Assessment of Socio-Economic Impacts of Hyperloop Technology on European Trade Routes
Abstract
:1. Introduction
2. Materials and Methods
3. Literature Review
4. Empirical Assessment of Hyperloop’s Socio-Economic Impacts: Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aizenman, J., Lindahl, R., Stenvall, D., & Uddin, G. S. (2024). Geopolitical shocks and commodity market dynamics: New evidence from the Russia-Ukraine conflict. European Journal of Political Economy, 85, 102574. [Google Scholar] [CrossRef]
- Ali-Yrkkö, J., & Kuusi, T. (2020). Brexit and impact routes through global value chains. National Institute Economic Review, 252, R33–R44. [Google Scholar] [CrossRef]
- Anderson, J. E., & van Wincoop, E. (2003). Gravity with gravitas: A solution to the border puzzle. American Economic Review, 93(1), 170–192. [Google Scholar] [CrossRef]
- Armağan, K. (2020). The fifth mode of transportation: Hyperloop. Journal of Innovative Transportation, 1(1), 1105. Available online: https://dergipark.org.tr/en/pub/jit/issue/55759/761535 (accessed on 24 February 2025).
- Bajor, I. (2024). The eu logistics sector. Periodica Polytechnica Transportation Engineering, 52(3), 229–234. [Google Scholar] [CrossRef]
- Besedeš, T., Chu, J., & Murshid, A. P. (2024). Fly the unfriendly skies: The role of transport costs in gravity models of trade. Journal of International Economics, 152, 103994. [Google Scholar] [CrossRef]
- Bilici, S., Holtz, G., Jülich, A., König, R., Li, Z., Trollip, H., Call, B. M., Tönjes, A., Vishwanathan, S. S., Zelt, O., Lechtenböhmer, S., Kronshage, S., & Meurer, A. (2024). Global trade of green iron as a game changer for a near-zero global steel industry?—A scenario-based assessment of regionalized impacts. Energy and Climate Change, 5, 100161. [Google Scholar] [CrossRef]
- Bolatto, S., & Moramarco, G. (2023). Gains from trade and their quantification: Does sectoral disaggregation matter? International Economics, 174, 44–68. [Google Scholar] [CrossRef]
- Borghetti, F. (2023). Preliminary technical and economic analysis of a hyperloop line: Case study from Italy. European Transport/Trasporti Europei, 90, 1–12. [Google Scholar] [CrossRef]
- Böhmecke-Schwafert, M. (2024). The role of blockchain for trade in global value chains: A systematic literature review and guidance for future research. Telecommunications Policy, 48, 102835. [Google Scholar] [CrossRef]
- Canbay, Ş. (2024). The analysis of relationships between global shipping networks and foreign trade volumes in developing countries. Case Studies on Transport Policy, 17, 101242. [Google Scholar] [CrossRef]
- Cariou, P., Lindstad, E., & Jia, H. (2021). The impact of an EU maritime emissions trading system on oil trades. Transportation Research Part D: Transport and Environment, 99, 102992. [Google Scholar] [CrossRef]
- Cesar De Oliveira, S. E. M., Visentin, J. C., Pavani, B. F., Branco, P. D., De Maria, M., & Loyola, R. (2024). The European Union-Mercosur Free Trade Agreement as a tool for environmentally sustainable land use governance. Environmental Science & Policy, 161, 103875. [Google Scholar] [CrossRef]
- Cinnirella, S., & Pirrone, N. (2013). An uncertainty estimate of global mercury emissions using the monte carlo technique. E3s Web of Conferences, 1, 07006. [Google Scholar] [CrossRef]
- COM. (2024). European commission. Apostolos tzitzikostas—Mission letter. Available online: https://commission.europa.eu/document/de676935-f28c-41c1-bbd2-e54646c82941_en (accessed on 29 January 2025).
- Ding, W., Shibasaki, R., & Kavirathna, C. A. (2023). Impact of Northern Sea Route on China’s grain imports with EU countries. Asian Transport Studies, 9, 100108. [Google Scholar] [CrossRef]
- Doko Tchatoka, F., & Dufour, J.-M. (2024). Exogeneity tests and weak identification in IV regressions: Asymptotic theory and point estimation. Journal of Econometrics, 105821. [Google Scholar] [CrossRef]
- Elsayed, A. H., Khalfaoui, R., Nasreen, S., & Gabauer, D. (2024). The impact of oil shocks on green, clean, and socially responsible markets. Energy Economics, 136, 107729. [Google Scholar] [CrossRef]
- Ferrari, E., Christidis, P., & Bolsi, P. (2023). The impact of rising maritime transport costs on international trade: Estimation using a multi-region general equilibrium model. Transportation Research Interdisciplinary Perspectives, 22, 100985. [Google Scholar] [CrossRef]
- Forrester, J. W. (1961). Industrial dynamics (pp. 13–14). MIT Press. [Google Scholar]
- Forrester, J. W. (1990). Principles of systems. System Dynamics Series. PEGASUS. ISBN 978-1883823412. [Google Scholar]
- Frensch, R., Fidrmuc, J., & Rindler, M. (2023). Topography, borders, and trade across Europe. Journal of Comparative Economics, 51, 816–832. [Google Scholar] [CrossRef]
- Gavrilin, S., & Steen, S. (2017). Uncertainty of full-scale manoeuvring trial results estimated using a simulation model. Applied Ocean Research, 64, 281–289. [Google Scholar] [CrossRef]
- Gkoumas, K., & Christou, M. (2020). A triple-helix approach for the assessment of hyperloop potential in Europe. Sustainability, 12(19), 7868. [Google Scholar] [CrossRef]
- Guo, Q., & Wang, Y. (2024). Rare earth trade dependence network structure and its impact on trade prices: An industry chain perspective. Resources Policy, 91, 104930. [Google Scholar] [CrossRef]
- Ha, Y.-S., & Seo, J. S. (2014). The Northern Sea Routes and Korea’s Trade with Europe: Implications for Korea’s shipping industry. International Journal of e-Navigation and Maritime Economy, 1, 73–84. [Google Scholar] [CrossRef]
- Hayo, B., & Roth, D. H. W. (2024). The perceived impact of immigration on native workers’ labour market outcomes. European Journal of Political Economy, 85, 102610. [Google Scholar] [CrossRef]
- Head, K., & Mayer, T. (2014). Gravity equations: Workhorse, toolkit, and cookbook. In G. Gopinath, E. Helpman, & K. Rogoff (Eds.), Handbook of international economics (Vol. 4, pp. 131–195). Elsevier. [Google Scholar] [CrossRef]
- Hermeling, C., Klement, J. H., Koesler, S., Koehler, J., & Klement, D. (2014). Sailing into a dilemma—An economic and legal analysis of an EU trading scheme for maritime emissions. SSRN Journal. [Google Scholar] [CrossRef]
- Horizon, G. (2020). Technology readiness levels (TRL). General annexes, HORIZON 2020—WORK PROGRAMME 2018–2020. Available online: https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2018-2020/annexes/h2020-wp1820-annex-g-trl_en.pdf (accessed on 2 January 2025).
- Hsu, W. K., Huang, S. S., & Huynh, N. T. (2021). An evaluation model for foreign direct investment performance of free trade port zones. Promet-Traffic&Transportation, 33(6), 859–870. [Google Scholar] [CrossRef]
- Iht-emden.de. (2025). Institute of hyperloop technology. Available online: https://iht-emden.de (accessed on 24 February 2025).
- Imamkulieva, E., & Kondakova, K. (2022). International cargo transportation through the suez canal and alternative routes (by the example of china-eu). SHS Web of Conferences, 134, 00135. [Google Scholar] [CrossRef]
- Jackson, K., & Shepotylo, O. (2024). Political alliances and trade: Europe in a polarized world. European Journal of Political Economy, 85, 102612. [Google Scholar] [CrossRef]
- Jamil, N., Chaudhry, T. T., & Chaudhry, A. (2022). Trading textiles along the new silk route: The impact on Pakistani firms of gaining market access to China. Journal of Development Economics, 158, 102935. [Google Scholar] [CrossRef]
- Jiang, Y., Qiao, G., & Lu, J. (2020). Impacts of the new international land–Sea trade corridor on the freight transport structure in China, central Asia, the ASEAN countries and the EU. Research in Transportation Business & Management, 35, 100419. [Google Scholar] [CrossRef]
- Kale, S. (2019). Hyperloop: Advance mode of transportation system and optimize solution on traffic congestion. International Journal for Research in Applied Science and Engineering Technology, 7(7), 539–552. [Google Scholar] [CrossRef]
- Kang, Y., Liao, S., Jiang, C., & D’Alfonso, T. (2022). Synthetic control methods for policy analysis: Evaluating the effect of the European emission Trading System on aviation supply. Transportation Research Part A: Policy and Practice, 162, 236–252. [Google Scholar] [CrossRef]
- Kosztyán, Z. T., Kiss, D., & Fehérvölgyi, B. (2024). Trade network dynamics in a globalized environment and on the edge of crises. Journal of Cleaner Production, 465, 142699. [Google Scholar] [CrossRef]
- Latifi, A., Naboka-Krell, V., Tillmann, P., & Winker, P. (2024). Fiscal policy in the Bundestag: Textual analysis and macroeconomic effects. European Economic Review, 168, 104827. [Google Scholar] [CrossRef]
- Li, Y., Huang, J., Zeng, A., & Zhang, H. (2024). Trade risk transmission of global cobalt industrial chain based on multi-layer network. Resources Policy, 98, 105338. [Google Scholar] [CrossRef]
- Liu, Y., Li, H., An, H., Guan, J., Shi, J., & Han, X. (2021). Are the environmental impacts, resource flows and economic benefits proportional? Analysis of key global trade routes based on the steel life cycle. Ecological Indicators, 122, 107306. [Google Scholar] [CrossRef]
- Ma, X., Jing, L., Zhao, K., Wu, T., & Zhang, P. (2022). Simulation of spatial service range and value of carbon sink based on intelligent urban ecosystem management system and net present value models—An example from the qinling mountains. Forests, 13(3), 407. [Google Scholar] [CrossRef]
- Martínez-Zarzoso, I., Serranito, F., & Turcu, C. (2023). Recent advances in international macroeconomics, financial development and globalization: Some policy challenges. International Economics, 175, 135–138. [Google Scholar] [CrossRef]
- Meng, X., Gu, A., Zeng, J., Chen, M., Zhou, J., Liu, B., & Mao, Z. (2024). Advantages and challenges of China’s participation in international hydrogen trade. International Journal of Hydrogen Energy, 52, 1356–1368. [Google Scholar] [CrossRef]
- Meza, A., Ari, I., Al Sada, M., & Koç, M. (2023). Relevance and potential of the Arctic Sea Routes on the LNG trade. Energy Strategy Reviews, 50, 101174. [Google Scholar] [CrossRef]
- Nevomo.tech. (2025). The future of transportation. Available online: https://www.nevomo.tech (accessed on 29 January 2024).
- Nordås, H. K. (2023). Services in the India-EU free trade agreement. International Economics, 176, 100460. [Google Scholar] [CrossRef]
- Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, Y., Loder, E. W., Mayo-Wilson, E., McDonald, S., . . . McKenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ, 372, n160. [Google Scholar] [CrossRef]
- PAR. (2025). European Parliament. legislative train 01.2025. 1 a new plan for Europe’s sustainable prosperity and competitiveness. Available online: https://www.europarl.europa.eu/legislative-train/carriage/eu-regulatory-framework-for-hyperloop/report?sid=8801 (accessed on 4 February 2025).
- Peng, H., Sun, Y., Hao, J., An, C., & Lyu, L. (2024). Carbon emissions trading in ground transportation: Status quo, policy analysis, and outlook. Transportation Research Part D: Transport and Environment, 131, 104225. [Google Scholar] [CrossRef]
- Pinto, M. C., Simões, S. G., & Fortes, P. (2024). How can green hydrogen from North Africa support EU decarbonization? Scenario analyses on competitive pathways for trade. International Journal of Hydrogen Energy, 79, 305–318. [Google Scholar] [CrossRef]
- Polak, E., & Polak, W. (2017). Współczesne uwarunkowania polityki gospodarczej. Prace Naukowe Uniwersytetu Ekonomicznego We Wrocławiu, 498, 263–272. [Google Scholar] [CrossRef]
- Premsagar, S. (2022). A critical review of hyperloop (ultra-high speed rail) technology: Urban and transport planning, technical, environmental, economic, and human considerations. Frontiers in Sustainable Cities, 4. [Google Scholar] [CrossRef]
- Premsagar, S. (2023). A critical review of the proposed hyperloop (ultra-high-speed rail) project between mumbai and pune and its broader implications for sustainable mobility in Indian cities. Future Transportation, 3(3), 931–969. [Google Scholar] [CrossRef]
- Python. (2025). Python programming language. Available online: http://www.python.org (accessed on 24 February 2025).
- Ren, Q., & Du, J. (2024). Harmonizing innovation and regulation: The EU Artificial Intelligence Act in the international trade context. Computer Law & Security Review, 54, 106028. [Google Scholar] [CrossRef]
- Richardson, W. S., Wilson, M. C., Nishikawa, J., & Hayward, R. S. (1995). The well-built clinical question: A key to evidence-based decisions. ACP Journal Club, 123(3), A12. [Google Scholar] [CrossRef] [PubMed]
- Rumin, R., Kozioł, K., Polak, J., Hyla, P., & Blaut, J. (2019). Analysis of time of intermodal container transport from China to the Eu by means of hyperloop technology. AUTOBUSY—Technika, Eksploatacja, Systemy Transportowe, 20(1–2), 452–457. [Google Scholar] [CrossRef]
- Sakowski, M. (2016). The next contender in high speed transport elon musks hyperloop. The Journal of Undergraduate Research at the University of Illinois at Chicago, 9(2). [Google Scholar] [CrossRef]
- Sanchez-Matos, J., Vázquez-Rowe, I., & Kahhat, R. (2024). Estimating carbon and plastic emissions of seafood products in trade routes between the European Union and South America. Resources, Conservation and Recycling, 205, 107539. [Google Scholar] [CrossRef]
- Sanjuán, A. I., Philippidis, G., Ferrer Pérez, H., & Gracia De Rentería, P. (2023). Empirical insights on the dynamics of SPS trade costs: The role of regulatory convergence and experience in EU dairy trade. Food Policy, 119, 102524. [Google Scholar] [CrossRef]
- Scheelhaase, J., Maertens, S., & Grimme, W. (2021). Options for improving the EU Emissions Trading Scheme (EU ETS) for aviation. Transportation Research Procedia, 59, 193–202. [Google Scholar] [CrossRef]
- Schoulund, D. H., Breed, C. A., Pasgaard, J. C., & Pasgaard, M. (2024). Ecological and societal trade-offs of living a good, safe and green life in urban ecological enclaves. Cities, 155, 105454. [Google Scholar] [CrossRef]
- Siemenn, A. E., Deo, B., Ng, F., Zhou, J., Owens, C., Atue, S. U., & Forsuelo, M. (2023). A railgun secondary propulsion system for high-speed hyperloop transportation. IEEE Transactions on Plasma Science, 51(1), 243–248. [Google Scholar] [CrossRef]
- Stryhunivska, O., Gdowska, K., & Rumin, R. (2020). Key points of the management system for the safety of passengers travelling with low-pressure trains. New Trends in Production Engineering, 3(1), 462–471. [Google Scholar] [CrossRef]
- Sun, Y., Zheng, J., Yang, L., & Li, X. (2024). Allocation and trading schemes of the maritime emissions trading system: Liner shipping route choice and carbon emissions. Transport Policy, 148, 60–78. [Google Scholar] [CrossRef]
- Sur, J. M., & Kim, D. J. (2020). Multi criteria evaluation of beneficial effect of commercializing Northern Sea Route on Europe and Asia countries. The Asian Journal of Shipping and Logistics, 36, 193–201. [Google Scholar] [CrossRef]
- Swisspod.com. (2025). Building hyperloop. Available online: https://www.swisspod.com (accessed on 24 February 2025).
- Tan, Z., Shao, S., Zhang, D., Shang, W.-L., Ochieng, W., & Han, Y. (2024). Decarbonizing the inland container fleet with carbon cap-and-trade scheme. Applied Energy, 376, 124251. [Google Scholar] [CrossRef]
- Tesla.com. (2012). Hyperloop alpha. Available online: https://www.tesla.com/sites/default/files/blog_images/hyperloop-alpha.pdf (accessed on 24 February 2025).
- Tumhyperloop.com. (2023). Europe’s first passenger run under vacuum conditions. Available online: https://tumhyperloop.com/demonstrator/#passenger-run (accessed on 24 February 2025).
- Tumhyperloop.com. (2025). TUM Hyperloop. Engineering a world without the limits of distance and time. Available online: https://tumhyperloop.com (accessed on 24 February 2025).
- Unstudio.com. (2018). Hardt hyperloop. Available online: https://www.unstudio.com/page/11735/hardt-hyperloop (accessed on 24 February 2025).
- Vukić, L., & Cerbán, M. D. M. (2022). Economic and environmental competitiveness of container shipping on alternative maritime routes in the Asia-Europe trade flow. Maritime Transport Research, 3, 100070. [Google Scholar] [CrossRef]
- Wan, Y., Li, Y., Wang, D., Yang, D., Huang, T., Zhang, Y., Zheng, L., & Liu, C. (2024). International trade of green hydrogen, ammonia and methanol: Opportunities of China’s subregions. Renewable Energy, 235, 121294. [Google Scholar] [CrossRef]
- Wang, M., & Kuusi, T. (2024). Trade flows, carbon leakage, and the EU Emissions Trading System. Energy Economics, 134, 107556. [Google Scholar] [CrossRef]
- Werner, M., Eissing, K., & Langton, S. (2016). Shared value potential of transporting cargo via hyperloop. Frontiers in Built Environment, 2. [Google Scholar] [CrossRef]
- Xu, L., Yang, Z., Chen, J., Zou, Z., & Wang, Y. (2024). Spatial-temporal evolution characteristics and spillover effects of carbon emissions from shipping trade in EU coastal countries. Ocean & Coastal Management, 250, 107029. [Google Scholar] [CrossRef]
- Yalılı, M., Menlik, T., & Boran, F. E. (2024). A novel multi-objective decision-making model to determine optimum resource and capacity configuration for hybrid electricity generation systems: A comparative case study in Türkiye. Applied Energy, 376, 124338. [Google Scholar] [CrossRef]
- Yang, D., Jiang, L., & Ng, A. K. Y. (2018). One Belt one Road, but several routes: A case study of new emerging trade corridors connecting the Far East to Europe. Transportation Research Part A: Policy and Practice, 117, 190–204. [Google Scholar] [CrossRef]
- Yang, J. (2011). Convergence and uncertainty analyses in Monte-Carlo based sensitivity analysis. Environmental Modelling & Software, 26(4), 444–457. [Google Scholar] [CrossRef]
- Yang, J., & Chen, W. (2023). Unravelling the landscape of global cobalt trade: Patterns, robustness, and supply chain security. Resources Policy, 86, 104277. [Google Scholar] [CrossRef]
- Yang, Y., & Liu, W. (2024). Free trade agreements and domestic value added in exports: An analysis from the network perspective. Economic Modelling, 132, 106656. [Google Scholar] [CrossRef]
- Yu, Y., Ma, D., & Zhu, W. (2023). Resilience assessment of international cobalt trade network. Resources Policy, 83, 103636. [Google Scholar] [CrossRef]
- Zeleros.com. (2025). Zeleros—Your electrification partner. Available online: https://zeleros.com (accessed on 24 February 2025).
- Zhang, L., & Wen, S. (2024). The influence of global gallium trade network dynamics on price: A complex network and panel regression approach. Resources Policy, 93, 105091. [Google Scholar] [CrossRef]
- Zhang, Q., Mao, X., Lu, J., Guo, Z., Duman, Z., Chen, Y., Song, P., & Tu, K. (2024). EU-Russia energy decoupling in combination with the updated NDCs impacts on global fossil energy trade and carbon emissions. Applied Energy, 356, 122415. [Google Scholar] [CrossRef]
- Zhang, Y., & Wang, K. (2024). Mitigation effect of the European Union emission trading system on aviation emissions. Transportation Research Part D: Transport and Environment, 130, 104186. [Google Scholar] [CrossRef]
- Zhong, H., Zhang, S., Zhang, X., Yu, Y., Li, D., Wang, S., Xiao, J., & Tian, P. (2024). Water-land-energy efficiency and nexus within global agricultural trade during 1995–2019. Science of The Total Environment, 951, 175539. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S., Jia, S., Sun, Q., & Meng, Q. (2023). An empirical study of China–Singapore International Land–Sea Trade Corridor: Analysis from supply and demand sides. Transport Policy, 135, 1–10. [Google Scholar] [CrossRef]
Search Query | Number of Results | Notes/Observations |
---|---|---|
TITLE-ABS-KEY((“European Union” OR EU) AND (“trade infrastructure” OR “transport innovations” OR “economic impact”)) AND PUBYEAR > 2021 | 418 | Large number of studies; crucial for framing Hyperloop’s impact on EU trade infrastructure and economics. |
TITLE-ABS-KEY((“high-speed transport” OR “railway” OR “aviation”) AND (“trade routes” OR “international trade”)) AND PUBYEAR > 2021 | 115 | High relevance for comparison with other high-speed transport modes like railways or aviation. |
TITLE-ABS-KEY (“international trade” AND “general equilibrium model”) AND PUBYEAR > 2021 | 73 | Substantial research; valuable for trade dynamics and economic modeling. |
TITLE-ABS-KEY((“low carbon” OR “carbon neutral” OR “sustainable transport”) AND (“Hyperloop” OR “transport innovations”)) AND PUBYEAR > 2021 | 24 | Good number of studies on sustainability and Hyperloop; relevant for environmental impact analysis. |
TITLE-ABS-KEY (“transport costs” AND “gravity models” AND “international trade”) AND PUBYEAR > 2021 | 18 | Relevant for understanding how transport costs impact trade flows, supporting gravity model methodology. |
TITLE-ABS-KEY (“Free Trade Agreement” AND “environmentally sustainable”) AND PUBYEAR > 2021 | 6 | Emerging topic; useful for linking trade policies with sustainable transport objectives for Hyperloop. |
TITLE-ABS-KEY(“gravity model” AND (“trade analysis” OR “transport economics”)) AND TITLE-ABS-KEY(“PPML” OR “Poisson Pseudo Maximum Likelihood”) AND PUBYEAR > 2021 | 2 | Limited research on using the gravity model with trade and transport; essential for your methodology. |
TITLE-ABS-KEY((“transport policy” OR “economic feasibility”) AND (“European Union” OR EU) AND (“trade routes” OR “socio-economic impact”)) AND PUBYEAR > 2021 | 2 | Few studies focus specifically on EU transport policy and feasibility regarding trade routes. |
TITLE-ABS-KEY(“Hyperloop technology” OR “Hyperloop transport”) AND TITLE-ABS-KEY(“socio-economic impact” OR “economic analysis” OR “trade impact”) | 1 | Limited studies specifically address the socio-economic impacts of Hyperloop technology. |
TITLE-ABS-KEY (“global shipping networks” AND “foreign trade volumes”) AND PUBYEAR > 2021 | 1 | Research gap; limited studies on direct effects of shipping networks on trade volumes. |
Category | Key Findings | References |
---|---|---|
Trade Route Disruptions and Shipping |
| Ding et al. (2023); Ferrari et al. (2023); Ha and Seo (2014); Jamil et al. (2022); Jiang et al. (2020); Meza et al. (2023); Sur and Kim (2020); Vukić and Cerbán (2022); D. Yang et al. (2018); Zhu et al. (2023) |
Carbon Emissions and Emissions Trading |
| Cariou et al. (2021); Hermeling et al. (2014); Kang et al. (2022); Peng et al. (2024); Scheelhaase et al. (2021); Sun et al. (2024); Tan et al. (2024); Wang and Kuusi (2024); Xu et al. (2024); Y. Zhang and Wang (2024) |
Ultra-High-Speed Impact Analysis on Trade Routes |
| Bilici et al. (2024); Guo and Wang (2024); Li et al. (2024); Liu et al. (2021); Meng et al. (2024); Pinto et al. (2024); Sanchez-Matos et al. (2024); Sanjuán et al. (2023); Wan et al. (2024); J. Yang and Chen (2023); Yu et al. (2023); L. Zhang and Wen (2024); Zhong et al. (2024) |
Geopolitical and Policy Analyses |
| Aizenman et al. (2024); Cesar De Oliveira et al. (2024); Hayo and Roth (2024); Jackson and Shepotylo (2024); Nordås (2023); Ren and Du (2024); Q. Zhang et al. (2024) |
Gravity Models and Transport Costs |
| Besedeš et al. (2024); Bolatto and Moramarco (2023); Canbay (2024); Frensch et al. (2023) |
Methodological and Econometric Tools |
| Doko Tchatoka and Dufour (2024); Kosztyán et al. (2024); Latifi et al. (2024); Martínez-Zarzoso et al. (2023); Y. Yang and Liu (2024) |
Emerging Trade Catalysts |
| Böhmecke-Schwafert (2024); Elsayed et al. (2024); Schoulund et al. (2024); Yalılı et al. (2024) |
Land Use and Infrastructure |
| Ding et al. (2023); Ferrari et al. (2023); Ha and Seo (2014); Jiang et al. (2020) |
Impact ID | Impact Category | Assessed Impact Effect | Dimension |
---|---|---|---|
I1 | Change in Shipping Costs | positive | Financial |
I2 | Supply Chain Reliability | positive | Logistics |
I3 | Supply Chain On-Time Delivery | positive | Logistics |
I4 | EU Global Competitiveness | positive | Policy |
I5 | Enable New or Reconfigured Transportation Corridors | positive/negative | Policy |
I6 | Reshape Import/Export Patterns | positive/negative | Financial |
I7 | Decarbonization Targets | positive | Environmental |
I8 | First-mover Advantages | positive/negative | Financial |
I9 | Reduce Carbon Emissions | positive | Environmental |
I10 | GDP Changes | positive/negative | Financial |
I11 | Green Logistics | positive | Environmental |
I12 | Cargo Safety | positive/negative | Logistics |
I13 | Industrial Growth Changes | positive | Financial |
I14 | Trade Volumes | positive | Financial |
I15 | Foreign Direct Investment | positive/negative | Financial |
I16 | Quality of Life | positive | Financial |
I17 | Policies and Regulations | positive/negative | Policy |
I18 | Cooperation Between EU Member Countries | positive/negative | Policy |
I19 | Changes in Trade Alliances | positive/negative | Policy |
I20 | Urban and Rural Regional Connections | positive | Logistics |
I21 | Digitalization of Trade Routes | positive | Logistics |
I22 | Trade Routes Automation | positive | Logistics |
I23 | Changes in Workforce | positive/negative | Financial |
I24 | Land Alienation | negative | Policy |
I25 | Centralization | positive/negative | Policy |
ID | Corridor | Distance (km) | Baseline Mode | Baseline Speed (km/h) | Baseline Time (h) | Baseline CO2 (t/day) | Baseline Energy (MWh/d) | HL Speed (km/h) | HL Time (h) | HL CO2 (t/day) | HL Energy (MWh/d) |
---|---|---|---|---|---|---|---|---|---|---|---|
S1 | Pan-EU Network | 6000 | Mixed Modes | 60–120 | 70–80 | 120–150 | 400–600 | 900–1000 | 6–7 | 30–40 | 250–350 |
S2 | Paris–Vienna–Bucharest–Sofia | 2245 | Mostly Rail | 80–120 | 28–30 | 10–14 | 190–260 | 800–1000 | 2.8–3.6 | 4.4–9.5 | 275–350 |
S3 | Barcelona– Munich | 1500 | Road/Rail | 80/120 | 16–17 | 35–45 | 150–200 | 900–1000 | 1.6 | 3.0–3.2 | 90–110 |
S4 | Milan–Vienna–Munich | 1200 | Mostly Rail | 100–110 | 11–12 | 28–35 | 120–160 | 900–1000 | 1.2–1.3 | 3–4 | 70–90 |
S5 | Warsaw– Vilnius–Riga–Tallinn | 1180 | Road/Rail | 80/110 | 12–13 | 30–38 | 120–160 | 800–1000 | 1.2–1.5 | 3–4 | 70–90 |
S6 | Paris–Brussels–Cologne | 1100 | Mostly Rail | 110–120 | 9–10 | 25–30 | 100–140 | 900–1000 | 1.1 | 3.0–3.2 | 60–80 |
S7 | Stockholm– Copenhagen–Hamburg | 1000 | Rail/Ferry | 70–100 | 10–13 | 25–32 | 100–140 | 900–1000 | 1.0–1.2 | 3–4 | 60–80 |
S8 | Lyon–Milan | 900 | Mostly Rail | 110–120 | 8–9 | 18–22 | 90–110 | 800–1000 | 1.0–1.2 | 2–3 | 50–70 |
S9 | Madrid–Paris | 800 | Road/Rail | 80/120 | 10–11 | 20–25 | 80–120 | 800–1000 | 1 | 2.0–2.2 | 50–60 |
S10 | Madrid–Lisbon | 750 | Road/Rail | 80 | 8–9 | 18–22 | 70–90 | 800–1000 | 0.8–0.9 | 2.0–2.2 | 40–50 |
S11 | Berlin–Warsaw | 600 | Mostly Rail | 100–120 | 5–6 | 14–18 | 60–80 | 800–1000 | 0.6–0.7 | 1–2 | 35–45 |
S12 | Rotterdam–Düsseldorf | 500 | Road/Rail | 80/100 | 5–6 | 12–15 | 50–70 | 800–1000 | 0.5 | 1–2 | 30–40 |
ID | Corridor | Distance (km) | Baseline Mode | Baseline Speed (km/h) | Baseline Time (h) | Baseline CO2 (t/day) | Baseline Energy (MWh/d) | HL Speed (km/h | HL Time (h) | HL CO2 (t/day) | HL Energy (MWh/d) |
---|---|---|---|---|---|---|---|---|---|---|---|
S1 | Pan-EU Network | 6000 | Mixed Modes | 60–120 | 70–80 | 120–150 | 600–900 | 6–7 | 30–40 | 6000 | 300–420 |
S2 | Paris–Vienna–Bucharest–Sofia | 2245 | Mostly Rail | 80–120 | 25–32 | 190–260 | 380–470 | 2.5–3.5 | 90–140 | 2245 | 330–420 |
S3 | Barcelona–Munich | 1500 | Road/Rail | 80/120 | 16 | 35–45 | 320–375 | 1.4–1.8 | 2–4 | 1500 | 108–132 |
S4 | Milan–Vienna–Munich | 1200 | Mostly Rail | 100–120 | 11–13 | 28–40 | 380–470 | 1.2–1.5 | 3–5 | 1200 | 84–108 |
S5 | Warsaw– Vilnius–Riga–Tallinn | 1180 | Road/Rail | 80/110 | 12–13 | 30–38 | 390–450 | 2.8–3.3 | 2–2.2 | 1200 | 84–108 |
S6 | Paris–Brussels–Cologne | 1100 | Mostly Rail | 110–120 | 9–11 | 25–35 | 380–450 | 1.1–1.5 | 2–4 | 1100 | 72–96 |
S7 | Stockholm–Copenhagen–Hamburg | 1000 | Rail/ Ferry | 70–100 | 10–13 | 25–32 | 390–450 | 1.0–1.3 | 2–3 | 1000 | 72–96 |
S8 | Lyon–Milan | 900 | Rail | 110–120 | 8 | 18–22 | 390–450 | 1.0–1.4 | 2–3 | 900 | 60–84 |
S9 | Madrid–Paris | 800 | Road/ Rail | 80/120 | 10 | 20–25 | 380–420 | 0.8–1.2 | 1–3 | 800 | 60–72 |
S10 | Madrid–Lisbon | 750 | Road/Rail | 80/110 | 8–10 | 18–27 | 380–420 | 0.8–1.0 | 1–3 | 750 | 48–60 |
S11 | Berlin–Warsaw | 600 | Rail | 100–120 | 5–6 | 14–18 | 380–420 | 0.6–0.7 | 1–2 | 600 | 42–54 |
S12 | Rotterdam–Düsseldorf | 500 | Road/Rail | 80/100 | 5–6 | 12–15 | 380–420 | 0.5–1.2 | 1–2 | 500 | 36–48 |
ID | Distance (km) | Baseline Speed (km/h) | Baseline Time (h) | Baseline CO2 (t/d) | Baseline Energy (MWh/d) | HL Speed (km/h) | HL Time (h) | HL CO2 (t/d) | HL Energy (MWh/d) |
---|---|---|---|---|---|---|---|---|---|
S1 | 6000 | 83.17 | 75.00 | 134.99 | 615.98 | 999.74 | 6.50 | 35.00 | 300.31 |
S2 | 2245 | 99.95 | 30.34 | 225.05 | 499.49 | 999.93 | 3.20 | 6.91 | 304.06 |
S3 | 1500 | 93.24 | 16.50 | 39.99 | 1016.42 | 1017.6 | 1.65 | 3.10 | 99.95 |
S4 | 1200 | 110.04 | 12.00 | 33.95 | 139.98 | 999.78 | 1.28 | 3.50 | 80.00 |
S5 | 1180 | 94.95 | 13.00 | 33.99 | 139.94 | 900.38 | 1.45 | 3.10 | 79.95 |
S6 | 1100 | 115.00 | 10.01 | 30.01 | 99.99 | 900.19 | 1.15 | 3.10 | 69.97 |
S7 | 1000 | 84.98 | 11.50 | 28.17 | 120.00 | 999.77 | 1.10 | 3.10 | 70.02 |
S8 | 900 | 115.02 | 8.50 | 20.00 | 100.00 | 900.22 | 1.10 | 2.50 | 59.99 |
S9 | 800 | 93.39 | 10.50 | 22.50 | 899.60 | 900.12 | 1.15 | 2.10 | 54.99 |
S10 | 750 | 91.68 | 9.00 | 22.16 | 79.98 | 900.14 | 0.89 | 2.10 | 45.01 |
S11 | 600 | 110.01 | 6.00 | 16.00 | 90.02 | 899.96 | 0.65 | 1.50 | 39.98 |
S12 | 500 | 90.02 | 5.50 | 13.50 | 68.41 | 900.10 | 0.52 | 1.50 | 35.00 |
ID | Distance (km) | Baseline Speed (km/h) | Baseline Time (h) | Baseline CO2 (t/d) | Baseline Energy (MWh/d) | HL Speed (km/h) | HL Time (h) | HL CO2 (t/d) | HL Energy (MWh/d) |
---|---|---|---|---|---|---|---|---|---|
S1 | 6000 | 83.38 | 75.00 | 135.00 | 750.02 | 716.60 | 6.50 | 35.01 | 339.81 |
S2 | 2245 | 100.01 | 28.16 | 224.99 | 418.34 | 428.34 | 3.00 | 118.15 | 375.23 |
S3 | 1500 | 93.33 | 16.50 | 39.97 | 347.55 | 349.09 | 1.60 | 3.00 | 120.07 |
S4 | 1200 | 109.94 | 12.00 | 33.97 | 421.64 | 421.70 | 1.32 | 4.00 | 95.98 |
S5 | 1180 | 95.02 | 13.00 | 34.01 | 419.98 | 419.89 | 3.02 | 2.10 | 95.94 |
S6 | 1100 | 115.00 | 10.00 | 30.03 | 418.54 | 411.89 | 1.30 | 3.01 | 83.98 |
S7 | 1000 | 84.99 | 11.5 | 28.16 | 420.22 | 420.09 | 1.18 | 2.50 | 82.00 |
S8 | 900 | 114.99 | 8.50 | 20.00 | 419.92 | 419.83 | 1.20 | 2.50 | 72.02 |
S9 | 800 | 93.31 | 10.50 | 22.49 | 399.82 | 400.11 | 1.00 | 2.00 | 66.03 |
S10 | 750 | 91.66 | 9.01 | 22.15 | 400.06 | 400.01 | 0.90 | 2.00 | 54.00 |
S11 | 600 | 110.04 | 6.00 | 16.01 | 400.03 | 400.12 | 0.77 | 2.00 | 48.01 |
S12 | 500 | 89.94 | 6.00 | 13.49 | 400.05 | 400.03 | 0.95 | 2.00 | 41.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vesjolijs, A.; Stukalina, Y.; Zervina, O. Assessment of Socio-Economic Impacts of Hyperloop Technology on European Trade Routes. Economies 2025, 13, 65. https://doi.org/10.3390/economies13030065
Vesjolijs A, Stukalina Y, Zervina O. Assessment of Socio-Economic Impacts of Hyperloop Technology on European Trade Routes. Economies. 2025; 13(3):65. https://doi.org/10.3390/economies13030065
Chicago/Turabian StyleVesjolijs, Aleksejs, Yulia Stukalina, and Olga Zervina. 2025. "Assessment of Socio-Economic Impacts of Hyperloop Technology on European Trade Routes" Economies 13, no. 3: 65. https://doi.org/10.3390/economies13030065
APA StyleVesjolijs, A., Stukalina, Y., & Zervina, O. (2025). Assessment of Socio-Economic Impacts of Hyperloop Technology on European Trade Routes. Economies, 13(3), 65. https://doi.org/10.3390/economies13030065