wurgler, J. (2006). Investor sentiment and the cross-section of stock returns. Journal of Finance, 61(4), 1645–1680. [Google Scholar] [CrossRef]
- Baker, M., & Wurgler, J. (2007). Investor sentiment in the stock market. Journal of Economic Perspectives, 21(2), 129–151. [Google Scholar] [CrossRef]
- Banerjee, S., & Green, B. (2015). Signal or noise? Uncertainty and learning about whether other traders are informed. Journal of Financial Economics, 117(2), 398–423. [Google Scholar] [CrossRef]
- Bathia, D., & Bredin, D. (2016). An examination of investor sentiment effect on G7 stock market returns. In Contemporary issues in financial institutions and markets (pp. 99–128). Routledge. [Google Scholar]
- Bazzi, M., Blasques, F., Koopman, S. J., & Lucas, A. (2017). Time-varying transition probabilities for Markov regime switching models. Journal of Time Series Analysis, 38(3), 458–478. [Google Scholar] [CrossRef]
- Ben-David, I., Franzoni, F., & Moussawi, R. (2017). Exchange-traded funds. Annual Review of Financial Economics, 9, 169–189. [Google Scholar] [CrossRef]
- Ben-David, I., Franzoni, F., & Moussawi, R. (2018). Do ETFs increase volatility? The Journal of Finance, 73(6), 2471–2535. [Google Scholar] [CrossRef]
- Bienkowska, T., Suchowilska, E., & Wiwart, M. (2020). Triticum polonicum L. as promising source material for breeding new wheat cultivars. Journal of Elementology, 25(1), 238–248. [Google Scholar]
- Charteris, A., & Musadziruma, A. (2017). Feedback trading in stock index futures: Evidence from South Africa. Research in International Business and Finance, 42, 1289–1297. [Google Scholar] [CrossRef]
- Chau, F., Deesomsak, R., & Koutmos, D. (2016). Does investor sentiment really matter? International Review of Financial Analysis, 48, 221–232. [Google Scholar] [CrossRef]
- Chau, F., Deesomsak, R., & Lau, M. C. (2011). Investor sentiment and feedback trading: Evidence from the exchange-traded fund markets. International Review of Financial Analysis, 20(5), 292–305. [Google Scholar] [CrossRef]
- Chen, M. P., Lee, C. C., & Hsu, Y. C. (2017). Investor sentiment and country exchange traded funds: Does economic freedom matter? The North American Journal of Economics and Finance, 42, 285–299. [Google Scholar] [CrossRef]
- Chu, J., Zhang, Y., & Chan, S. (2019). The adaptive market hypothesis in the high frequency cryptocurrency market. International Review of Financial Analysis, 64, 221–231. [Google Scholar] [CrossRef]
- Chung, S. L., Hung, C. H., & Yeh, C. Y. (2012). When does investor sentiment predict stock returns? Journal of Empirical Finance, 19(2), 217–240. [Google Scholar] [CrossRef]
- Coletti, E. (2019). ETFs: Investigation on the possible threats to financial stability [Master’s thesis, Ca’Foscari Univeristy of Venice]. [Google Scholar]
- Corredor, P., Ferrer, E., & Santamaria, R. (2015). The impact of investor sentiment on stock returns in emerging markets: The case of central European markets. Eastern European Economics, 53(4), 328–355. [Google Scholar] [CrossRef]
- Da, Z., Engelberg, J., & Gao, P. (2015). The sum of all FEARS investor sentiment and asset prices. The Review of Financial Studies, 28(1), 1–32. [Google Scholar] [CrossRef]
- Dalika, N. K., & Seetharam, Y. (2014). Sentiment and returns: Analysis of investor sentiment in the south African market [Ph.D. thesis, University of the Witwatersrand]. [Google Scholar]
- Dumas, B., Kurshev, A., & Uppal, R. (2009). Equilibrium portfolio strategies in the presence of sentiment risk and excess volatility. Journal of Finance, 64, 579–629. [Google Scholar] [CrossRef]
- Finnerty, J. D., Reisel, N., & Zhong, X. (2024). ETFs, creation and redemption processes, and bond liquidity. Journal of Financial and Quantitative Analysis, 1–61. [Google Scholar] [CrossRef]
- Ghodbane, M., Benaabidate, L., Boudoukha, A., Gaagai, A., Adjissi, O., Chaib, W., & Aouissi, H. A. (2022). Analysis of groundwater quality in the lower Soummam Valley, North-East of Algeria. Journal of Water and Land Development, 54(VII–IX), 1–12. [Google Scholar] [CrossRef]
- Griffith, J., Najand, M., & Shen, J. (2020). Emotions in the stock market. Journal of Behavioral Finance, 21(1), 42–56. [Google Scholar] [CrossRef]
- Hall, S., Foxon, T. J., & Bolton, R. (2017). Investing in low-carbon transitions: Energy finance as an adaptive market. Climate Policy, 17(3), 280–298. [Google Scholar] [CrossRef]
- Hanna, A. J. (2018). A top-down approach to identifying bull and bear market states. International Review of Financial Analysis, 55, 93–110. [Google Scholar] [CrossRef]
- Huang, D., Jiang, F., Tu, J., & Zhou, G. (2015). Investor sentiment aligned: A powerful predictor of stock returns. The Review of Financial Studies, 28(3), 791–837. [Google Scholar] [CrossRef]
- Ivanov, S. I. (2016). Analysis of ETF bid-ask spread components. The Quarterly Review of Economics and Finance, 61, 249–259. [Google Scholar] [CrossRef]
- Jansen van Rensburg, J., & Vuuren, G. (2020). Evaluating investment decisions based on the business cycle: A South African sector approach. Cogent Economics & Finance, 8, 1852729. [Google Scholar]
- Kadiyala, P. (2022). Response of ETF flows and long-run returns to investor sentiment. Financial Markets and Portfolio Management, 36(4), 489–531. [Google Scholar] [CrossRef]
- Kanojia, S., & Arora, N. (2017). Investments, market timing and portfolio performance across Indian bull and bear markets. Asia-Pacific Journal of Management Research and Innovation, 13(3–4), 98–109. [Google Scholar] [CrossRef]
- Karamizadeh, S., Abdullah, S. M., Manaf, A. A., Zamani, M., & Hooman, A. (2020). An overview of principal component analysis. Journal of Signal and Information Processing, 4, 173–175. [Google Scholar] [CrossRef]
- Karlsson, N., Loewenstein, G., & Seppi, D. (2009). The ostrich effect: Selective attention to information. Journal of Risk and uncertainty, 38, 95–115. [Google Scholar] [CrossRef]
- Khalili, M., & Pour-Aboughadareh, A. (2016). Parametric and non-parametric measures for evaluating yield stability and adaptability in barley doubled haploid lines. Journal of Agricultural Science and Technology, 18, 789–803. [Google Scholar]
- Kräussl, R., & Mirgorodskaya, E. (2017). Media, sentiment and market performance in the long run. The European Journal of Finance, 23(11), 1059–1082. [Google Scholar] [CrossRef]
- Kreis, Y., & Licht, J. W. (2018). Trading on ETF mispricings. Managerial Finance, 44(3), 357–373. [Google Scholar] [CrossRef]
- Kuhnen, C. M., & Knutson, B. (2011). The influence of affect on beliefs, preferences, and financial decisions. Journal of Financial and Quantitative Analysis, 46(3), 605–626. [Google Scholar] [CrossRef]
- Kumar, V., Sharma, A., Kohli, S. K., Bali, S., Sharma, M., Kumar, R., Bhardwaj, R., & Thukral, A. K. (2019). Differential distribution of polyphenols in plants using multivariate techniques. Biotechnology Research and Innovation, 3(1), 1–21. [Google Scholar] [CrossRef]
- Kunjal, D., & Peerbhai, F. (2021a). Investor herding during COVID-19: Evidence from the South African exchange traded fund market. African Review of Economics and Finance, 13(2), 168–185. [Google Scholar]
- Kunjal, D., & Peerbhai, F. (2021b). Investor overconfidence in the South African exchange traded fund market. Cogent Economics & Finance, 9(1), 1978190. [Google Scholar]
- Kunjal, D., Peerbhai, F., & Muzindutsi, P. F. (2021). The performance of South African exchange traded funds under changing market conditions. Journal of Asset Management, 22(5), 350–359. [Google Scholar] [CrossRef]
- Kunjal, D., Peerbhai, F., & Muzindutsi, P. F. (2024). The effect of disaggregated country risk on the returns of the South African exchange traded fund market. Journal of Economics and Financial Analysis, 8(1), 1–34. [Google Scholar]
- Kurian, B. C. (2017). A brief structure of exchange traded fund. Asia Pacific Journal of Research ISSN (Print), 2320, 5504. [Google Scholar]
- Lamothe, C., & Seetohul, Y. (2019). Deviations between ETF prices & their net asset value [Master’s thesis, Simon Fraser University]. [Google Scholar]
- Lee, C. C., & Chen, M. P. (2020). Happiness sentiments and the prediction of cross-border country exchange-traded fund returns. The North American Journal of Economics and Finance, 54, 101254. [Google Scholar] [CrossRef]
- Lee, C. C., Chen, M. P., & Lee, C. C. (2021). Investor attention, ETF returns, and country-specific factors. Research in International Business and Finance, 56, 101386. [Google Scholar] [CrossRef]
- Li, Q., Wang, T., Li, P., Liu, L., Gong, Q., & Chen, Y. (2014). The effect of news and public mood on stock movements. Information Sciences, 278, 826–840. [Google Scholar] [CrossRef]
- Lutz, C. (2016). The asymmetric effects of investor sentiment. Macroeconomic Dynamics, 20(6), 1477–1503. [Google Scholar] [CrossRef]
- Ma, H. (2013). Adaptive investment approach (pp. 1–21). Elsevier. SSRN 2359011. [Google Scholar]
- Ma, J. Z., Ho, K. C., Yang, L., & Chu, C. C. (2018). Market sentiment and investor overreaction: Evidence from New York listed Asian country exchange traded funds. Emerging Markets Finance and Trade, 54(11), 2455–2471. [Google Scholar] [CrossRef]
- Mbanga, C., Darrat, A. F., & Park, J. C. (2019). Investor sentiment and aggregate stock returns: The role of investor attention. Review of Quantitative Finance and Accounting, 53, 397–428. [Google Scholar] [CrossRef]
- Meng, K., & Li, S. (2021). The adaptive market hypothesis and high frequency trading. PLoS ONE, 16(12), 0260724. [Google Scholar] [CrossRef]
- Miziołek, T., Feder-Sempach, E., Zaremba, A., Miziołek, T., Feder-Sempach, E., & Zaremba, A. (2020). The Basics of Exchange-Traded Funds. In International equity exchange-traded funds: Navigating global ETF market opportunities and risks (pp. 63–113). Springer Nature. [Google Scholar]
- Moodley, F. (2024). Bond Indices Maturities and Changing Macroeconomic Conditions: Evidence from South Africa. Journal of Economics and Financial Analysis, 8(1), 57–73. [Google Scholar]
- Muguto, H. L., Rupande, L., & Muzindutsi, P. (2019). Investor sentiment and foreign financial flows: Evidence from South Africa. Zbornik Radova Ekonomski Fakultet u Rijeka, 37(2), 473–498. [Google Scholar]
- Muguto, H. T., Muguto, L., Bhayat, A., Ncalane, H., Jack, K. J., Abdullah, S., Nkosi, T. S., & Muzindutsi, P. F. (2022). The impact of investor sentiment on sectoral returns and volatility: Evidence from the Johannesburg stock exchange. Cogent Economics & Finance, 10(1), 2158007. [Google Scholar]
- Naeem, M. A., Mbarki, I., & Shahzad, S. J. H. (2021). Predictive role of online investor sentiment for cryptocurrency market: Evidence from happiness and fears. International Review of Economics & Finance, 73, 496–514. [Google Scholar]
- Naeem, M. A., Karim, S., Yarovaya, L., & Lucey, B. M. (2023). COVID-induced sentiment and the intraday volatility spillovers between energy and other ETFs. Energy Economics, 122, 106677. [Google Scholar] [CrossRef]
- Naseem, S., Mohsin, M., Hui, W., Liyan, G., & Penglai, K. (2021). The investor psychology and stock market behavior during the initial era of COVID-19: A study of China, Japan, and the United States. Frontiers in Psychology, 12, 626934. [Google Scholar] [CrossRef]
- Naseer, M., & Bin Tariq, D. Y. (2015). The efficient market hypothesis: A critical review of the literature. The IUP Journal of Financial Risk Management, 12(4), 48–63. [Google Scholar]
- Parveen, S., Satti, Z. W., Subhan, Q. A., & Jamil, S. (2020). Exploring market overreaction, investors’ sentiments and investment decisions in an emerging stock market. Borsa Istanbul Review, 20(3), 224–235. [Google Scholar] [CrossRef]
- PH, H., & Rishad, A. (2020). An empirical examination of investor sentiment and stock market volatility: Evidence from India. Financial Innovation, 6(1), 34. [Google Scholar]
- Renault, T. (2017). Intraday online investor sentiment and return patterns in the US stock market. Journal of Banking & Finance, 84, 25–40. [Google Scholar]
- Rupande, L., Muguto, H. T., & Muzindutsi, P. F. (2019). Investor sentiment and stock return volatility: Evidence from the Johannesburg stock exchange. Cogent Economics & Finance, 7(1), 1600233. [Google Scholar]
- Satrix (Own the Market). (2024). Fund fact sheet. Available online: https://satrix.co.za/media/90275?inline=true (accessed on 10 December 2024).
- Shen, J., Yu, J., & Zhao, S. (2017). Investor sentiment and economic forces. Journal of Monetary Economics, 86, 1–21. [Google Scholar] [CrossRef]
- Shiller, R. J. (2000). Measuring bubble expectations and investor confidence. The Journal of Psychology and Financial Markets, 1(1), 49–60. [Google Scholar] [CrossRef]
- Sing, N. B., & Singh, R. G. (2024). Testing the adaptive market hypothesis and time-varying efficiency in the Indian equity market. Colombo Business Journal, 15(1), 106–135. [Google Scholar] [CrossRef]
- Singhal, J. (2023). Role of greed and fear index in investment decision making. Leveraging Technology for Creating Competitive Advantage, 1–17. [Google Scholar] [CrossRef]
- Skender, A., Hadžiabulić, S., Ercisli, S., Hasanbegović, J., Dedić, S., Almeer, R., Sayed, A. A., Ullah, R., & Assouguem, A. (2022). Morphological and biochemical properties in fruits of naturally grown cornelian cherry (Cornus mas L.) genotypes in Northwest Bosnia and Herzegovina. Sustainability, 14(8), 4579. [Google Scholar] [CrossRef]
- Smales, L. A. (2017). The importance of fear: Investor sentiment and stock market returns. Applied Economics, 49(34), 3395–3421. [Google Scholar] [CrossRef]
- Su, C. W., Cai, X. Y., & Tao, R. (2020). Can stock investor sentiment be contagious in China? Sustainability, 12(4), 1571. [Google Scholar] [CrossRef]
- Sun, L., Najand, M., & Shen, J. (2016). Stock return predictability and investor sentiment: A high-frequency perspective. Journal of Banking & Finance, 73, 147–164. [Google Scholar]
- Tetlock, P. C. (2007). Giving content to investor sentiment: The role of media in the stock market. The Journal of Finance, 62(3), 1139–1168. [Google Scholar] [CrossRef]
- Trichilli, Y., Boujelbène Abbes, M., & Masmoudi, A. (2020). Predicting the effect of Googling investor sentiment on Islamic stock market returns: A five-state hidden Markov model. International Journal of Islamic and Middle Eastern Finance and Management, 13(2), 165–193. [Google Scholar] [CrossRef]
- Tsalikis, G., & Papadopoulos, S. (2019). ETFS-performance, tracking errors and their determinants in Europe and the USA. Risk Governance & Control: Financial Markets & Institutions, 9(4), 67–76. [Google Scholar]
- Tseng, Y. C., & Lee, W. C. (2016). Investor sentiment and ETF liquidity-evidence from Asia markets. Advances in Management and Applied Economics, 6(1), 89. [Google Scholar]
- Urquhart, A., & McGroarty, F. (2016). Are stock markets really efficient? Evidence of the adaptive market hypothesis. International Review of Financial Analysis, 47, 39–49. [Google Scholar] [CrossRef]
- Wang, W., Su, C., & Duxbury, D. (2021). Investor sentiment and stock returns: Global evidence. Journal of Empirical Finance, 63, 365–391. [Google Scholar] [CrossRef]
- Wang, W., Su, C., & Duxbury, D. (2022). The conditional impact of investor sentiment in global stock markets: A two-channel examination. Journal of Banking & Finance, 138, 106458. [Google Scholar]
- Wong, K. H., & Shum, W. C. (2010). Exchange-traded funds in bullish and bearish markets. Applied Economics Letters, 17(16), 1615–1624. [Google Scholar] [CrossRef]
- Xu, R., Liu, Y., Hu, N., & Guo, J. M. (2022). What drives individual investors in the bear market? The British Accounting Review, 54(6), 101113. [Google Scholar] [CrossRef]
- Yalçın, K. C. (2010). Market rationality: Efficient market hypothesis versus market anomalies. European Journal of Economic and Political Studies, 3(2), 23–38. [Google Scholar]
- Yang, C., & Chi, J. (2023). Investor sentiment and volatility of exchange-traded funds: Evidence from China. International Journal of Finance & Economics, 28(1), 668–680. [Google Scholar]
- Yiannaki, S. M. (2015). ETFs performance Europe—A good start or not? Procedia Economics and Finance, 30, 955–966. [Google Scholar] [CrossRef]
Satrix Top 40 | Satrix SWIX Top 40 | Satrix FINI | Satrix INDI | Satrix DIVI | Satrix RAFI | FNB Top 40 | ∆INVSENT | |
---|---|---|---|---|---|---|---|---|
Mean | −3.75 × 10−6 | −0.000 | 8.84 × 10−5 | 0.001 | 0.001 | −0.001 | 0.000 | 0.031 |
Median | −0.001 | −0.001 | 0.000 | −0.000 | 0.000 | −0.001 | −0.000 | −0.003 |
Max | 0.034 | 0.039 | 0.068 | 0.033 | 0.053 | 0.037 | 0.051 | 2.522 |
Min | −0.042 | −0.045 | −0.044 | −0.034 | −0.030 | −0.044 | −0.043 | −1.733 |
Std.Dev. | 0.011 | 0.013 | 0.015 | 0.011 | 0.012 | 0.010 | 0.012 | 0.645 |
Skewness | −0.041 | −0.099 | 0.764 | 0.244 | 0.508 | −0.110 | 0.531 | 0.176 |
Kurtosis | 5.013 | 4.745 | 6.526 | 4.359 | 4.488 | 4.852 | 6.156 | 4.041 |
Jarque-Bera | 30.772 | 23.383 | 23.969 | 15.813 | 24.627 | 26.374 | 84.119 | 9.163 |
Prob | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.010 |
Observations | 182 | 182 | 182 | 182 | 182 | 182 | 182 | 182 |
Tests | Satrix Top 40 | SWIX Top 40 | Satrix FINI | Satrix INDI | Satrix RAFI | Satrix DIVI | FNB Top 40 | ∆INVSENT |
---|---|---|---|---|---|---|---|---|
ADF test statistic | −14.09 | −14.303 | −14.021 | −14.0792 | −14.358 | −14.280 | −15.382 | −18.547 |
1% | −3.466 | −3.466 | −3.466 | −3.466 | −3.466 | −3.466 | −3.466 | −3.467 |
5% | −2.877 | −2.877 | −2.877 | −2.877 | −2.877 | −2.877 | −2.877 | −2.877 |
10% | −2.575 | −2.575 | −2.575 | −2.575 | −2.575 | −2.575 | −2.575 | −2.575 |
Prob | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
KPSS test statistic | 0.064 | 0.058 | 0.259 | 0.118 | 0.0698 | 0.057 | 0.0596 | 0.028 |
1% | 0.739 | 0.739 | 0.739 | 0.739 | 0.739 | 0.739 | 0.739 | 0.739 |
5% | 0.463 | 0.463 | 0.463 | 0.463 | 0.463 | 0.463 | 0.463 | 0.463 |
10% | 0.347 | 0.347 | 0.347 | 0.347 | 0.347 | 0.347 | 0.347 | 0.347 |
Structural break test statistic | −14.917 | −14.979 | −14.579 | −14.629 | −15.310 | −14.927 | −16.101 | −20.612 |
1% | −4.949 | −4.949 | −4.949 | −4.949 | −4.949 | −4.949 | −4.949 | −4.949 |
5% | −4.444 | −4.444 | −4.444 | −4.444 | −4.444 | −4.444 | −4.444 | −4.444 |
10% | −4.194 | −4.194 | −4.194 | −4.194 | −4.194 | −4.194 | −4.194 | −4.194 |
Prob | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
∆INVSENT | Satrix Top 40 | Satrix SWIX Top 40 | Satrix FINI | Satrix INDI | Satrix DIVI | Satrix RAFI | FNB Top 40 | ∆INVSENT |
---|---|---|---|---|---|---|---|---|
Correlation Coefficient | 0.029 | 0.114 | 0.065 | 0.096 | 0.061 | 0.097 | 0.089 | 1.000 |
Probability | 0.002 | 0.025 | 0.383 | 0.098 | 0.417 | 0.094 | 0.034 | ----- |
Number | Value | Difference | Proportion | Cumulative Value | Cumulative Proportion |
---|---|---|---|---|---|
Panel A: First Stage Index with Current Proxies | |||||
1 | 3.284 | 2.121 | 0.469 | 3.284 | 0.469 |
2 | 1.163 | 0.177 | 0.166 | 4.447 | 0.635 |
3 | 0.986 | 0.206 | 0.141 | 5.432 | 0.776 |
4 | 0.780 | 0.059 | 0.111 | 6.213 | 0.888 |
5 | 0.721 | 0.677 | 0.103 | 6.933 | 0.991 |
6 | 0.044 | 0.021 | 0.006 | 6.977 | 0.997 |
7 | 0.023 | --- | 0.003 | 7.000 | 1.000 |
Panel B: First Stage Index with One Period Lagged Proxies | |||||
1 | 3.299 | 2.138 | 0.471 | 3.299 | 0.471 |
2 | 1.161 | 0.174 | 0.166 | 4.461 | 0.637 |
3 | 0.988 | 0.209 | 0.141 | 5.448 | 0.778 |
4 | 0.779 | 0.072 | 0.111 | 6.227 | 0.890 |
5 | 0.707 | 0.663 | 0.101 | 6.934 | 0.991 |
6 | 0.044 | 0.022 | 0.006 | 6.978 | 0.997 |
7 | 0.022 | --- | 0.003 | 7.000 | 1.000 |
Prob. | Satrix Top 40 | Satrix Swix | Satrix FINI | Satrix INDI | Satrix Divi | Satrix Rafi | FNB Top 40 |
---|---|---|---|---|---|---|---|
Regime 1: Bull Market Conditions | |||||||
C | 0.201 *** (1.941) | 0.021 ** (2.559) | 0.100 ** (2.455) | 0.201 *** (1.905) | 0.103 * (3.153) | 0.100 * (2.994) | 0.179 * (3.257) |
∆INVSENT | −0.100 ** (−2.439) | −0.002 (−1.431) | 0.100 ** (2.583) | 0.002 *** (1.945) | 1.145 ** (2.786) | −0.001 *** (−1.938) | −0.643 *** (−2.954) |
LOG (SIGMA) | 1.044 * (3.886) | 1.956 * (3.273) | 1.490 * (3.127) | 1.281 * (3.064) | 0.736 ** (2.154) | 1.906 * (3.518) | 1.842 * (5.208) |
Transition Probabilities and Duration Probabilities | |||||||
P11 | 0.861 | 0.649 | 0.984 | 0.711 | 0.830 | 0.966 | 0.910 |
T11 | 7.181 | 2.846 | 63.055 | 3.466 | 5.877 | 29.201 | 11.101 |
Regime 2: Bear Market Conditions | |||||||
C | −0.102 *** (1.942) | −0.100 ** (−2.412) | −0.102 * (−2.974) | −0.101 (−0.969) | −1.135 * (−3.806) | −0.132 *** (−1.988) | −0.005 ** (−2.108) |
∆INVSENT | 0.101 ** (2.238) | 0.009 ** (2.149) | 0.204 *** (1.903) | 0.601 ** (2.430) | −0.257 ** (−2.528) | 0.174 (1.505) | 0.008 ** (2.677) |
LOG (SIGMA) | −4.159 * (−3.450) | −4.085 * (−3.605) | −3.564 * (−3.110) | −4.342 * (−3.692) | 1.098 * (3.031) | −4.272 * (−3.627) | −3.908 * (−3.067) |
Transition Probabilities and Duration Probabilities | |||||||
P22 | 0.762 | 0.464 | 0.920 | 0.784 | 0.137 | 0.949 | 0.644 |
T22 | 4.205 | 1.865 | 12.477 | 4.631 | 1.159 | 19.537 | 2.809 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shenjere, P.A.; Ferreira-Schenk, S.; Moodley, F. Does Investor Sentiment Influence South African ETF Flows During Different Market Conditions? Economies 2025, 13, 10. https://doi.org/10.3390/economies13010010
Shenjere PA, Ferreira-Schenk S, Moodley F. Does Investor Sentiment Influence South African ETF Flows During Different Market Conditions? Economies. 2025; 13(1):10. https://doi.org/10.3390/economies13010010
Chicago/Turabian StyleShenjere, Paidamoyo Aurleen, Sune Ferreira-Schenk, and Fabian Moodley. 2025. "Does Investor Sentiment Influence South African ETF Flows During Different Market Conditions?" Economies 13, no. 1: 10. https://doi.org/10.3390/economies13010010
APA StyleShenjere, P. A., Ferreira-Schenk, S., & Moodley, F. (2025). Does Investor Sentiment Influence South African ETF Flows During Different Market Conditions? Economies, 13(1), 10. https://doi.org/10.3390/economies13010010