Didactics of Mathematics Profile of Engineering Students: A Case Study in a Multimedia Engineering Degree
Abstract
:1. Introduction
2. Method
2.1. Description of the Context and Participants
2.2. Instruments
2.3. Procedure
3. Results
3.1. Didactic Contents
3.2. Algebraic Contents
4. Discussion and Conclusions
Conflicts of Interest
References
- Career Space Curriculum Development Guidelines. New ICT Curricula for the 21st Century: Designing Tomorrow’s Education. Available online: http://www.cedefop.europa.eu/files/2204_en.pdf (accessed on 5 January 2020).
- Casanovas, J.; Colom, J.M.; Morlán, I.; Pont, A.; Sancho, M.R. El libro blanco de la Ingeniería en Informática: El proyecto EICE. Actas Las X Jorn. Enseñ. Univ. Informática Jenui 2004, 1, 13–18. [Google Scholar]
- Marín, S.L.T.; Martínez Torres, R.; García, F.J.B.; Vázquez, S.G.; Vargas, E.; Ayala, V.G. Planning a Master’s Level Curriculum According to Career Space Recommendations Using Concept Mapping Techniques. Int. J. Technol. Des. Educ. 2006, 16, 237–252. [Google Scholar] [CrossRef] [Green Version]
- Conole, G.; Alevizou, P. A Literature Review of the Use of Web 2.0 Tools in Higher Education; HEA Academy: York, UK, 2010. [Google Scholar]
- Murphy, K.L.; Cifuentes, L. Using Web tools, collaborating, and learning online. Distance Educ. 2001, 22, 285–305. [Google Scholar] [CrossRef]
- Marcos-Jorquera, D.; Pertegal-Felices, M.L.; Jimeno-Morenilla, A.; Gilar-Corbi, R. An interdisciplinary practical for multimedia engineering students. IEEE Trans. Educ. 2017, 60, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Zeidmane, A.; Cernajeva, S. Interdisciplinary approach in engineering education. In Proceedings of the Global Engineering Education Conference (EDUCON), Amman, Jordan, 4–6 April 2011; pp. 1096–1101. [Google Scholar]
- Baumert, J.; Kunter, M.; Blum, W.; Brunner, M.; Voss, T.; Jordan, A.; Klusmann, U.; Krauss, S.; Neubrand, M.; Tsai, Y.-M. Teachers’ Mathematical Knowledge, Cognitive Activation in the Classroom, and Student Progress. Am. Educ. Res. J. 2010, 47, 133–180. [Google Scholar] [CrossRef] [Green Version]
- Boero, P.; Dapueto, C.; Parenti, L. Didactics of Mathematics and the Professional Knowledge of Teachers. In International Handbook of Mathematics Education; Kluwer International Handbooks of Education; Springer Nautre: Dordrecht, The Netherlands, 1996; Volume 4, pp. 1097–1121. ISBN 978-94-010-7155-0. [Google Scholar]
- Godino, J.D.; Aké, L.P.; Gonzato, M.; Wilhelmi, M.R. Niveles de algebrización de la actividad matemática escolar. Implicaciones para la formación de maestros. Enseñ. Las Cienc. Rev. Investig. Exp. Didácticas 2014, 32, 199–219. [Google Scholar] [CrossRef] [Green Version]
- Petrou, M.; Goulding, M. Conceptualising Teachers’ Mathematical Knowledge in Teaching. In Mathematical Knowledge in Teaching; Mathematics Education Library; Springer Nautre: Dordrecht, The Netherlands, 2011; pp. 9–25. ISBN 978-90-481-9765-1. [Google Scholar]
- Godino, J.D.; Aké, L.; Contreras, Á.; Estepa, A.; Fernandez, T.; Neto, T.; Wilhelmi, M.R.; Díaz, C.; Oliveras, M.L.; Lacasta, E. Diseño de un cuestionario para evaluar conocimientos didáctico-matemáticos sobre razonamiento algebraico elemental. Enseñ. Las Cienc. Rev. Investig. Exp. Didácticas 2015, 33, 127–150. [Google Scholar]
- Heuvel-Panhuizen, M.; van den Becker, J. Towards a Didactic Model for Assessment Design in Mathematics Education. In Second International Handbook of Mathematics Education; Springer International Handbooks of Education; Springer Nautre: Dordrecht, The Netherlands, 2003; pp. 689–716. ISBN 978-94-010-3951-2. [Google Scholar]
- Pino-Fan, L.R.; Assis, A.; Castro, W.F. Towards a Methodology for the Characterization of Teachers’ Didactic-Mathematical Knowledge. Eurasia J. Math. Sci. Technol. Educ. 2015, 11, 1429–1456. [Google Scholar]
- Godino, J.D. Categorías de análisis de los conocimientos del profesor de matemáticas. UNIÓN Rev. Iberoam. Educ. Matemática 2009, 20, 13–31. [Google Scholar]
Identifier | Competence |
---|---|
C1 | Solving mathematical problems that may arise in multimedia engineering by applying knowledge of algebra, geometry, differential and integral calculus, numerical methods, statistics and optimisation. |
C2 | Understanding and mastering the basic concepts of discrete mathematics, logic and its application to the automatic processing of information by means of computer systems and to the resolution of problems typical of engineering. |
C3 | Knowledge and understanding of the basics of computer use and programming, algorithmic and computational complexity. |
C4 | Knowledge and understanding of the structure, operation and interconnection of multimedia computer systems. |
C5 | Understanding and mastering the basic fundamentals of physics and its application to computing and signal processing for the resolution of problems typical of multimedia engineering. |
C6 | Knowledge and understanding of the concept of the company, its institutional and legal framework, as well as its organisation and management. |
C7 | Knowledge of the fundamentals of graphic expression and design, applying them to multimedia contents and developing the capacity for spatial vision. |
C8 | Knowledge and understanding of the concept of multimedia, the characteristics of multimedia language, the technologies involved, the organisation and management of multimedia systems and the socio-cultural impact on the information and knowledge society. |
Year | Type | Credits * | Subject | Competence |
---|---|---|---|---|
1 | Core | 6 | Matemathics I | B2 |
1 | Core | 6 | Matemathics II | B1 |
1 | Core | 6 | Statistics | B1 |
Didactic | Cognitive | ||||||
---|---|---|---|---|---|---|---|
Questions | DEPI | DCOG | DINS | DALG | CEST | CFUN | CMOD |
1a. Equality of arithmetic result. Explanation | X | X | |||||
1b. Equality of arithmetic result. Interpretation | X | X | |||||
2a. Equality of equivalence. Explanation | X | X | |||||
2b. Equality of equivalence. Properties | X | X | |||||
3a. Add three numbers. Generalisation | X | X | |||||
3b. Add three numbers. Type of justification | X | X | |||||
4a. Incomplete sum. Resolution and explanation | X | X | |||||
4b. Incomplete sum. Algebraic solution | X | X | |||||
4c. Incomplete sum. School solution | X | X | |||||
5a. Hexagonal pattern. Two terms | X | X | |||||
5b. Hexagonal pattern. Algebraic generalisation | X | X | |||||
5c. Hexagonal pattern. Types of algebraic objects | X | X | |||||
6a. Square pattern. General solution | X | X | |||||
6b. Square pattern. Possible techniques | X | X | |||||
7a. Cost of food. Resolution | X | X | |||||
7b. Cost of food. Arithmetic solution | X | X | |||||
7c. Cost of food. Arithmetic solution | X | X | |||||
8a. Interpretation of expressions | X | X | |||||
8b. Problems statement | X | X | X | X | |||
9a. Graphical functions. Justification | X | X | X | ||||
9b. Graphical functions. Object recognition | X | X | |||||
9c. Graphical functions. Curriculum | X | X | |||||
10a. Linear functions. Statements | X | X | X | ||||
10b. Linear functions. Algebra recognition | X | X | X |
GROUP | N | Mean | Standard Deviation | Mean Standard Error | |
---|---|---|---|---|---|
DCOG | MULTIMEDIA | 50 | 33.22 | 13.57 | 1.92 |
TEACHER | 91 | 42.09 | 1.63 | 0.17 | |
DEPI | MULTIMEDIA | 50 | 24.59 | 8.64 | 1.22 |
TEACHER | 91 | 15.15 | 0.97 | 0.10 | |
DINS | MULTIMEDIA | 50 | 26.17 | 15.21 | 2.15 |
TEACHER | 91 | 22.12 | 1.55 | 0.16 | |
DALG | MULTIMEDIA | 50 | 60.57 | 9.53 | 1.34 |
TEACHER | 91 | 42.24 | 1.54 | 0.16 | |
CEST | MULTIMEDIA | 50 | 27.89 | 7.50 | 1.06 |
TEACHER | 91 | 36.06 | 1.06 | 0.11 | |
CMOD | MULTIMEDIA | 50 | 39.94 | 16.49 | 2.33 |
TEACHER | 91 | 36.13 | 1.82 | 0.19 | |
CFUN | MULTIMEDIA | 50 | 46.84 | 9.20 | 1.30 |
TEACHER | 91 | 24.08 | 1.00 | 0.10 |
Variable | t | df | Significance | Difference * |
---|---|---|---|---|
DCOG | −4.60 | 49.78 | 0.000 ** | −8.87 |
DEPI | 7.69 | 49.68 | 0.000 ** | 9.44 |
DINS | 1.87 | 49.57 | 0.067 | 4.04 |
DALG | 13.50 | 50.42 | 0.000 ** | 18.33 |
Variable | t | df | Significance | Difference * |
---|---|---|---|---|
CEST | −7.65 | 50.09 | 0.000 ** | −8.16 |
CMOD | 1.63 | 49.66 | 0.110 | 3.81 |
CFUN | 17.42 | 49.64 | 0.000 ** | 22.75 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pertegal-Felices, M.L. Didactics of Mathematics Profile of Engineering Students: A Case Study in a Multimedia Engineering Degree. Educ. Sci. 2020, 10, 33. https://doi.org/10.3390/educsci10020033
Pertegal-Felices ML. Didactics of Mathematics Profile of Engineering Students: A Case Study in a Multimedia Engineering Degree. Education Sciences. 2020; 10(2):33. https://doi.org/10.3390/educsci10020033
Chicago/Turabian StylePertegal-Felices, Maria Luisa. 2020. "Didactics of Mathematics Profile of Engineering Students: A Case Study in a Multimedia Engineering Degree" Education Sciences 10, no. 2: 33. https://doi.org/10.3390/educsci10020033
APA StylePertegal-Felices, M. L. (2020). Didactics of Mathematics Profile of Engineering Students: A Case Study in a Multimedia Engineering Degree. Education Sciences, 10(2), 33. https://doi.org/10.3390/educsci10020033