Exploring the Tourism and Economic Growth Relationship in Vietnam: A Cointegration Analysis with Model-Specific Structural Breaks
Abstract
:1. Introduction
2. Literature Review and Hypotheses
2.1. Tourism and Economic Growth
2.2. Other Explanatory Variables
3. Data and Methods
3.1. ARDL Bounds Approach
3.2. The Toda–Yamamoto Approach to Granger Non-Causality
3.3. Data Description
4. Results
4.1. Unit Root Analysis
4.2. Long- and Short-Run Analysis
4.2.1. Model I—Base Model (With Capital per Worker and Tourism)
Variables | Case II | Case III | Case IV | Case V |
---|---|---|---|---|
0.63495 *** (0.0185) | 0.6350 *** (0.0185) | 0.3464 ** (0.1697) | 0.3464 ** (0.1697) | |
0.0268 *** (0.0089) | 0.0268 *** (0.009) | 0.0247 *** (0.0081) | 0.0247 *** (0.0081) | |
Constant | 2.3017 (0.1619) | - | - | - |
Trend | - | - | 0.0232 (0.0133) | - |
4.2.2. Model II—With Capital per Worker, Tourism, and Natural Resource Rent
Case II | Case III | Case IV | Case V | |
---|---|---|---|---|
Variables | Coefficient | Coefficient | Coefficient | Coefficient |
0.6181 *** (0.0181) | 0.6181 *** (0.0181) | 0.8091 ** (0.3273) | 0.8091 ** (0.3273) | |
0.0377 *** (0.0114) | 0.0377 *** (0.0114) | 0.0406 *** (0.013) | 0.0406 *** (0.013) | |
−0.0261 ** (0.0111) | −0.0261 ** (0.0111) | −0.0328 * (0.0165) | −0.0328 * (0.0165) | |
Constant | 2.6819 *** (0.2226) | - | - | - |
Trend | - | - | −0.0152 (0.0262) | - |
4.2.3. Model III—With Capital per Worker, Tourism, and Urbanisation
Case II | Case III | Case IV | Case V | |
---|---|---|---|---|
Variables | Coefficient | Coefficient | Coefficient | Coefficient |
0.2708 *** (0.0576) | 0.2708 *** (0.0576) | 0.1556 (0.0983) | 0.1556 (0.0983) | |
0.0365 *** (0.0085) | 0.0365 *** (0.0085) | 0.0276 *** (0.008) | 0.0276 *** (0.008) | |
1.3319 *** (0.1717) | 1.3319 *** (0.1717) | 1.2042 *** (0.1169) | 1.2042 *** (0.1169) | |
Constant | 0.6473 *** (0.1625) | - | - | - |
Trend | - | - | 0.0130 ** (0.0057) | - |
4.2.4. Model IV—With Capital per Worker, Tourism and FDI
Case II | Case III | Case IV | Case V | |
---|---|---|---|---|
Variables | Coefficient | Coefficient | Coefficient | Coefficient |
0.5536 *** (0.035) | 0.5536 *** (0.035) | 0.3031 * (0.1624) | 0.3031 * (0.1624) | |
0.1462 *** (0.0448) | 0.1462 *** (0.0448) | 0.1387 *** (0.0264) | 0.1387 *** (0.0264) | |
−0.0535 *** (0.0169) | −0.0535 *** (0.0169) | −0.0521 *** (0.0101) | −0.0521 *** (0.0101) | |
Constant | 3.6989 *** (0.5262) | - | - | - |
Trend | - | - | 0.0196 (0.0127) | - |
4.2.5. Model V—With Capital per Worker, Tourism, and Financial Development
Case II | Case III | Case IV | Case V | |
---|---|---|---|---|
Variables | Coefficient | Coefficient | Coefficient | Coefficient |
0.5613 *** (0.0624) | 0.5613 *** (0.0624) | 1.0048 * (0.5683) | 1.0048 * (0.5683) | |
0.0182 (0.0119) | 0.0182 (0.0119) | 0.0295 (0.0229) | 0.0295 (0.0229) | |
0.0640 * (0.0346) | 0.0640 * (0.0346) | 0.0603 (0.0672) | 0.0603 (0.0672) | |
Constant | 2.4973 *** (0.3242) | - | - | - |
Trend | - | - | −0.0361 (0.0426) [−0.8464] {0.4048} | - |
4.2.6. Model VI—With Capital per Worker, Tourism, and CO2 Emission
Case II | Case III | Case IV | Case V | |
---|---|---|---|---|
Variables | Coefficient | Coefficient | Coefficient | Coefficient |
0.5574 *** (0.076) | 0.5574 *** (0.076) | 0.2847 (0.2161) | 0.2847 (0.2161) | |
0.0370 *** (0.0118) | 0.0370 *** (0.0118) | 0.0397 *** (0.0117) | 0.0397 *** (0.0117) | |
0.0831 (0.0632) | 0.0831 (0.0632) | 0.1186 ** (0.0566) | 0.1186 ** (0.0566) | |
Constant | 3.6061 *** (1.0817) | - | - | - |
Trend | - | - | 0.0188 (0.0156) | - |
4.2.7. Model VII—With Capital per Worker, Tourism, and ICT
Case II | Case III | Case IV | Case V | |
---|---|---|---|---|
Variables | Coefficient | Coefficient | Coefficient | Coefficient |
0.7361 *** (0.0148) | 0.7361 *** (0.0148) | 1.0467 *** (0.2351) | 1.0467 *** (0.2351) | |
0.0269 *** (0.0059) | 0.0269 *** (0.0059) | 0.0357 *** (0.0085) | 0.0357 *** (0.0085) | |
−0.0218 *** (0.0033) | −0.0218 *** (0.0033) | −0.0288 *** (0.0042) | −0.0288 *** (0.0042) | |
Constant | 1.4087 *** (0.1299) | - | - | - |
Trend | - | - | −0.0225 (0.0176) | - |
4.2.8. Model VIII—With Capital per Worker, Tourism, and Trade Openness
Case II | Case III | Case IV | Case V | |
---|---|---|---|---|
Variables | Coefficient | Coefficient | Coefficient | Coefficient |
0.5418 *** (0.0196) | 0.5418 *** (0.0196) | 0.2492 (0.1966) | 0.2492 (0.1966) | |
0.0554 *** (0.0172) | 0.0554 *** (0.0172) | 0.0313 * (0.0186) | 0.0313 * (0.0186) | |
0.0478 *** (0.0252) | 0.0478 *** (0.0252) | 0.0929 *** (0.033) | 0.0929 *** (0.033) | |
Constant | 2.7788 *** (0.2219) | - | - | - |
Trend | - | - | 0.0227 (0.0152) | - |
4.3. Causality
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variables | ADF | PP | KPSS | |||
---|---|---|---|---|---|---|
Level | 1st Diff. | Level | 1st Diff. | Level | 1st Diff. | |
−0.5209 [1] | −3.6682 [0] *** | 0.31802 [4] | −3.6532 [3] *** | 0.6957 [5] * | 0.09474 [4] *** | |
0.5269 [0] | −2.5762 [0] * | 0.28691 [4] | −2.5867 [1] * | 0.69698 [5] * | 0.12870 [4] *** | |
−1.9336 [0] B | −3.1244 [0] B | −1.8906 [2] B | −3.2035 [2] *,B | 0.71238 [4] * | 0.6013 [3] * | |
1.3506 [0] | −2.8346 [0] * | 0.84549 [4] | −2.5497 [2] | 0.69441 [5] | 0.15673 [4] *** | |
−1.6885 [0] | −5.4066 [0] *** | −1.6472 [2] | −5.3892 [3] *** | 0.38424 [5] ** | 0.44140 [3] ** | |
1.1000 [0] B | −4.0900 [4] **,B | 0.4772 [3]B | −3.5542 [1] **,B | 0.1981 [4] **,B | 0.1229 [3] **,B | |
−1.6745 [0] | −5.0144 [0] *** | −1.6505 [1] | −5.0422 [2] *** | 0.6769 [5] * | 0.3357 [2] *** | |
−2.7673 [1] B | −6.4505 [0] ***,B | −7.7743 [2] *** | −9.6635 [2] *** | 0.5303 [4] * | 0.4455 [4] ** | |
1.2661 [0] | −4.0687 [0] *** | 1.0085 [2] | −4.0844 [2] *** | 0.6768 [5] * | 0.2729 [2] *** | |
−1.9852 [0] | −5.4644 [0] *** | −2.0066 [1] | −5.4630 [1] *** | 0.7845 [4] | 0.32397 [7] *** |
Test Type | Break Period | t-Stat. |
---|---|---|
ZA (Constant) | 2000 | −5.3029 [3] ** |
ZA (Trend) | 2004 | −4.7090 [4] * |
ZA (Constant + Trend) | 2000 | −5.2820 [3] ** |
Perron (Constant) | 2000 | −4.9923 [3] * |
Perron (Trend) | 2003 | −3.6407 [3] |
Perron (Constant + Trend) | 2000 | −5.0214 [3] |
BP (Const) | 1995, 2002, 2013 | (CV = 11.14) |
BP (Trend) | 1991, 1999, 2008 | (CV = 11.14) |
BP (Const + Trend) | 1991, 1996, 2009, 2004, 2014 | (CV = 15.29) |
Appendix B
Variables | Case II | Case III | Case IV | Case V |
---|---|---|---|---|
−0.6475 *** (0.0573) | −0.6475 *** (0.0673) | −0.6498 *** (0.0604) | −0.6498 *** (0.0624) | |
0.8903 *** (0.0927) | 0.8903 *** (0.1017) | 0.7619 *** (0.0895) | 0.7619 *** (0.0925) | |
0.1080 (0.1022) | 0.1080 (0.1093) | 0.0379 (0.0987) | 0.0379 (0.1187) | |
0.3325 *** (0.0677) | 0.3325 *** (0.0704) | 0.2678 *** (0.0637) | 0.2678 *** (0.0679) | |
1.1086 *** (0.0894) | 1.1086 *** (0.1212) | 1.0501 *** (0.1066) | 1.0501 *** (0.1096) | |
−0.6021 *** (0.1344) | −0.6021 *** (0.1381) | −0.4131 *** (0.1294) | −0.4131 *** (0.1355) | |
0.4450 *** (0.1193) | 0.4450 *** (0.1635) | 0.5418 *** (0.1518) | 0.5418 *** (0.1624) | |
0.0159 *** (0.0034) | 0.0159 *** (0.0036) | 0.0195 *** (0.0034) | 0.0195 *** (0.0064) | |
−0.0084 ** (0.0031) | −0.0084 ** (0.0034) | −0.0029 (0.0032) | −0.0029 (0.0042) | |
−0.0093 ** (0.0036) | −0.0093 ** (0.0037) | −0.0127 *** (0.0035) | −0.0127 ** (0.0061) | |
0.0118 *** (0.0037) | 0.0118 *** (0.0041) | 0.0046 (0.0035) | 0.0046 (0.0042) | |
- | 1.4903 *** (0.1502) | 2.7416 *** (0.2504) | 2.7416 *** (0.259) | |
- | - | - | 0.0151 *** (0.0017) | |
R-Square | 0.944 | 0.944 | 0.954 | 0.954 |
Adj. R-Square | 0.917 | 0.912 | 0.927 | 0.923 |
S.E. of regress. | 0.004 | 0.005 | 0.004 | 0.004 |
Sum Sq. resid. | 0.000 | 0.000 | 0.000 | 0.000 |
Log likelihood | 130.465 | 130.465 | 133.415 | 133.415 |
F-stat. | 33.964 | 29.333 | 35.845 | 31.128 |
Mean dep. Var. | 0.054 | 0.054 | 0.054 | 0.054 |
S.D. dependent var. | 0.016 | 0.016 | 0.016 | 0.016 |
Akaike info. Cr. | −7.707 | −7.643 | −7.833 | −7.769 |
Schwarz Cr. | −7.199 | −7.088 | −7.278 | −7.167 |
Hannan–Quinn cr. | −7.542 | −7.462 | −7.652 | −7.573 |
Case II | Case III | Case IV | Case V | |
---|---|---|---|---|
−0.7066 *** (0.0495) | −0.7066 *** (0.056) | −0.7313 *** (0.0566) | −0.7313 *** (0.0603) | |
0.4908 *** (0.0706) | 0.4908 *** (0.0772) | 0.5411 *** (0.0754) | 0.5411 *** (0.0791) | |
0.0286 (0.0809) | 0.0286 (0.0871) | 0.0690 (0.0859) | 0.0690 (0.0904) | |
0.2439 *** (0.0606) | 0.2439 *** (0.0733) | 0.3054 *** (0.0707) | 0.3054 *** (0.0745) | |
1.0983 *** (0.0655) | 1.0983 *** (0.0851) | 1.1474 *** (0.0849) | 1.1474 *** (0.0899) | |
−0.3661 *** (0.1050) | −0.3661 *** (0.1134) | −0.4804 *** (0.1075) | −0.4804 *** (0.1128) | |
0.2518 ** (0.1118) | 0.2518 * (0.1188) | 0.1768 (0.1158) | 0.1768 (0.1215) | |
−0.1639 * (0.0827) | −0.1639 (0.1264) | −0.2443 * (0.1222) | −0.2443 * (0.1317) | |
0.0144 *** (0.0020) | 0.0144 *** (0.0026) | 0.0146 *** (0.0025) | 0.0146 *** (0.0028) | |
−0.0278 *** (0.0041) | −0.0278 *** (0.0047) | −0.0301 *** (0.0047) | −0.0301 *** (0.0049) | |
−0.0197 *** (0.0035) | −0.0197 *** (0.0039) | −0.0199 *** (0.0038) | −0.0199 *** (0.0044) | |
−0.0106 ** (0.0039) | −0.0106 ** (0.0041) | −0.0104 ** (0.0040) | −0.0104 ** (0.0045) | |
0.0129 *** (0.0028) | 0.0129 *** (0.0033) | 0.0121 *** (0.0032) | 0.0121 *** (0.0035) | |
0.0402 *** (0.0042) | 0.0402 *** (0.0044) | 0.0436 *** (0.0045) | 0.0436 *** (0.0047) | |
0.0275 *** (0.0038) | 0.0275 *** (0.0041) | 0.0286 *** (0.0040) | 0.0286 *** (0.0043) | |
0.0172 *** (0.0037) | 0.0172 *** (0.0039) | 0.0176 *** (0.0038) | 0.0176 *** (0.0041) | |
0.0067 *** (0.0017) | 0.0067 *** (0.002) | 0.0045 *** (0.0019) | 0.0045 *** (0.0032) | |
0.0077 ** (0.0035) | 0.0077 * (0.0044) | 0.0076 * (0.0043) | 0.0076 (0.0049) | |
0.0091 ** (0.0036) | 0.0091 ** (0.0040) | 0.0106 ** (0.0040) | 0.0106 ** (0.0043) | |
- | 1.8882 *** (0.1444) | 1.0578 *** (0.0773) | 1.0578 *** (0.0835) | |
- | - | - | −0.0111 *** (0.0010) | |
R-squared | 0.986 | 0.986 | 0.986 | 0.986 |
Adjusted R-squared | 0.965 | 0.961 | 0.963 | 0.959 |
S.E. of regression | 0.003 | 0.003 | 0.003 | 0.003 |
Sum squared resid. | 0.000 | 0.000 | 0.000 | 0.000 |
Log likelihood | 151.665 | 151.665 | 152.358 | 152.358 |
F-statistic | 46.404 | 40.298 | 42.167 | 36.417 |
Mean dep. Var. | 0.054 | 0.054 | 0.054 | 0.054 |
S.D. dependent var. | 0.016 | 0.016 | 0.016 | 0.016 |
Akaike info. Cr. | −8.559 | −8.495 | −8.539 | −8.475 |
Schwarz Cr. | −7.680 | −7.569 | −7.614 | −7.503 |
Hannan–Quinn cr. | −8.273 | −8.193 | −8.238 | −8.158 |
Case II | Case III | Case IV | Case V | |
---|---|---|---|---|
−0.7111 *** (0.0307) | −0.7111 *** (0.0331) | −0.8651 *** (0.0523) | −0.8651 *** (0.0560) | |
0.7427 *** (0.0508) | 0.7427 *** (0.0540) | 0.7675 *** (0.0467) | 0.7675 *** (0.0487) | |
0.1307 ** (0.0464) | 0.1307 ** (0.0478) | 0.1463 ** (0.0580) | 0.1463 ** (0.0611) | |
0.3523 *** (0.0363) | 0.3523 *** (0.0373) | 0.3240 *** (0.0371) | 0.3240 *** (0.0385) | |
0.3203 *** (0.0827) | 0.3203 *** (0.0932) | 0.2713 ** (0.1008) | 0.2713 ** (0.1061) | |
0.1753 (0.1048) | 0.1753 (0.108) | 0.1266 (0.0916) | 0.1266 (0.1020) | |
−0.3187 *** (0.0649) | −0.3187 *** (0.0733) | - | - | |
- | - | 0.0227 *** (0.0015) | 0.0227 *** (0.0017) | |
−0.0018 (0.0027) | −0.0018 (0.0028) | |||
−0.0061 ** (0.0025) | −0.0061 ** (0.0026) | |||
0.9093 *** (0.0910) | 0.9093 *** (0.0939) | 0.8304 *** (0.0960) | 0.8304 *** (0.1006) | |
−1.1255 *** (0.1165) | −1.1255 *** (0.1200) | −1.0858 *** (0.1186) | −1.0858 *** (0.1266) | |
- | - | −0.3410 *** (0.0997) | −0.3410 *** (0.1128) | |
0.0066 *** (0.0018) | 0.0066 *** (0.0021) | 0.0136 *** (0.0025) | 0.0136 *** (0.0027) | |
−0.0083 *** (0.0015) | −0.0083 *** (0.0016) | −0.0087 *** (0.0017) | −0.0087 *** (0.0026) | |
0.0196 *** (0.0015) | 0.0196 *** (0.0020) | 0.0117 *** (0.0018) | 0.0117 *** (0.0026) | |
- | 0.4603 *** (0.0205) | 1.5366 *** (0.0933) | 1.5366 *** (0.0994) | |
- | - | - | 0.0112 *** (0.0008) | |
R-squared | 0.987 | 0.987 | 0.989 | 0.989 |
Adjusted R-squared | 0.979 | 0.978 | 0.979 | 0.977 |
S.E. of regression | 0.002 | 0.002 | 0.002 | 0.002 |
Sum squared resid. | 0.000 | 0.000 | 0.000 | 0.000 |
Log likelihood | 152.439 | 152.439 | 156.156 | 156.156 |
F-statistic | 126.471 | 109.830 | 93.335 | 81.668 |
Mean dep. Var. | 0.054 | 0.054 | 0.054 | 0.054 |
S.D. dependent var. | 0.016 | 0.016 | 0.016 | 0.016 |
Akaike info. Cr. | −9.061 | −8.996 | −9.042 | −8.978 |
Schwarz Cr. | −8.505 | −8.395 | −8.302 | −8.191 |
Hannan–Quinn cr. | −8.880 | −8.800 | −8.801 | −8.721 |
Case II | Case III | Case IV | Case V | |
---|---|---|---|---|
−0.1824 *** (0.0161) | −0.1824 *** (0.0198) | −0.2835 *** (0.0251) | −0.2835 *** (0.0260) | |
0.4805 *** (0.0561) | 0.4805 *** (0.0597) | 0.3414 *** (0.062) | 0.3414 *** (0.0672) | |
1.1999 *** (0.0726) | 1.1999 *** (0.0943) | 1.1867 *** (0.0816) | 1.1867 *** (0.0884) | |
−0.6057 *** (0.0766) | −0.6057 *** (0.0973) | −0.3334 *** (0.0984) | −0.3334 *** (0.117) | |
- | - | 0.0268 *** (0.0027) | 0.0268 *** (0.003) | |
- | - | −0.0068 (0.0043) | −0.0068 (0.0045) | |
- | - | −0.0073 (0.0045) | −0.0073 (0.0046) | |
−0.0144 *** (0.0014) | −0.0144 *** (0.0014) | - | - | |
−0.0159 *** (0.0021) | −0.0144 *** (0.0014) | −0.0192 *** (0.0034) | −0.0192 *** (0.0046) | |
- | −0.0159 *** (0.0023) | 1.5152 *** (0.1321) | 1.5152 *** (0.1381) | |
- | - | - | 0.0055 *** (0.0005) | |
R-squared | 0.932 | 0.932 | 0.949 | 0.949 |
Adjusted R-squared | 0.919 | 0.916 | 0.931 | 0.928 |
S.E. of regression | 0.004 | 0.005 | 0.004 | 0.004 |
Sum squared resid. | 0.001 | 0.001 | 0.000 | 0.000 |
Log likelihood | 135.210 | 135.210 | 136.417 | 136.417 |
F-statistic | 73.739 | 59.173 | 53.075 | 45.126 |
Mean dep. Var. | 0.054 | 0.054 | 0.054 | 0.054 |
S.D. dependent var. | 0.016 | 0.016 | 0.015 | 0.015 |
Akaike info. Cr. | −7.831 | −7.770 | −7.964 | −7.901 |
Schwarz Cr. | −7.559 | −7.453 | −7.551 | −7.443 |
Hannan–Quinn cr. | −7.739 | −7.664 | −7.827 | −7.749 |
Case II | Case III | Case IV | Case V | |
---|---|---|---|---|
−0.6523 *** (0.0596) | −0.6523 *** (0.062) | −0.5717 *** (0.0561) | −0.5717 *** (0.0646) | |
0.9486 *** (0.0812) | 0.9486 *** (0.0868) | 1.0462 *** (0.0898) | 1.0462 *** (0.0955) | |
0.0880 (0.0776) | 0.0880 (0.0811) | 0.1146 (0.1178) | 0.1146 (0.1262) | |
0.4167 *** (0.0582) | 0.4167 *** (0.0607) | 0.5606 *** (0.0777) | 0.5606 *** (0.0817) | |
0.9993 *** (0.0778) | 0.9993 *** (0.1057) | 1.0100 *** (0.1084) | 1.0100 *** (0.1173) | |
−0.9686 *** (0.1207) | −0.9686 *** (0.1269) | −1.2862 *** (0.1411) | −1.2862 *** (0.1488) | |
0.7109 *** (0.1245) | 0.7109 *** (0.1368) | 0.6939 *** (0.1728) | 0.6939 *** (0.1813) | |
- | - | −0.2042 (0.1382) | −0.2042 (0.1511) | |
0.0120 *** (0.0021) | 0.0120 *** (0.0025) | 0.0128 *** (0.0026) | 0.0128 *** (0.0029) | |
0.0122 *** (0.0035) | 0.0122 *** (0.0046) | 0.0142 *** (0.0049) | 0.0142 *** (0.0053) | |
0.0095 *** (0.0036) | 0.0095 *** (0.0045) | 0.0101 *** (0.0050) | 0.0101 *** (0.0053) | |
- | - | 0.0060 *** (0.0044) | 0.0060 *** (0.005) | |
0.0028 (0.0073) | 0.0028 (0.0081) | −0.0017 (0.0087) | −0.0017 (0.0092) | |
0.0125 (0.0076) | 0.0125 (0.0081) | 0.0299 *** (0.0081) | 0.0299 *** (0.0089) | |
−0.0172 ** (0.0073) | −0.0172 ** (0.0079) | −0.0166 * (0.0083) | −0.0166 * (0.0089) | |
−0.0334 *** (0.0068) | −0.0334 *** (0.0075) | −0.0312 *** (0.0081) | −0.0312 *** (0.0088) | |
−0.0253 *** (0.0026) | −0.0253 *** (0.0029) | −0.0311 *** (0.0033) | −0.0311 *** (0.0038) | |
−0.0117 ** (0.0041) | −0.0117 ** (0.0046) | −0.0017 (0.0042) | −0.0017 (0.0045) | |
0.0188 *** (0.0034) | 0.0188 *** (0.0037) | 0.0243 *** (0.0041) | 0.0243 *** (0.0060) | |
- | 1.6289 *** (0.1544) | −0.2185 *** (0.0293) | −0.2185 *** (0.0314) | |
- | - | - | −0.0206 *** (0.0025) | |
R-squared | 0.977 | 0.977 | 0.981 | 0.981 |
Adjusted R-squared | 0.951 | 0.947 | 0.948 | 0.942 |
S.E. of regression | 0.003 | 0.004 | 0.004 | 0.004 |
Sum squared resid. | 0.000 | 0.000 | 0.000 | 0.000 |
Log likelihood | 144.149 | 144.149 | 146.951 | 146.951 |
F-statistic | 37.166 | 32.481 | 29.579 | 25.546 |
Mean dep. Var. | 0.054 | 0.054 | 0.054 | 0.054 |
S.D. dependent var. | 0.016 | 0.016 | 0.016 | 0.016 |
Akaike info. Cr. | −8.203 | −8.139 | −8.190 | −8.126 |
Schwarz Cr. | −7.417 | −7.306 | −7.265 | −7.154 |
Hannan–Quinn cr. | −7.947 | −7.867 | −7.889 | −7.809 |
Case II | Case III | Case IV | Case V | |
---|---|---|---|---|
−0.5629 *** (0.0498) | −0.5629 *** (0.0669) | −0.5765 *** (0.0561) | −0.5765 *** (0.0579) | |
0.7716 *** (0.0902) | 0.7716 *** (0.1005) | 0.6536 *** (0.0939) | 0.6536 *** (0.0965) | |
−0.1427 (0.0944) | −0.1427 (0.0970) | −0.1862 ** (0.0886) | −0.1862 * (0.0919) | |
0.2528 *** (0.0657) | 0.2528 *** (0.0681) | 0.1959 *** (0.0656) | 0.1959 *** (0.0676) | |
0.9713 *** (0.0858) | 0.9713 *** (0.1192) | 0.9340 *** (0.1055) | 0.9340 *** (0.1138) | |
−0.7578 *** (0.1357) | −0.7578 *** (0.1410) | −0.5795 *** (0.1280) | −0.5795 *** (0.1340) | |
0.4432 *** (0.1205) | 0.4432 *** (0.1431) | 0.4601 *** (0.1384) | 0.4601 *** (0.1472) | |
0.0264 *** (0.0168) | 0.0264 (0.0180) | 0.0263 (0.0171) | 0.0263 (0.0176) | |
0.0182 (0.0110) | 0.0182 (0.0130) | - | - | |
−0.0118 *** (0.0026) | −0.0118 *** (0.0027) | −0.0091 *** (0.0026) | −0.0091 *** (0.0040) | |
−0.0153 *** (0.0037) | −0.0153 *** (0.0039) | −0.0184 *** (0.0039) | −0.0184 *** (0.0044) | |
0.0101 *** (0.0034) | 0.0101 *** (0.0038) | 0.0056 *** (0.0034) | 0.0056 *** (0.0043) | |
- | 2.0300 *** (0.2342) | 3.3099 *** (0.3177) | 3.3099 *** (0.3278) | |
- | - | - | 0.0109 *** (0.0011) | |
R-squared | 0.951 | 0.951 | 0.952 | 0.952 |
Adjusted R-squared | 0.923 | 0.919 | 0.925 | 0.920 |
S.E. of regression | 0.004 | 0.004 | 0.004 | 0.004 |
Sum squared resid. | 0.000 | 0.000 | 0.000 | 0.000 |
Log likelihood | 132.486 | 132.486 | 132.812 | 132.812 |
F-statistic | 33.659 | 29.230 | 34.411 | 29.883 |
Mean dep. Var. | 0.054 | 0.054 | 0.054 | 0.054 |
S.D. dependent var. | 0.016 | 0.016 | 0.016 | 0.016 |
Akaike info. Cr. | −7.773 | −7.709 | −7.794 | −7.730 |
Schwarz Cr. | −7.218 | −7.107 | −7.239 | −7.128 |
Hannan–Quinn cr. | −7.592 | −7.513 | −7.613 | −7.534 |
Case II | Case III | Case IV | Case V | |
---|---|---|---|---|
−0.9713 *** (0.0308) | −0.9713 *** (0.0325) | −0.9593 *** (0.0345) | −0.9593 *** (0.0368) | |
0.5188 *** (0.0303) | 0.5188 *** (0.0323) | 0.5920 *** (0.0303) | 0.5920 *** (0.0333) | |
−0.3516 *** (0.0286) | −0.3516 *** (0.0311) | −0.3016 *** (0.0300) | −0.3016 *** (0.0321) | |
0.2455 *** (0.0175) | 0.2455 *** (0.0192) | 0.3167 *** (0.0252) | 0.3167 *** (0.0271) | |
0.9923 *** (0.0359) | 0.9923 *** (0.0435) | 0.9812 *** (0.0408) | 0.9812 *** (0.0438) | |
−0.8058 *** (0.0396) | −0.8058 *** (0.0438) | −1.0427 *** (0.0422) | −1.0427 *** (0.0448) | |
0.9862 *** (0.0459) | 0.9862 *** (0.0537) | 0.7902 *** (0.0478) | 0.7902 *** (0.0507) | |
- | - | −0.1438 *** (0.0439) | −0.1438 ** (0.0466) | |
0.0147 *** (0.0007) | 0.0147 *** (0.0009) | 0.0167 *** (0.0009) | 0.0167 *** (0.0010) | |
−0.0119 *** (0.0017) | −0.0119 *** (0.0019) | −0.0177 *** (0.0019) | −0.0177 *** (0.0021) | |
−0.0386 *** (0.0017) | −0.0386 *** (0.0018) | −0.0462 *** (0.0018) | −0.0462 *** (0.0020) | |
0.0055 *** (0.0022) | 0.0055 *** (0.0027) | - | - | |
−0.0039 *** (0.0013) | −0.0039 *** (0.0013) | −0.0040 *** (0.0012) | −0.0040 *** (0.0013) | |
0.0380 *** (0.0014) | 0.0380 *** (0.0015) | 0.0417 *** (0.0015) | 0.0417 *** (0.0016) | |
0.0148 *** (0.0013) | 0.0148 *** (0.0014) | 0.0176 *** (0.0017) | 0.0176 *** (0.0018) | |
−0.0226 *** (0.0016) | −0.0226 *** (0.002) | −0.0169 *** (0.0017) | −0.0169 *** (0.0023) | |
0.1069 *** (0.0042) | 0.1069 *** (0.005) | 0.1049 *** (0.0035) | 0.1049 *** (0.0045) | |
−0.0197 *** (0.0033) | −0.0197 *** (0.0041) | −0.0119 *** (0.0029) | −0.0119 *** (0.0032) | |
0.0200 *** (0.0011) | 0.0200 *** (0.0012) | 0.0156 *** (0.0011) | 0.0156 *** (0.0014) | |
−0.0147 *** (0.0014) | −0.0147 *** (0.0015) | −0.0184 *** (0.0013) | −0.0184 *** (0.0014) | |
−0.0161 *** (0.0015) | −0.0161 *** (0.0017) | −0.0125 *** (0.0015) | −0.0125 *** (0.0019) | |
0.0077 *** (0.0013) | 0.0077 *** (0.0014) | 0.0097 *** (0.0015) | 0.0097 *** (0.0017) | |
- | 1.3683 *** (0.0463) | −0.6573 *** (0.0255) | −0.6573 *** (0.0270) | |
- | - | - | −0.0216 *** (0.0009) | |
R-squared | 0.998 | 0.998 | 0.999 | 0.999 |
Adjusted R-squared | 0.995 | 0.995 | 0.995 | 0.995 |
S.E. of regression | 0.001 | 0.001 | 0.001 | 0.001 |
Sum squared resid. | 0.000 | 0.000 | 0.000 | 0.000 |
Log likelihood | 185.681 | 185.681 | 187.664 | 187.664 |
F-statistic | 316.401 | 271.201 | 308.259 | 261.553 |
Mean dep. Var. | 0.054 | 0.054 | 0.054 | 0.054 |
S.D. dependent var. | 0.016 | 0.016 | 0.016 | 0.016 |
Akaike info. Cr. | −10.625 | −10.560 | −10.688 | −10.623 |
Schwarz Cr. | −9.653 | −9.542 | −9.670 | −9.560 |
Hannan–Quinn cr. | −10.308 | −10.228 | −10.356 | −10.277 |
Case II | Case III | Case IV | Case V | |
---|---|---|---|---|
−0.7002 *** (0.1285) | −0.7002 *** (0.1334) | −0.8134 *** (0.1364) | −0.8134 *** (0.1429) | |
0.9820 *** (0.1352) | 0.9820 *** (0.1406) | 1.0826 *** (0.1309) | 1.0826 *** (0.1445) | |
−0.3778 *** (0.1369) | −0.3778 *** (0.1425) | −0.4156 *** (0.1309) | −0.4156 *** (0.1386) | |
1.1080 *** (0.0847) | 1.1080 *** (0.0899) | 0.9924 *** (0.0829) | 0.9924 *** (0.0914) | |
−0.8080 *** (0.1863) | −0.8080 *** (0.1946) | −0.7886 *** (0.1786) | −0.7886 *** (0.1864) | |
1.0028 *** (0.2185) | 1.0028 *** (0.2286) | 1.1039 *** (0.2153) | 1.1039 *** (0.2335) | |
0.2359 * (0.1178) | 0.2359 * (0.1281) | 0.2816 ** (0.1203) | 0.2816 ** (0.1249) | |
0.0146 *** (0.0030) | 0.0146 *** (0.0033) | 0.0115 *** (0.0032) | 0.0115 *** (0.0034) | |
−0.0065 (0.0066) | −0.0065 (0.0070) | −0.0069 (0.0064) | −0.0069 (0.0067) | |
−0.0142 ** (0.0052) | −0.0142 ** (0.0056) | −0.0183 ** (0.0052) | −0.0183 ** (0.0055) | |
0.0117 ** (0.0047) | 0.0117 ** (0.0050) | 0.0093 * (0.0046) | 0.0093 (0.0056) | |
0.0742 *** (0.0146) | 0.0742 *** (0.0151) | 0.0911 *** (0.0156) | 0.0911 *** (0.0170) | |
0.0042 (0.0096) | 0.0042 (0.0100) | −0.0031 (0.0078) | −0.0031 (0.0082) | |
0.0294 *** (0.0085) | 0.0294 *** (0.0088) | 0.0269 *** (0.0079) | 0.0269 *** (0.0087) | |
0.0126 *** (0.0042) | 0.0126 ** (0.0051) | 0.0063 (0.0047) | 0.0063 (0.0050) | |
0.0082 (0.0049) | 0.0082 (0.0053) | −0.0006 (0.0043) | −0.0006 (0.0049) | |
- | 1.9457 *** (0.3716) | 3.5394 *** (0.5945) | 3.5394 *** (0.6214) | |
- | - | - | 0.0184 *** (0.0033) | |
R-squared | 0.969 | 0.969 | 0.974 | 0.974 |
Adjusted R-squared | 0.938 | 0.933 | 0.944 | 0.940 |
S.E. of regression | 0.004 | 0.004 | 0.004 | 0.004 |
Sum squared resid. | 0.000 | 0.000 | 0.000 | 0.000 |
Log likelihood | 139.429 | 139.429 | 142.151 | 142.151 |
F-statistic | 31.062 | 27.179 | 32.566 | 28.461 |
Mean dep. Var. | 0.054 | 0.054 | 0.054 | 0.054 |
S.D. dependent var. | 0.016 | 0.016 | 0.016 | 0.016 |
Akaike info. Cr. | −7.963 | −7.899 | −8.074 | −8.010 |
Schwarz Cr. | −7.223 | −7.112 | −7.288 | −7.177 |
Hannan–Quinn cr. | −7.722 | −7.642 | −7.818 | −7.738 |
Appendix C. Diagnostic Tests
Serial Correlation (Breusch–Godfrey LM test) | F(2,15) = 3.133 {0.073} * | F(2,15) = 3.133 {0.073} * | F(2,14) = 1.2315 {0.3216} | F(2,14) = 1.2315 {0.3216} |
Functional Form (Ramsey RESET Test) | F(1,16) = 1.020 {0.3275} | F(1,16) =1.020 {0.3275} | F(1,15) = 0.0008 {0.9776} | F(1,15) = 0.0008 {0.9775} |
Normality (Jarque–Bera) | JB = 0.903 {0.637} | JB = 0.903 {0.637} | JB = 0.344 {0.842} | JB = 0.344 {0.842} |
Heteroscedasticity (Breusch–Pagan–Godfrey) | F(13,17) = 0.5310 {0.8741} | F(13,17) = 0.5310 {0.8741} | F(14,16) = 6637 {0.7768} | F(14,16) = 0.6637 {0.7768} |
CUSUM | ||||
CUSUMSQ |
Serial Correlation (Breusch–Godfrey LM test) | F(2,6) = 0.1620 {0.8540} | F(2,6) = 0.1620 {0.8540} | F(2,5) = 0.9891 {0.4346} | F(2,5) = 0.9891 {0.4346} |
Functional Form (Ramsey RESET Test) | F(1,16) = 1.020 {0.3275} | F(1,16) = 1.020 {0.3275} | F(1,6) = 1.7182 {0.2379} | F(1,6) = 1.7182 {0.2379} |
Normality (Jarque–Bera) | JB = 0.903 {0.637} | JB = 0.903 {0.637} | JB = 1.2933 {0.524} | JB = 1.2933 {0.524} |
Heteroscedasticity (Breusch–Pagan–Godfrey) | F(22,8) = 0.7440 {0.7256} | F(22,8) = 0.7440 {0.7256} | F(23,7) = 0.8173 {0.6698} | F(23,7) = 0.8173 {0.6698} |
CUSUM | ||||
CUSUMSQ |
Serial Correlation (Breusch–Godfrey LM test) | F(2,13) = 5.3628 {0.0200} ** | F(2,13) = 5.3628 {0.0200} ** | F(2,9) = 2.6504 {0.1244} | F(2,9) = 2.6504 {0.1244} |
Functional Form (Ramsey RESET Test) | F(1,14) = 0.2306 {0.6385} | F(1,14) = 0.2306 {0.6385} | F(1,10) = 0.2721 {0.6133} | F(1,10) = 0.2721 {0.6133} |
Normality (Jarque–Bera) | JB = 0.5763 {0.7496} | JB = 0.5763 {0.7496} | JB = 3.0696 {0.2155} | JB = 3.0696 {0.2155} |
Heteroscedasticity (Breusch–Pagan–Godfrey) | F(15,15) = 1.3370 {0.2904} | F(15,15) = 1.3370 {0.2904} | F(19,11) = 0.9820 {0.5325} | F(19,11) = 0.9820 {0.5325} |
CUSUM | ||||
CUSUMQ |
Serial Correlation (Breusch–Godfrey LM test) | F(2,21) = 2.4370 {0.1117} | F(2,21) = 2.4370 {0.1117} | F(2,17) = 2.3869 {0.1220} | F(2,17) = 2.3869 {0.1220} |
Functional Form (Ramsey RESET Test) | F(1,14) = 0.2306 {0.6385} | F(1,14) = 0.2306 {0.6385} | F(1,18) = 2.1364 {0.1611} | F(1,18) = 2.1364 {0.1611} |
Normality (Jarque–Bera) | JB = 0.5763 {0.7496} | JB = 0.5763 {0.7496} | JB = 1.1944 {0.5503} | JB = 1.1944 {0.5503} |
Heteroscedasticity (Breusch–Pagan–Godfrey) | F(9,23) = 0.2092 {0.9902} | F(9,23) = 0.2092 {0.9902} | F(12,19) = 0.5796 {0.8323} | F(12,19) = 0.5796 {0.8323} |
CUSUM | ||||
CSUMSQ |
Serial Correlation (Breusch–Godfrey LM test) | F(2,8) = 0.0547 {0.9471} | F(2,8) = 0.0547 {0.9471} | F(2,5) = 0.8470 {0.4822} | F(2,5) = 0.8470 {0.4822} |
Functional Form (Ramsey RESET Test) | F(1,14) = 0.2306 {0.6385} | F(1,14) = 0.2306 {0.6385} | F(1,6) = 0.1228 {0.7380} | F(1,6) = 0.1228 {0.7380} |
Normality (Jarque–Bera) | JB = 5.7741 {0.056} * | JB = 5.7741 {0.056} * | JB = 5.9060 {0.0522} * | JB = 5.9060 {0.0522} * |
Heteroscedasticity (Breusch–Pagan–Godfrey) | F(20,10) = 0.6609 {0.7937} | F(20,10) = 0.6609 {0.7937} | F(23,7) = 0.8399 {0.6533} | F(23,7) = 0.8399 {0.6533} |
CUSUM | ||||
CUSUMSQ |
Serial Correlation (Breusch–Godfrey LM test) | F(2,13) = 4.0524 {0.0429} ** | F(2,13) = 4.0524 {0.0429} ** | F(2,13) = 2.2649 {0.1432} | F(2,13) = 2.2649 {0.1432} |
Functional Form (Ramsey RESET Test) | F(1,14) = 0.0026 {0.9597} | F(1,14) = 0.0026 {0.9597} | F(1,14) = 1.8326 {0.1973} | F(1,14) = 1.8326 {0.1973} |
Normality (Jarque–Bera) | JB = 2.0897 {0.3518} | JB = 2.0897 {0.3518} | JB = 1.6056 {0.4481} | JB = 1.6056 {0.4481} |
Heteroscedasticity (Breusch–Pagan–Godfrey) | F(15,15) = 0.5986 {0.8345} | F(15,15) = 0.5986 {0.8345} | F(15,15) = 0.7119 {0.7407} | F(15,15) = 0.7119 {0.7407} |
CUSUM | ||||
CSUMSQ |
Serial Correlation (Breusch–Godfrey LM test) | F(2,4) = 13.3742 {0.0169} ** | F(2,4) = 13.3742 {0.0169} ** | F(2,3) = 10.4321 {0.0446} ** | F(2,3) = 10.4321 {0.0446} ** |
Functional Form (Ramsey RESET Test) | F(1,5) = 0.7317 {0.4301} | F(1,5) = 0.7317 {0.4301} | F(1,4) = 2.0888 {0.2219} | F(1,4) = 2.0888 {0.2219} |
Normality (Jarque–Bera) | JB = 0.8808 {0.6438} | JB = 0.8808 {0.6438} | JB = 1.6056 {0.4481} | JB = 1.6056 {0.4481} |
Heteroscedasticity (Breusch–Pagan–Godfrey) | F(24,6) = 0.4058 {0.9467} | F(24,6) = 0.4058 {0.9467} | F(25,5) = 1.9958 {0.2275} | F(25,5) = 1.9958 {0.2275} |
CUSUM | ||||
CSUMSQ |
Serial Correlation (Breusch–Godfrey LM test) | F(2,9) = 1.8241 {0.2162} | F(2,9) = 1.8241 {0.2162} | F(2,3) = 10.4321 {0.0446} | F(2,3) = 10.4321 {0.0446} |
Functional Form (Ramsey RESET Test) | F(1,10) = 2.4439 {0.1490} | F(1,10) = 2.4439 {0.1490} | F(1,4) = 2.0888 {0.2219} | F(1,4) = 2.0888 {0.2219} |
Normality (Jarque–Bera) | JB = 2.3595 {0.3073} | JB = 2.3595 {0.3073} | JB = 1.6056 {0.4481} | JB = 1.6056 {0.4481} |
Heteroscedasticity (Breusch–Pagan–Godfrey) | F(19,11) = 0.5264 {0.8943} | F(19,11) = 0.5264 {0.8943} | F(25,5) = 1.9958 {0.2275} | F(25,5) = 1.9958 {0.2275} |
CUSUM | ||||
CSUMSQ |
1 | https://sdgs.un.org/goals/goal8 (accessed on 11 October 2023). |
2 | https://sustainabledevelopment.un.org/topics/sustainabletourism (accessed on 11 October 2023). |
3 | https://davegiles.blogspot.com/2011/04/testing-for-granger-causality.html (accessed on 11 October 2023). |
4 | Please note that the extrapolated number of visitor arrivals is not too far from what was noted by Sadi and Henderson (2001) where they noted the visitor arrival from a local newspaper (The Saigon Times) for 1988, 1994, and 1996 as 92,500, 1,018,000, and above 1.5 million. Based on the available data from the New York Times, and a growth rate of 0.55107, our estimates for 1988 and 1994 are 60,212 and 1,162,519, respectively. |
5 | https://tapchitaichinh.vn/tac-dong-cua-dau-tu-truc-tiep-nuoc-ngoai-doi-voi-tang-truong-kinh-te-o-viet-nam-1074329.html (accessed on 11 October 2023). |
6 | The temporary stay duration increases to 45 days for citizens of 13 countries entering Vietnam (https://vietnam.travel/plan-your-trip/visa-requirements#:~:text=to%2045%20days.-,Vietnam%20visa%20exemption,%2C%20Thailand%2C%20Chile%2C%20Panama (accessed on 11 October 2023)). |
References
- Acheampong, A. (2018). Economic growth, CO2 emissions and energy consumption: What causes what and where? Energy Economics, 74, 677–692. [Google Scholar] [CrossRef]
- Adamou, A., & Clerides, S. (2010). Prospects and limits of tourism led growth: The international evidence. Review of Economic Analysis, 3, 287–303. [Google Scholar] [CrossRef]
- Adedoyin, F. F., Erum, N., & Bekun, F. V. (2022). How does institutional quality moderates the impact of tourism on economic growth? Startling evidence from high earners and tourism-dependent economies. Tourism Economics, 28(5), 1311–1332. [Google Scholar] [CrossRef]
- Ahmad, N., Menegaki, A. N., & Al-Muharrami, S. (2020). Systematic literature review of tourism growth nexus: An overview of the literature and a content analysis of 100 most influential papers. Journal of Economic Surveys, 34(5), 1068–1110. [Google Scholar] [CrossRef]
- Ahmed, K., Mahalik, M. K., & Shahbaz, M. (2016). Dynamics between economic growth, labor, capital and natural resource abundance in Iran: An application of the combined cointegration approach. Resources Policy, 49, 213–221. [Google Scholar] [CrossRef]
- Alcalá-Ordóñez, A., & Segarra, V. (2023). Tourism and economic development: A literature review to highlight main empirical findings. Tourism Economics. [Google Scholar] [CrossRef]
- Alcalá-Ordóñez, A., Brida, J. G., & Cárdenas-García, P. J. (2024). Has the tourism-led growth hypothesis been confirmed? Evidence from an updated literature review. Current Issues in Tourism, 27(22), 3571–3607. [Google Scholar] [CrossRef]
- Anwar, S., & Nguyen, L. P. (2011). Financial development and economic growth in Vietnam. Journal of Economics and Finance, 35, 348–360. [Google Scholar] [CrossRef]
- Bagehot, W. (1873). Lombard street: A description of the money market (1962th ed.). Richard D. Irwin. [Google Scholar]
- Bai, J., & Perron, P. (1998). Estimating and testing linear models with multiple structural changes. Econometrica, 66(1), 47. [Google Scholar] [CrossRef]
- Bai, J., & Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18(1), 1–22. [Google Scholar] [CrossRef]
- Balaguer, J., & Cantavella-Jordá, M. (2002). Tourism as a long-run economic growth factor: The Spanish case. Applied Economics, 34, 877–884. [Google Scholar] [CrossRef]
- Baumol, W. J., & Oates, W. E. (1988). The theory of environmental policy. Cambridge University Press. [Google Scholar]
- Bella, G. (2018). Estimating the tourism induced environmental Kuznets curve in France. Journal of Sustainable Tourism, 26(12), 2043–2052. [Google Scholar] [CrossRef]
- Bertinelli, L., & Black, D. (2004). Urbanization and growth. Journal of Urban Economics, 56(1), 80–96. [Google Scholar] [CrossRef]
- Black, D., & Henderson, V. (1999). A theory of urban growth. Journal of Political Economy, 107(2), 252–284. [Google Scholar] [CrossRef]
- Bosworth, B., & Collins, S. M. (2008). Accounting for growth: Comparing China and India. Journal of Economic Perspectives, 22(1), 45–66. [Google Scholar] [CrossRef]
- Bovenberg, A. L., & Smulders, S. A. (1996). Transitional impacts of environmental policy in an endogenous growth model. International Economic Review, 37, 861–893. [Google Scholar] [CrossRef]
- Brida, J. G. (2008). The dynamic regime concept in Economics. International Journal of Economic Research, 5(1), 55–76. [Google Scholar]
- Brida, J. G., Cortes-Jimenez, I., & Pulina, M. (2016a). Has the tourism-led growth hypothesis been validated? A literature review. Current Issues in Tourism, 19(5), 394–430. [Google Scholar] [CrossRef]
- Brida, J. G., Gómez, D. M., & Segarra, V. (2020). On the empirical relationship between tourism and economic growth. Tourism Management, 81, 104131. [Google Scholar] [CrossRef]
- Brida, J. G., Lanzilotta, B., & Pizzolon, F. (2016b). Dynamic relationship between tourism and economic growth in MERCOSUR countries: A nonlinear approach based on asymmetric time series models. Economics Bulletin, 36(2), 879–894. [Google Scholar]
- Brida, J. G., Lanzilotta, B., Pereyra, J. S., & Pizzolon, F. (2015). A nonlinear approach to the tourism-led growth hypothesis: The case of the MERCOSUR. Current Issues in Tourism, 18(7), 647–666. [Google Scholar] [CrossRef]
- Brunt, L., & Garcia-Penalosa, C. (2022). Urbanisation and the onset of modern economic growth. Economic Journal, 132, 512–545. [Google Scholar] [CrossRef]
- Bui, T. N. (2019). The role of financial development in the Vietnam economy. WSEAS Transactions on Business and Economics, 16, 471–476. [Google Scholar]
- Castro-Nuño, M., Molina-Toucedo, J. A., & Pablo-Romero, M. P. (2013). Tourism and GDP: A meta-analysis of panel data studies. Journal of Travel Research, 52(6), 745–758. [Google Scholar] [CrossRef]
- Chambers, D., & Guo, J.-T. (2009). Natural resources and economic growth: Theory and evidence. Annals of Economics and Finance, 10(2), 367–389. [Google Scholar]
- Chen, M., Zhang, H., Liu, W., & Zhang, W. (2014). The global pattern of urbanization and economic growth: Evidence from the last three decades. PLoS ONE, 9(8), e103799. [Google Scholar] [CrossRef]
- Chiang, G. N., Sung, W. Y., & Lei, W. G. (2017). Regime-switching effect of tourism specialization on economic growth in Asia Pacific countries. Economies, 5(3), 23. [Google Scholar] [CrossRef]
- Chingarande, A., & Saayman, A. (2018). Critical success factors for tourism-led growth. International Journal of Tourism Research, 20(6), 800–818. [Google Scholar] [CrossRef]
- Chiu, Y. B., & Yeh, L. T. (2017). The threshold effects of the tourism-led growth hypothesis: Evidence from a cross-sectional model. Journal of Travel Research, 56(5), 625–637. [Google Scholar] [CrossRef]
- Collins, S. M., Bosworth, B. P., & Rodrik, D. (1996). Economic growth in East Asia: Accumulation versus assimilation. Brookings Papers on Economic Activity, 1996(2), 135–203. [Google Scholar] [CrossRef]
- Comerio, N., & Strozzi, F. (2019). Tourism and its economic impact: A literature review using bibliometric tools. Tourism Economics, 25(1), 109–131. [Google Scholar] [CrossRef]
- Cristelli, M., Tacchella, A., & Pietronero, L. (2015). The heterogeneous dynamics of economic complexity. PLoS ONE, 10(2), e0117174. [Google Scholar] [CrossRef]
- Cropper, M. L., & Oates, W. E. (1992). Environmental economics: A survey. Journal of Economic Literature, 30(2), 675–740. [Google Scholar]
- De Vita, G., & Kyaw, K. S. (2017). Tourism specialization, absorptive capacity, and economic growth. Journal of Travel Research, 56(4), 423–435. [Google Scholar] [CrossRef]
- Dewan, S., & Kraemer, K. L. (2000). Information technology and productivity: Evidence from country-level data. Management Science, 46(4), 548–562. [Google Scholar] [CrossRef]
- Dimitraki, O., & Win, S. (2021). Military expenditure economic growth nexus in Jordan: An application of ARDL Bound test analysis in the presence of breaks. Defence and Peace Economics, 32(7), 864–881. [Google Scholar] [CrossRef]
- El Menyari, Y. (2021). Effect of tourism FDI and international tourism to the economic growth in Morocco: Evidence from ARDL bound testing approach. Journal of Policy Research in Tourism, Leisure and Events, 13(2), 222–242. [Google Scholar] [CrossRef]
- Emako, E., Nuru, S., & Menza, M. (2022). The effect of foreign direct investment on economic growth in developing countries. Transnational Corporations Review, 14(4), 382–401. [Google Scholar] [CrossRef]
- Eyuboglu, S., & Eyuboglu, K. (2019). Tourism development and economic growth: An asymmetric panel causality test. Current Issues in Tourism, 23(6), 659–665. [Google Scholar] [CrossRef]
- Fahimi, A., Saint Akadiri, S., Seraj, M., & Akadiri, A. C. (2018). Testing the role of tourism and human capital development in economic growth. A panel causality study of micro states. Tourism Management Perspectives, 28, 62–70. [Google Scholar] [CrossRef]
- Fan, P., Ouyang, Z., Nguyen, D. D., Nguyen, T. T. H., Park, H., & Chen, J. (2019). Urbanization, economic development, environmental and social changes in transitional economies: Vietnam after Doimoi. Landscape and Urban Planning, 187, 145–155. [Google Scholar] [CrossRef]
- Fonseca, N., & Sánchez-Rivero, M. (2019a). Granger causality between tourism and income: A meta-regression analysis. Journal of Travel Research, 59(4), 642–660. [Google Scholar] [CrossRef]
- Fonseca, N., & Sánchez-Rivero, M. (2019b). Significance bias in the tourism-led growth literature. Tourism Economic, 26(1), 137–154. [Google Scholar] [CrossRef]
- Friedmann, J. (2006). Four theses in the study of China’s urbanization. International Journal of Urban and Regional Research, 30(2), 440–451. [Google Scholar] [CrossRef]
- Garbacz, C., & Thompson, H. G., Jr. (2007). Demand for telecommunication services in developing countries. Telecommunications Policy, 31(5), 276–289. [Google Scholar] [CrossRef]
- Gül, H., & Özer, M. (2018). Frequency domain causality analysis of tourism and economic activity in Turkey. European Journal of Tourism Research, 19, 86–97. [Google Scholar] [CrossRef]
- Ha, N. M., Le, N. D., & Trung-Kien, P. (2019). The impact of urbanization on income inequality: A study in Vietnam. Journal of Risk and Financial Management, 12(3), 146. [Google Scholar] [CrossRef]
- Haini, H., Loon, P. W., Yong, S. K., & Husseini, S. (2023). Does social globalization affect the relationship between international tourism and economic growth? Journal of Travel Research, 63(1), 252–269. [Google Scholar] [CrossRef]
- Hansen, B. (2001). The new econometrics of structural change: Dating breaks in US labour productivity. Journal of Economic Perspectives, 15(4), 117–128. [Google Scholar] [CrossRef]
- Hardy, A. (1980). The role of the telephone in economic development. Telecommunications Policy, 4(4), 278–286. [Google Scholar] [CrossRef]
- Helpman, E., & Trajtenberg, M. (1994). A time to and a time to reap: Growth based on general purpose technologies (NBER Working paper no 4854). NBER. [Google Scholar]
- Ho, Chi, Pham, N., & Nguyen, K. (2021). Economic growth, financial development, and trade openness of leading countries in ASEAN. The Journal of Asian Finance, Economics and Business, 8(3), 191–199. [Google Scholar]
- Hoang, H. T. T., Vanacker, V., Van Rompaey, A., Vu, K. C., & Nguyen, A. T. (2014). Changing human–landscape interactions after development of tourism in the northern Vietnamese Highlands. Anthropocene, 5, 42–51. [Google Scholar] [CrossRef]
- Hoang, T. C., Black, M. C., Knuteson, S. L., & Roberts, A. P. (2019). Environmental pollution, management, and sustainable development: Strategies for Vietnam and other developing countries. Environmental Management, 63, 433–436. [Google Scholar] [CrossRef] [PubMed]
- Hoang, T. T. P. (2023). The role of foreign direct investment in boosting tourism development: A study of Vietnam for 1990–2020 interval. In A. T. Nguyen, T. T. Pham, J. Song, Y.-L. Lin, & M. C. Dong (Eds.), Contemporary economic issues in Asian countries proceeding of CEIAC 2022 (Volume 1, pp. 59–72). Springer. [Google Scholar] [CrossRef]
- Hong, N. N., & Cong, B. T. (2024). Exploring the nexus between dimensions of spatial structure and foreign direct investment: A case study of Vietnam. Habitat International, 149, 103114. [Google Scholar] [CrossRef]
- Iamsiraroj, S., & Ulubaşoğlu, M. A. (2015). Foreign direct investment and economic growth: A real relationship or wishful thinking? Economic Modelling, 51, 200–213. [Google Scholar] [CrossRef]
- Irfan, M., Ullah, S., Razzaq, A., Cai, J., & Adebayo, T. S. (2023). Unleashing the dynamic impact of tourism industry on energy consumption, economic output, and environmental quality in China: A way forward towards environmental sustainability. Journal of Cleaner Production, 387, 135778. [Google Scholar] [CrossRef]
- Jansen-Verbeke, M., & Go, F. (1995). Tourism development in Vietnam. Tourism Management, 16(4), 315–321. [Google Scholar] [CrossRef]
- Kalaitzidakis, P., Mamuneas, T. P., & Stengos, T. (2018). Greenhouse emissions and productivity growth. Journal of Risk and Financial Management, 11(3), 38. [Google Scholar] [CrossRef]
- Kalnins, A., & Hill, K. P. (2025). The VIF score. What is it good for? Absolutely nothing. Organizational Research Methods, 28(1), 58–75. [Google Scholar] [CrossRef]
- Karaman Aksentijević, N., Ježić, Z., & Zaninović, P. A. (2021). The effects of information and communication technology (ICT) use on human development—A macroeconomic approach. Economies, 9(3), 128. [Google Scholar] [CrossRef]
- Karimi, M. S. (2018). The linkage between tourism development and economic growth in Malaysia: A nonlinear approach. International Economic Journal, 32(1), 53–65. [Google Scholar] [CrossRef]
- Kenny, C. (2003). The Internet and economic growth in less-developed countries: A case of managing expectations? Oxford Development Studies, 31(1), 99–113. [Google Scholar] [CrossRef]
- Kumar, R. R. (2014). Exploring the role of technology, tourism and financial development: An empirical study of Vietnam. Quality & Quantity, 48(5), 2881–2898. [Google Scholar]
- Kumar, R. R., & Kumar, R. (2013). Exploring the developments in urbanisation, aid dependency, sectoral shifts and services sector expansion in Fiji: A modern growth perspective. Global Business and Economics Review, 159(4), 371–395. [Google Scholar] [CrossRef]
- Kumar, R. R., & Stauvermann, P. J. (2014). Exploring the effects of remittances on Lithuanian economic growth. Engineering Economics, 25(3), 250–260. [Google Scholar] [CrossRef]
- Kumar, R. R., & Stauvermann, P. J. (2016). The linear and non-linear relationship between of tourism demand and output per worker: A study of Sri Lanka. Tourism Management Perspectives, 19, 109–120. [Google Scholar] [CrossRef]
- Kumar, R. R., & Stauvermann, P. J. (2019). The Effects of a Revenue-Neutral Child Subsidy Tax Mechanism on Growth and GHG Emissions. Sustainability, 11(9), 2585. [Google Scholar] [CrossRef]
- Kumar, R. R., & Stauvermann, P. J. (2023). Tourism and economic growth in the Pacific region: Evidence from five small island economies. Journal of the Asia Pacific Economy, 28(3), 894–921. [Google Scholar] [CrossRef]
- Kumar, R. R., & Vu, H. T. T. (2014). Exploring the nexus between ICT, remittances and economic growth: A study of Vietnam. Journal of Southeast Asian Economies, 31(1), 104–120. [Google Scholar] [CrossRef]
- Le, B., Ngo, T. T. T., Nguyen, N. T., & Nguyen, D. T. (2021). The relationship between foreign direct investment and local economic growth: A case study of Binh Dinh Province, Vietnam. The Journal of Asian Finance, Economics and Business, 8(4), 33–42. [Google Scholar]
- Le, T. T. H., Nguyen, V. C., & Phan, T. H. N. (2022). Foreign direct investment, environmental pollution and economic growth—An insight from non-linear ARDL Co-integration approach. Sustainability, 14(13), 8146. [Google Scholar] [CrossRef]
- Li, K. X., Jin, M., & Shi, W. (2018). Tourism as an important impetus to promoting economic growth: A critical review. Tourism Management Perspectives, 26, 135–142. [Google Scholar] [CrossRef]
- Liu, F., Chen, H., & Zhang, S. (2023). Nexus among corruption, political instability and natural resources on economic recovery in Vietnam. Resources Policy, 85, 103743. [Google Scholar] [CrossRef]
- Liu, X., Shu, C., & Sinclair, P. (2009). Trade, foreign direct investment and economic growth in Asian economies. Applied Economics, 41(13), 1603–1612. [Google Scholar] [CrossRef]
- Liu, Z. (2003). Sustainable tourism development: A critique. Journal of Sustainable Tourism, 11(6), 459–475. [Google Scholar] [CrossRef]
- Madden, G., & Savage, S. J. (1998). CEE telecommunications investment and economic growth. Information Economics and Policy, 10(2), 173–195. [Google Scholar] [CrossRef]
- McDowell, E. (1994). Big-time tourism courts Vietnam. The New York Times. Available online: https://www.nytimes.com/1994/05/26/business/big-time-tourism-courts-vietnam.html (accessed on 11 October 2023).
- Minh, T. B., & Van, H. B. (2023). Evaluating the relationship between renewable energy consumption and economic growth in Vietnam, 1995–2019. Energy Reports, 9, 609–617. [Google Scholar] [CrossRef]
- Minh, T. B., Ngoc, T. N., & Van, H. B. (2023). Relationship between carbon emissions, economic growth, renewable energy consumption, foreign direct investment, and urban population in Vietnam. Heliyon, 9(6), e17544. [Google Scholar] [CrossRef] [PubMed]
- Muslija, A., Satrovic, E., & Erbaş, C. Ü. (2017). Panel analysis of tourism-economic growth nexus. Uluslararası Ekonomik Araştırmalar Dergisi, 3(4), 535–545. [Google Scholar]
- Neto, F. (2003). A new approach to sustainable tourism development: Moving beyond environmental protection. Natural Resources Forum, 27(3), 212–222. [Google Scholar] [CrossRef]
- Nguyen, A., Lu, S., & Nguyen, P. T. T. (2021). Validating and forecasting carbon emissions in the framework of the environmental Kuznets curve: The case of Vietnam. Energies, 14(11), 3144. [Google Scholar] [CrossRef]
- Nguyen, C.-V. (2024). Air transport resilience, tourism and its impact on economic growth. Economies, 12(9), 236. [Google Scholar] [CrossRef]
- Nguyen, D. V. A. (2023). Impacts of information and communication technologies infrastructure development on economic growth: An empirical study of Southeast Asian countries. Science & Technology Development Journal: Economics-Law & Management, 7(2), 4331–4340. [Google Scholar]
- Nguyen, L. P., & Pham, V. H. T. (2020). Trade of ICT products, government, and economic growth: Evidence from East Asia-Pacific region. The Journal of Asian Finance, Economics and Business, 7(8), 175–183. [Google Scholar] [CrossRef]
- Nguyen, L. T. H. (2022). Impacts of foreign direct investment on economic growth in Vietnam. Journal of Economic and Banking Studies, 4, 1–15. [Google Scholar] [CrossRef]
- Nguyen, M.-L. T., & Bui, T. N. (2021). Trade openness and economic growth: A study on Asean-6. Economies, 9(3), 113. [Google Scholar] [CrossRef]
- Nili, M., & Rastad, M. (2007). Addressing the growth failure of the oil economies: The role of financial development. The Quarterly Review of Economics and Finance, 46(5), 726–740. [Google Scholar] [CrossRef]
- Nunkoo, R., Seetanah, B., Jaffur, Z. R. K., Moraghen, P. G. W., & Sannassee, R. V. (2020). Tourism and economic growth: A meta-regression analysis. Journal of Travel Research, 59(3), 404–423. [Google Scholar] [CrossRef]
- O’Toole, C., & Newman, C. (2017). Investment financing and financial development: Evidence from Viet Nam. Review of Finance, 21(4), 1639–1674. [Google Scholar] [CrossRef]
- Pablo-Romero, M. d. P., & Molina, J. A. (2013). Tourism and economic growth: A review of empirical literature. Tourism Management Perspectives, 8, 28–41. [Google Scholar] [CrossRef]
- Perron, P. (1989). The great crash, the oil price shock, and the unit root hypothesis. Econometrica, 57(6), 1361–1401. [Google Scholar] [CrossRef]
- Perron, P. (2006). Dealing with structural breaks. Palgrave Handbook of Econometrics, 1(2), 278–352. [Google Scholar]
- Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics, 16(3), 289–326. [Google Scholar] [CrossRef]
- Raihan, A., Muhtasim, D. A., Pavel, M. I., Faruk, O., & Rahman, M. (2022). Dynamic impacts of economic growth, renewable energy use, urbanization, and tourism on carbon dioxide emissions in Argentina. Environmental Processes, 9(2), 38. [Google Scholar] [CrossRef]
- Rao, B. (2010). Estimates of the steady state growth rates for selected Asian countries with an extended Solow model. Economic Modelling, 27(1), 46–53. [Google Scholar] [CrossRef]
- Rasool, H., Maqbool, S., & Tarique, M. (2021). The relationship between tourism and economic growth among BRICS countries: A panel cointegration analysis. Future Business Journal, 7(1), 1–11. [Google Scholar] [CrossRef]
- Ridzuan, A. R., Shaari, M. S., Rosli, A., Jamil, A. R. M., Siswantini, S., Lestari, A., & Zakaria, S. (2021). The nexus between economic growth and natural resource abundance in selected ASEAN countries before pandemic COVID-19. International Journal of Energy Economics and Policy, 11(2), 281–292. [Google Scholar] [CrossRef]
- Risso, W. A. (2018). Tourism and economic growth: A worldwide study. Tourism Analysis, 23(1), 123–135. [Google Scholar] [CrossRef]
- Rivera-Batiz, L. A., & Romer, P. (1991a). Economic integration and endogenous growth. Quarterly Journal of Economics, 106, 531–555. [Google Scholar] [CrossRef]
- Rivera-Batiz, L. A., & Romer, P. (1991b). International trade with endogenous technological change. European Economic Review, 35, 971–1001. [Google Scholar] [CrossRef]
- Röller, L.-H., & Waverman, L. (2001). Telecommunications infrastructure and economic development: A simultaneous approach. American Economic Review, 91(4), 909–923. [Google Scholar] [CrossRef]
- Romer, P. (1986). Increasing returns and long—Run growth. Journal of Political Economy, 93, 1002–1037. [Google Scholar] [CrossRef]
- Romer, P. (1987). Growth based on increasing returns due to Specialization. American Economic Review, 77, 56–62. [Google Scholar]
- Romer, P. (1990). Endogenous technological change. Journal of Political Economy, 128, S71–S102. [Google Scholar] [CrossRef]
- Rosselló-Nadal, J., & He, J. (2020). Tourist arrivals versus tourist expenditures in modelling tourism demand. Tourism Economics, 26(8), 1311–1326. [Google Scholar] [CrossRef]
- Roubini, N., & Sala-i-Martin, X. (1992). Financial repression and economic growth. Journal of Development Economics, 39(1), 5–30. [Google Scholar] [CrossRef]
- Sadi, M. A., & Henderson, J. C. (2001). Tourism and foreign direct investment in Vietnam. International Journal of Hospitality & Tourism Administration, 2(1), 67–90. [Google Scholar]
- Sanford, D. M., Jr., & Dong, H. (2000). Investment in familiar territory: Tourism and new foreign direct investment. Tourism Economics, 6(3), 205–219. [Google Scholar] [CrossRef]
- Schumpeter, J. (1934). The theory of economic development (R. Opie, Trans.). Harvard University Press. (Original work published 1912). [Google Scholar]
- Seetanah, B., Nunkoo, R., Sannassee, R. V., Georges, P., & Jaffur, W. M. Z. R. K. (2017). A meta-analysis of the tourism and economic growth nexus. BEST EN Think Tank XVII: Innovation and Progress in Sustainable Tourism, 180–206. [Google Scholar]
- Shahbaz, M., Haouas, I., & Van Hoang, T. H. (2019). Economic growth and environmental degradation in Vietnam: Is the environmental Kuznets curve a complete picture? Emerging Markets Review, 38, 197–218. [Google Scholar] [CrossRef]
- Shenon, P. (1994). Travel advisory: Correspondent’s report; Vietnam strains to meet—The demands of tourism. The New York Times. Available online: https://www.nytimes.com/1994/12/11/travel/travel-advisory-correspondent-s-report-vietnam-strains-meet-demands-tourism.html (accessed on 11 October 2023).
- Singh, D., & Alam, Q. (2024). Is tourism expansion the key to economic growth in India? An aggregate-level time series analysis. Annals of Tourism Research Empirical Insights, 5(2), 100126. [Google Scholar] [CrossRef]
- Sokhanvar, A., & Jenkins, G. P. (2022a). FDI, tourism, and accelerating the rate of economic growth in Spain. The Journal of International Trade & Economic Development, 31(4), 493–510. [Google Scholar]
- Sokhanvar, A., & Jenkins, G. P. (2022b). Impact of foreign direct investment and international tourism on long-run economic growth of Estonia. Journal of Economic Studies, 49(2), 364–378. [Google Scholar] [CrossRef]
- Sokhanvar, A., Çiftçioğlu, S., & Javid, E. (2018). Another look at tourism-economic development nexus. Tourism Management Perspectives, 26, 97–106. [Google Scholar] [CrossRef]
- Solow, R. (1956). A contribution to the theory of economic growth. The Quarterly Journal of Economics, 70(1), 65–94. [Google Scholar] [CrossRef]
- Song, H., Li, G., & Cao, Z. (2018). Tourism and economic Globalization: An emerging research agenda. Journal of Travel Research, 57(8), 999–1011. [Google Scholar] [CrossRef]
- Stauvermann, P. J., Chand, S. A., Borer, D., & Kumar, R. R. (2024). Relationship between urban development and economic growth in Vietnam: A cointegration analysis with structural breaks. In Smart cities and circular economy (pp. 235–259). Emerald Publishing Limited. [Google Scholar]
- Škrinjarić, T. (2019). Examining the causal relationship between tourism and economic growth: Spillover index approach for selected CEE and SEE countries. Economies, 7(1), 19. [Google Scholar] [CrossRef]
- Tang, C. F., & Tan, E. C. (2015). Tourism-led growth hypothesis in Malaysia: Evidence based upon regime shift cointegration and time-varying Granger causality techniques. Asia Pacific Journal of Tourism Research, 20(Suppl. S1), 1430–1450. [Google Scholar] [CrossRef]
- Tang, C. F., & Tan, E. C. (2018). Tourism-led growth hypothesis: A new global evidence. Cornell Hospitality Quarterly, 59(3), 304–311. [Google Scholar] [CrossRef]
- Temiz, D., & Gökmen, A. (2014). FDI inflow as an international business operation by MNCs and economic growth: An empirical study on Turkey. International Business Review, 23(1), 145–154. [Google Scholar] [CrossRef]
- Thompson, H. G., Jr., & Garbacz, C. (2007). Mobile, fixed line and Internet service effects on global productive efficiency. Information Economics and Policy, 19(2), 189–214. [Google Scholar] [CrossRef]
- Toda, H. Y., & Yamamoto, T. (1995). Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics, 66(1–2), 225–250. [Google Scholar] [CrossRef]
- Tran, H. T. T., & Hoang, H. T. (2019). An investigation into the impacts of FDI, domestic investment capital, human resources, and trained workers on economic growth in Vietnam. In Beyond Traditional Probabilistic Methods in Economics (volume 2, pp. 940–951). Springer International Publishing. Available online: https://link.springer.com/chapter/10.1007/978-3-030-04200-4_69 (accessed on 11 October 2023).
- Tran, T. K., Lin, C., Tu, Y., Duong, N. T., Thi, T. D. P., & Shoh-Jakhon, K. (2023). Nexus between natural resource depletion and rent and COP26 commitments: Empirical evidence from Vietnam. Resources Policy, 85, 104024. [Google Scholar] [CrossRef]
- Trang, N. H. M., Duc, N. H. C., & Dung, N. T. (2014). Research note: Empirical assessment of the tourism-led growth hypothesis—The case of Vietnam. Tourism Economics, 20(4), 885–892. [Google Scholar] [CrossRef]
- Turok, I., & McGranahan, G. (2019). Urbanisation and economic growth: The arguments and evidence for Africa and Asia. Urbanisation, 4(2), 109–125. [Google Scholar] [CrossRef]
- Tzouvelekas, E., Vouvaki, D., & Xepapadeas, A. (2007). Total factor productivity growth and the environment: A case for green growth accounting. Discussion Paper No 206. Beijer International Institute of Ecological Economics. Available online: https://d1wqtxts1xzle7.cloudfront.net/44402248/NDL2007-038-libre.pdf?1459791846=&response-content-disposition=inline%3B+filename%3DTotal_Factor_Productivity_Growth_and_the.pdf&Expires=1737449553&Signature=Dms4wprBw~WoJ12N3Mu-7VQ-uwSc65yeECr4LpHKhi4iSJzsX (accessed on 23 October 2023).
- Uzar, U., & Eyuboglu, K. (2019). The nexus between income inequality and CO2 emissions in Turkey. Journal of Cleaner Production, 227, 149–157. [Google Scholar] [CrossRef]
- Vo, D. H., Ho, C. M., & Vo, A. T. (2023). Trade openness, financial development, and urbanization in the renewable energy-growth-environment nexus. Energy Sources, Part B: Economics, Planning, and Policy, 18(1), 2240784. [Google Scholar] [CrossRef]
- Vu, K. M. (2011). ICT as a source of economic growth in the information age: Empirical evidence from the 1996–2005 period. Telecommunications Policy, 35(4), 357–372. [Google Scholar] [CrossRef]
- Vu, K., Hanafizadeh, P., & Bohlin, E. (2020). ICT as a driver of economic growth: A survey of the literature and directions for future research. Telecommunications Policy, 44(2), 101922. [Google Scholar] [CrossRef]
- World Bank. (2019). Taking stock—Recent economic developments of Vietnam. World Bank. Available online: https://documents1.worldbank.org/curated/pt/821801561652657954/pdf/Taking-Stock-Recent-Economic-Developments-of-Vietnam-Special-Focus-Vietnams-Tourism-Developments-Stepping-Back-from-the-Tipping-Point-Vietnams-Tourism-Trends-Challenges-and-Policy-Priorities.pdf (accessed on 11 October 2023).
- World Bank. (2020). Vietnam’s urbanization at a crossroads: Embarking on an efficient, inclusive, and resilient pathway. World Bank. Available online: http://hdl.handle.net/10986/34761 (accessed on 11 October 2023).
- World Bank. (2023). World development indicators. World Bank. [Google Scholar]
- World Economic Forum. (2019). The travel & tourism competitiveness report 2019 travel and tourism at a tipping point. World Economic Forum. Available online: https://www3.weforum.org/docs/WEF_TTCR_2019.pdf (accessed on 11 October 2023).
- World Economic Forum. (2022). Travel & tourism development index 2021 rebuilding for a sustainable and resilient future—Insight report May 2022. Available online: https://www3.weforum.org/docs/WEF_Travel_Tourism_Development_2021.pdf (accessed on 11 October 2023).
- Wu, P. C., Liu, S. Y., Hsiao, J. M., & Huang, T. Y. (2016). Nonlinear and time-varying growth-tourism causality. Annals of Tourism Research, 59, 45–59. [Google Scholar] [CrossRef]
- Xepapadeas, A., & Vouvaki, D. (2009). Total factor productivity growth when factors of production generate environmental externalities. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1398702 (accessed on 8 July 2024).
- Xepapadeas, A., Tzouvelekas, V., & Vouvaki, D. (2007). Total factor productivity growth and the environment: A case for green growth accounting. University of Crete. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=981133 (accessed on 8 July 2024).
- Zhang, J., & Cheng, L. (2019). Threshold effect of tourism development on economic growth following a disaster shock: Evidence from the wenchuan earthquake, PR China. Sustainability, 11(2), 371. [Google Scholar] [CrossRef]
- Zhang, J., & Zhang, Y. (2021). Tourism, economic growth, energy consumption, and CO2 emissions in China. Tourism Economics, 27(5), 1060–1080. [Google Scholar] [CrossRef]
- Zhang, L., & Gao, J. (2016). Exploring the effects of international tourism on China’s economic growth, energy consumption and environmental pollution: Evidence from a regional panel analysis. Renewable and Sustainable Energy Reviews, 53, 225–234. [Google Scholar] [CrossRef]
- Zhang, X., Gu, S., Wang, X., Wu, H., Zhou, H., & Hu, Y. (2011). Examination of resource curse hypothesis: Mineral resources exploitation and economic growth in Xinjiang Autonomous Region. Chinese Journal of Population Resources and Environment, 9(1), 63–70. [Google Scholar]
- Zivot, E., & Andrews, D. (2002). Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. Journal of Business & Economic Statistics, 20(1), 25–44. [Google Scholar]
Model | Variable | Definition of Each Indicator Expressed in per Worker |
---|---|---|
I | k, tur | k = capital stock; tur = number of international tourists. |
II | nat | nat = natural capital measured by the value of natural resource rents in constant USD. |
III | urb | urb = urbanisation, as measured by the urban population residing in city areas. |
IV | fdi | fdi = value of foreign direct investment in constant USD. |
V | fdv | fdv = financial development measured by the value of domestic credit in constant USD. |
VI | CO2 | CO2 = carbon emissions in metric tons. |
VII | ict | ict = information and communications technology measured by mobile subscriptions. |
VIII | trd | trd = trade openness measured by the sum of exports and imports value in constant USD. |
Panel a: Descriptive Statistics | ||||||||||
CO2 | ||||||||||
Mean | 2160.4926 | 4634.5481 | 0.0628 | 36.4090 | 145.8155 | 0.7003 | 1546.5361 | 111.3258 | 0.0016 | 2756.6894 |
Median | 1968.5262 | 3549.9785 | 0.0460 | 37.0730 | 115.8810 | 0.0480 | 939.7200 | 116.3577 | 0.0012 | 2447.4283 |
Maximum | 4672.4469 | 12,923.7113 | 0.2530 | 52.0483 | 368.7300 | 2.0040 | 4945.9628 | 255.9722 | 0.0051 | 7627.5761 |
Minimum | 785.2015 | 942.2418 | 0.0000 | 25.7291 | 48.6989 | 0.0000 | 57.2947 | 0.0051 | 0.0004 | 155.4790 |
Std. Dev. | 1129.2277 | 3457.4001 | 0.0612 | 7.5972 | 87.0972 | 0.8598 | 1499.2635 | 70.0712 | 0.0013 | 2109.9085 |
Skewness | 0.5856 | 0.8121 | 1.4990 | 0.1881 | 0.9036 | 0.5434 | 0.6894 | 0.0462 | 1.1076 | 0.7361 |
Kurtosis | 2.3245 | 2.5411 | 4.8962 | 1.9808 | 2.7168 | 1.4129 | 2.2308 | 2.0823 | 3.5163 | 2.6811 |
Jarque–Bera | 2.6659 | 4.1544 | 18.3510 | 1.7214 | 4.8801 | 5.3961 | 3.6352 | 1.2405 | 7.5448 | 3.3088 |
Probability | 0.2637 | 0.1253 | 0.0001 | 0.4229 | 0.0872 | 0.0673 | 0.1624 | 0.5378 | 0.0230 | 0.1912 |
Panel b: Correlation Matrix | ||||||||||
1.0000 | ||||||||||
0.9941 *** | 1.0000 | |||||||||
0.8736 *** | 0.8678 *** | 1.0000 | ||||||||
0.9885 *** | 0.9683 *** | 0.8431 *** | 1.0000 | |||||||
0.3408 ** | 0.2754 | 0.2452 | 0.4346 *** | 1.0000 | ||||||
0.8988 *** | 0.9190 *** | 0.7948 *** | 0.8661 *** | 0.3450 ** | 1.0000 | |||||
0.9837 *** | 0.9882 *** | 0.8532 *** | 0.9596 *** | 0.3386 ** | 0.9282 *** | 1.0000 | ||||
0.7707 *** | 0.7447 *** | 0.6762 *** | 0.7777 *** | 0.4777 *** | 0.7313 *** | 0.7807 *** | 1.0000 | |||
0.9818 *** | 0.9897 *** | 0.8514 *** | 0.9495 *** | 0.2391 | 0.8848 *** | 0.9814 *** | 0.7199 *** | 1.0000 | ||
0.9916 *** | 0.9846 *** | 0.8738 *** | 0.9772 *** | 0.3305 ** | 0.8598 *** | 0.9766 *** | 0.7768 *** | 0.9794 *** | 1.0000 |
Type | Model I: y|k,tur: dum1999, dum2004, dum2008, dum2013 | F-Value | Model II: y|k,tur,nat: dum2002, dum2013, dum2014 | F-Value | Model III: y|k,tur,urb: dum1995, dum2002, dum2008 | F-Value | Model IV: y|k,tur,fdi: dum1996 | F-Value |
---|---|---|---|---|---|---|---|---|
Case II | 4,3,0 | 27.1292 *** | 4,4,4,4 | 27.1648 *** | 4,3,0,2 | 84.6380 *** | 2,2,0,1 | 21.8084 *** |
Case III | 4,3,0 | 27.5919 *** | 4,4,4,4 | 28.9577 *** | 4,3,0,2 | 95.9570 *** | 2,2,0,1 | 18.8063 *** |
Case IV | 4,3,0 | 24.3989 *** | 4,4,4,4 | 21.2612 *** | 4,2,3,3 | 40.0569 *** | 2,2,3,0 | 21.0551 *** |
Case V | 4,3,0 | 32.0880 *** | 4,4,4,4 | 25.6957 *** | 4,2,3,3 | 46.8104 *** | 2,2,3,0 | 25.7100 *** |
Type | Model V: y|k,tur,fdv: dum2004, dum2008, dum2014 | F-Value | Model VI: y|k,tur,C02: dum2004, dum2008, dum2013 | F-Value | Model VII: y|k,tur,ict: dum1995, dum1996, dum2002, dum2004, dum2008, dum2014 | F-Value | Model VIII: y|k,tur,trd: dum2013, dum2014 | F-Value |
---|---|---|---|---|---|---|---|---|
Case II | 4,3,3,4 | 17.1211 *** | 4,3,0,2 | 20.1466 *** | 4,3,4,4 | 119.3778 *** | 3,4,4,3 | 4.3521 ** |
Case III | 4,3,3,4 | 21.2932 *** | 4,3,0,2 | 14.7593 *** | 4,3,4,4 | 148.7826 *** | 3,4,4,3 | 5.4143 ** |
Case IV | 4,4,4,4 | 13.2313 *** | 4,3,0,1 | 16.6854 *** | 4,4,3,4 | 85.9870 *** | 3,4,4,3 | 5.0777 ** |
Case V | 4,4,4,4 | 13.7041 *** | 4,3,0,1 | 20.6420 *** | 4,4,3,4 | 105.9442 *** | 3,4,4,3 | 6.2307 ** |
→ (Causing) | → Excluding Variables (Y) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Causing Variables (X) → | - | 10.5938 *** (0.0050) | 5.5738 * (0.0616) | 9.0687 ** (0.0107) | 0.4935 (0.7813) | 4.0048 (0.1350) | 0.2437 (0.8853) | 19.0021 *** (0.0001) | 0.0883 (0.9568) | 1.1973 (0.5495) | |
6.1217 ** (0.0468) | - | 1.8071 (0.4051) | 0.5180 (0.7718) | 2.1462 (0.3420) | 0.8985 (0.6381) | 0.7096 (0.7013) | 6.8031 ** (0.0333) | 0.1246 (0.9396) | 3.1122 (0.2110) | ||
0.2114 (0.8997) | 3.8634 (0.1449) | - | 1.5690 (0.4563) | 1.3132 (0.5186) | 4.1801 (0.1237) | 2.4731 (0.2904) | 12.9756 *** (0.0015) | 2.2834 (0.3193) | 5.1611 * (0.0757) | ||
1.6656 (0.4348) | 2.9212 (0.2321) | 7.3112 ** (0.0258) | - | 1.2698 (0.5300) | 3.4079 (0.1820) | 0.4367 (0.8038) | 0.4083 (0.8153) | 0.0408 (0.9798) | 0.6641 (0.7174) | ||
1.5296 (0.4654) | 8.4953 (0.0143) | 4.1541 (0.1253) | 3.0949 (0.2128) | - | 6.0945 ** (0.0475) | 3.8580 (0.1453) | 14.8655 *** (0.0006) | 0.6249 (0.7316) | 1.6346 (0.4416) | ||
0.1014 (0.9506) | 0.5486 (0.7601) | 0.0931 (0.9545) | 1.3992 (0.4968) | 9.5726 *** (0.0083) | - | 5.2689 * (0.0718) | 2.1980 (0.3332) | 2.3866 (0.3032) | 6.7844 ** (0.0336) | ||
0.1380 (0.9333) | 2.1561 (0.3403) | 2.0785 (0.3537) | 7.1214 *** (0.0284) | 0.1670 (0.9199) | 0.2553 (0.8802) | - | 1.9406 (0.3790) | 0.9505 (0.6217) | 6.0598 ** (0.0483) | ||
5.0991 * (0.0781) | 2.6968 (0.2597) | 1.3486 (0.5095) | 10.8243 *** (0.0045) | 0.7386 (0.6912) | 10.2679 *** (0.0059) | 6.3649 ** (0.0415) | - | 0.2813 (0.8688) | 0.3060 (0.8581) | ||
4.7433 * (0.0933) | 13.8855 *** (0.0010) | 8.0110 ** (0.0182) | 8.3269 *** (0.0156) | 0.4167 (0.8119) | 2.2155 (0.3303) | 0.3886 (0.8234) | 24.0353 *** (0.0000) | - | 1.4179 (0.4922) | ||
2.3182 (0.3138) | 0.7050 (0.7029) | 1.0908 (0.5796) | 6.0171 ** (0.0494) | 0.4121 (0.8138) | 1.5490 (0.4609) | 2.0799 (0.3535) | 0.2366 (0.8884) | 0.8353 (0.6586) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.R.; Stauvermann, P.J.; Dau, L.T.M. Exploring the Tourism and Economic Growth Relationship in Vietnam: A Cointegration Analysis with Model-Specific Structural Breaks. Economies 2025, 13, 29. https://doi.org/10.3390/economies13020029
Kumar RR, Stauvermann PJ, Dau LTM. Exploring the Tourism and Economic Growth Relationship in Vietnam: A Cointegration Analysis with Model-Specific Structural Breaks. Economies. 2025; 13(2):29. https://doi.org/10.3390/economies13020029
Chicago/Turabian StyleKumar, Ronald Ravinesh, Peter Josef Stauvermann, and Lien Thi Mai Dau. 2025. "Exploring the Tourism and Economic Growth Relationship in Vietnam: A Cointegration Analysis with Model-Specific Structural Breaks" Economies 13, no. 2: 29. https://doi.org/10.3390/economies13020029
APA StyleKumar, R. R., Stauvermann, P. J., & Dau, L. T. M. (2025). Exploring the Tourism and Economic Growth Relationship in Vietnam: A Cointegration Analysis with Model-Specific Structural Breaks. Economies, 13(2), 29. https://doi.org/10.3390/economies13020029