Content-Based and Cognitive-Linguistic Analysis of Cell Membrane Biology: Educational Reconstruction of Scientific Conceptions
Abstract
:1. Introduction
2. Conceptual Framework
2.1. The Contributions of the Model of Educational Reconstruction (MER) for Identifying and Understanding the Scientific Core Ideas of Cell Membrane Biology
2.2. Contributions of Conceptual Metaphor Theory for Cognitive-linguistic Analysis
2.3. Status Quo of Cell-Biology Research in Science Education
- What core ideas of scientists’ conceptions on cell membranes can be identified from literature on cell biology?
- What is the embodied grounding of these conceptions?
3. Methods
3.1. Data Collection
3.2. Analysis
4. Results
4.1. Scientific Core Ideas of Cell Membrane Biology
- Cell membranes allow life to exist by enabling compartmentalisation;
- Chemical and physical properties allow for the biological function of cell membranes;
- Cell membranes are key factors for intercellular coordination in multicellular organisms.
4.1.1. Cell Membranes Allow Life to Exist by Enabling Compartmentalisation
4.1.2. Chemical and Physical Properties Allow for the Biological Function of Cell Membranes
4.1.3. Cell Membranes are Key Factors for Intercellular Coordination in Multicellular Organisms
4.2. Different Source Domains Together Structure Core Ideas on Cell Membrane Biology
4.3. The Everyday Meaning of Linguistic Expressions Connected to Cell Membrane Biology often Differs from Their Scientific Meaning
4.3.1. Terms with a Different Everyday Meaning
4.3.2. Terms with a Lack of Precision and Clarity
4.3.3. Terms Without an Obvious Reference to Every Life
5. Discussion
5.1. Scientific Core Ideas of Cell Membrane Biology are Interrelated by the Key Aspect of Evolution
5.2. Implications for Teaching
5.3. Limitations of the Study and Further Research
Author Contributions
Funding
Conflicts of Interest
References
- Paul, J.; Lederman, N.; Groß, J. Learning experimentation through science fairs. IJSE 2016, 38, 2367–2387. [Google Scholar] [CrossRef]
- Tibell, L.A.; Rundgren, C.J. Educational challenges of molecular life science: Characteristics and implications for education and research. Cbe Life Sci. Educ. 2010, 9, 25–33. [Google Scholar] [CrossRef]
- Howitt, S.; Anderson, T.; Costa, M.; Hamilton, S.; Wright, T. A concept inventory for Molecular Life Sciences: How will it help your teaching practice? Aust. Biochem. 2008, 39, 14–17. [Google Scholar]
- Güner-Akdoğan, G. Challenges in Molecular Life Science Education: Internationalization in Higher Education. Available online: https://network.febs.org/users/84971-gul-guner-akdogan/posts/45723-challenges-in-molecular-life-science-education-internationalization-in-higher-education (accessed on 11 February 2020).
- Yang, N.J.; Hinner, M.J. Getting across the cell membrane: An overview for small molecules, peptides, and proteins. Methods Mol. Biol. 2015, 1266, 29–53. [Google Scholar] [PubMed] [Green Version]
- Cournia, Z.; Allen, T.W.; Bondar, A.N. Membrane Protein Structure, Function and Dynamics: A perspective from Experiments and Theory. J. MEMB Biol. 2015, 248, 611–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sällman Almén, M.; Nordström, K.J.; Schiöth, H.B. Mapping the human membrane proteine proteome: A majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol. 2009, 7. [Google Scholar]
- Adnan Shereen, M.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J. Adv. Res. 2020, 24, 91–98. [Google Scholar]
- Duit, R.; Gropengießer, H.; Kattmann, U.; Komorek, M.; Parchmann, I. The Model of Educational Reconstruction—A framework for improving teaching and learning science. Sci. Educ. Res. Pract. Eur. 2012, 5, 13–37. [Google Scholar]
- Mayring, P. Qualitative Content Analysis. In A Companion to Qualitative Research; Flick, U., von Kardoff, E., Steinke, I., Eds.; SAGE Publications Ltd.: London, UK, 2004; Volume 1, pp. 266–269. [Google Scholar]
- Campbell, N.A.; Reece, J.B. Campbell Biology, 9th ed.; Pearson: Boston, MA, USA, 2011. [Google Scholar]
- Alberts, B.; Bray, D.; Hopkin, K.; Johnson, A.; Raff, M.; Lewis, J.; Roberts, K.; Walter, P. Essential CELL BIOLOGY; Garland Science: New York, NY, USA, 2014; Volume 4. [Google Scholar]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell, 5th ed.; Garland Science: New York, NY, USA, 2008. [Google Scholar]
- Nicolson, G.L. The Fluid—Mosaic Model of Membrane Structure: Still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim. Biophys. Acta (BBA) Biomembr. 2014, 1838, 1451–1466. [Google Scholar] [CrossRef] [Green Version]
- Watson, H. Biological membranes. Essays Biochem. 2015, 59, 43–69. [Google Scholar] [CrossRef]
- Cesares, D.; Escriba, P.; Rossello, C. Membrane Lipid Composition: Effect on Membrane and Organelle Structure, Function and Compartmentalization and Therapeutic Avenues. Int. J. Mol. Sci. 2019. [Google Scholar]
- Baenziger, J.; Ryan, S.; Goodreid, M.; Vuong, N.Q.; Sturgeon, R.; da Costa, C. Lipid composition alters drug action at the nicotinic acethylcholine receptor. Mol. Pharm. 2008, 73, 880–890. [Google Scholar]
- Kampen, K. Membrane Proteins: The Key Players of a Cancer Cell. J. Membr. Biol. 2011, 242, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Steelman, L.S.; Chappell, W.H.; Abrams, S.L.; Kempf, R.C.; Long, J.; Laidler, P.; Mijatovic, S.; Maksimovic-Ivanic, D.; Stivala, F.; Mazzarino, M.C.; et al. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging 2011, 3, 192–222. [Google Scholar] [CrossRef] [Green Version]
- Wiig, H.; Swartz, M.A. Interstitial Fluid and Lymph Formation and Transport: Physiological Regulation and Roles in Inflammation and Cancer. Physiol. Rev. 2012, 92, 1005–1060. [Google Scholar] [CrossRef]
- Gorter, E.; Grendel, F. On biomolecular layers of lipids on chromocytes of blood. J. Exp. Med. 1925, 41, 429–443. [Google Scholar] [CrossRef] [Green Version]
- Danielli, J.F.; Dawson, H. A contribution to the theory of permeability of thin films. J. Cell. Comp. Physiol 1935, 5, 495–508. [Google Scholar] [CrossRef]
- Lakoff, G.; Johnson, M. Metaphors We Live By; University of Chicago Press: Chicago, IL, USA, 1980. [Google Scholar]
- Gropengießer, H. Theorie des erfahrungsbasierten Verstehens. In Theorien in der Biologiedidaktischen Forschung; Krüger, D., Vogt, H., Eds.; Springer: Berlin, Germany, 2007; pp. 105–116. [Google Scholar]
- Niebert, K.; Gropengießer, H. Understanding and communicating climate change in metaphors. Environ. Educ. Res. 2013, 19, 282–302. [Google Scholar] [CrossRef]
- Gerstenmeier, J.; Mandl, H. Wissenserwerb unter konstruktivistischer Perspektive. Z. Für Pädagogik 1995, 41, 867–888. [Google Scholar]
- Duit, R.; Treagust, D. Conceptual change: A powerful framework for improving science teaching and learning. IJSE 2003, 25, 671–688. [Google Scholar] [CrossRef]
- Kattmann, U. Didaktische Rekonstruktion—Eine praktische Theorie. In Theorien in der Biologiedidaktischen Forschung, Springer-Lehrbuch; Krüger, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Duit, R. Teaching and Learning the Physics Energy Concept. In Teaching and Learning of Energy in K—12 Education; Chen, R.F., Eisenkraft, A., Fortus, D., Krajcik, J., Neumann, K., Nordine, J.C., Scheff, A., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 67–85. [Google Scholar]
- Baalmann, W.; Frerichs, V.; Weitzel, h.; Gropengießer, H.; Kattmann, U. Schülervorstellungen zu Prozessen der Anpassung—Ergebnisse einer Interviewstudie im Rahmen der Didaktischen Rekonstruktion. Z. Für Didakt. Der Nat. 2004, 10, 7–28. [Google Scholar]
- Messig, D.; Groß, J. Understanding Plant Nutrition—The Genesis of Students’ Conceptions and the Implications for Teaching Photosynthesis. Educ. Sci. 2018, 8, 132. [Google Scholar]
- Niebert, K.; Gropengießer, H. The Model of Educational Reconstruction—A framework for the design of theory-based content specific interventions. The example of climate change. In Educational Design Research; Plomp, T., Nieveen, N., Eds.; SLO: Enschede, the Netherlands, 2013; pp. 511–531. [Google Scholar]
- Riemeier, T.; Gropengießer, H. On the Roots of Difficulties in Learning about Cell Division: Process-Based Analysis of Students’ Conceptual Development in Teaching Experiments. Int. J. Sci. Educ. 2008, 30, 923–939. [Google Scholar] [CrossRef]
- Niebert, K.; Riemeier, T.; Gropengiesser, H. The Hidden Hand that Shapes Conceptual Understanding: Choosing Effective Representations for Teaching Cell Division and Climate Change. In Multiple Representations in Biological Education; Springer: Dordrecht, The Netherlands, 2013; Volume 7, pp. 293–310. [Google Scholar]
- Riemeier, T. Schuelervorstellungen von Zellen, Teilung und Wachstum. Z. Für Didakt. Der Nat. 2005, 11, 41–55. [Google Scholar]
- Flores, F.; Tovar, M.E.; Gallegos, L. Representation of the cell and its processes in high school students: An integrated view. Int. J. Sci. Educ. 2003, 25, 269–286. [Google Scholar]
- Johnson, M. The Meaning of the Body: Aesthetics of Human Understanding; University of Chicago Press: Chicago, IL, USA, 2007. [Google Scholar] [CrossRef]
- Lakoff, G.; Gallese, V. The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cogn. Neuropsychol. 2005, 22, 455–479. [Google Scholar]
- Kandel, E.R.; Schwartz, J.H.; Jessel, T.; Siegelbaum, S.; Hudspeth, A.J. Principles of Neural Science; Mc-Graw-Hill: New York, NY, USA, 2013; Volume 5. [Google Scholar]
- Roth, G. Das Gehirn und Seine Wirklichkeit: Kognitive Neurobiologie und Ihre Philosophischen Konsequenzen; Suhrkamp: Frankfurt am Main, Germany, 1997. [Google Scholar]
- Johnson, M. The philosophical significance of image schemas. In From Perception to Meaning: Image Schemas in Cognitive Linguistics; Hampe, B., Ed.; Mouton de Gruyter: Berlin, NY, USA, 2005; pp. 15–33. [Google Scholar]
- Hampe, B. Introduction. In From Perception to Meaning: Image Schemas in Cognitive Linguistics; Hampe, B., Ed.; Mouton de Gruyter: Berlin, NY, USA, 2005; pp. 1–14. [Google Scholar]
- Lakoff, G. Women, Fire and Dangerous Things: What Categories Reveal about the Mind; University of Chicago Press: Chicago, IL, USA, 1987. [Google Scholar]
- Rohrer, T. Image schemata in the brain. In From Perception to Meaning: Image Schemas in Cognitive Linguistics; Hampe, B., Ed.; Mouton de Gruyter: Berlin, NY, USA, 2005; pp. 165–196. [Google Scholar]
- Kattmann, U. Schüler Besser Verstehen: Alltagsvorstellungen im Biologieunterricht; Aulis Verlag: Hallbergmoos, Germany, 2016. [Google Scholar]
- Gropengießer, H.; Groß, J. Lernstrategien für das Verstehen biologischer Phänomene: Die Rolle der verkörperten Schemata und Metaphern in der Vermittlung. In Biologiedidaktische Forschung: Erträge für die Praxis; Groß, J., Hammann, M., Schmiemann, P., Eds.; Springer Spektrum: Heidelberg, Germany, 2019; pp. 59–76. [Google Scholar]
- Cienki, A.J. Some properties and groupings of image schemas. In Lexical and Syntactical Constructions and the Construction of Meaning; Verspoor, K.D.L., Sweetser, E., Eds.; John Benjamins: Amsterdam, The Netherlands, 1997; pp. 3–15. [Google Scholar]
- Lakoff, G.; Núñez, R.E. Where Mathematics Comes From: How the Embodied Mind Brings Mathematics into Being; Basic Books: New York, NY, USA, 2000. [Google Scholar]
- Messig, D. Didaktische Rekonstruktion der Pflanzenernährung; Monography, Otto-Friedrich-Universität: Bamberg, Germany, 2019. [Google Scholar]
- Rundgren, C.-J.; Tibell, L. Critical Features of Visualizations of Transport through the Cell Membrane—An Empirical Study of Upper Secondary and Tertiary Students’ Meaning-Making of a Still Image and an Animation. IJSME 2010, 8, 223–246. [Google Scholar] [CrossRef] [Green Version]
- Lakoff, G.; Johnson, M. Metaphors We Live By; University of Chicago Press: Chicago, IL, USA, 2008. [Google Scholar]
- Zohar, A.; Ginossar, S. Lifting the taboo regarding teleology and anthropomorphism in biology education—Heretical suggestions. Sci. Educ. 1998, 82, 679–697. [Google Scholar] [CrossRef]
- Kattmann, U. Learning biology by means of anthropomorphic conceptions? In Biology in Context: Learning and Teaching for 21st Century; Hammann, M., Ed.; Institute of Education, University of London: London, UK, 2007; pp. 21–26. [Google Scholar]
- Hasni, A.; Roy, P.; Dumais, N. The Teaching and Learning of Diffusion and Osmosis: What Can We Learn from Analysis of Classroom Practices? A Case Study. Eurasia J. Math. Sci. Technol. Edu. 2016, 12, 1507–1531. [Google Scholar] [CrossRef]
- Garvin-Doxas, K.; Klymkowsky, M.; Elrod, S. Building, using, and maximizing the impact of concept inventories in the biological sciences: Report on a National Science Foundation sponsored conference on the construction of concept inventories in the biological sciences. Cbe Life Sci. Educ. 2007, 6, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Marek, E.; Cruse Cowan, C.; Cavallo, A. Students’ Misconceptions about Diffusion: How Can They Be Eliminated? University of California Press: Los Angeles, CA, USA, 1994; Volume 56. [Google Scholar]
- Van Dijk, T.A. Textwissenschaft: Eine Interdisziplinäre Einführung; Walter de Gruyter: Berlin, Germany, 1980. [Google Scholar]
- Schmitt, R. Die Methode der Systematischen Metaphernanalyse; Schmitt, R., Ed.; Springer VS: Wiesbaden, Germany, 2017; pp. 439–563. [Google Scholar]
- Lakoff, G.; Johnson, M. Philosophy in the Flesh: The Embodied Mind and Its Challenge to Western Thought; Basic Books: New York, NY, USA, 1999. [Google Scholar]
- Winston, M.E.; Chaffin, R.; Herrmann, D. A taxonomy of part-whole relations. Cogn. Sci. 1987, 11, 417–444. [Google Scholar] [CrossRef]
- Kutz, O.; Neuhaus, F.; Hedblom, M.M. Choosing the Right Path: Image Schema Theory as a Foundation for Concept Invention. J. Artif. Gen. Intell. 2015, 6, 21–54. [Google Scholar]
- Sáenz, F. The Object Image-Schema and Other Dependent Schemas. Atlantis Rev. Asoc. Española Estud. Anglo-Norteam. 2002, 24, 183–202. [Google Scholar]
- Lexico.com. LEXICO Powered by Oxford. Available online: https://www.lexico.com/en/definition/layer (accessed on 1 February 2020).
- Bremerich-Vos, A. Populäre rhetorische Ratgeber: Historisch-systematische Untersuchungen; Walter de Gruyter: Berlin, Germany, 2011; Volume 112. [Google Scholar]
- Singer, S.J.; Nicolson, G.L. The fluid mosaic model of the structure of cell membranes. Science 1972, 175, 720–731. [Google Scholar] [CrossRef] [PubMed]
- Lakoff, G.; Dodge, E. Image schemas: From linguistic analysis to neural grounding. In From Perception to Meaning: Image Schemas in Cognitive Linguistics; Hampe, B., Ed.; Mouton de Gruyter: Berlin, NY, USA, 2005; pp. 57–93. [Google Scholar]
- Kattmann, U. Das Lernen von Namen, Begriffen und Konzepten-Grundlagen biologischer Terminologie am Beispiel Zellenlehre. MNU 1993, 46, 275–285. [Google Scholar]
- Gropengießer, H. Qualitative Inhaltsanalyse in der fachdidaktischen Lern-Lehrforschung. In Die Praxis der Qualitativen Inhaltsnalyse; Mayring, P., Glaeser-Zikuda, M., Eds.; Beltz: Weinheim und Basel, Germany, 2005; pp. 172–189. [Google Scholar]
- Marek, E.A.; Cowan, C.C.; Cavallo, A.M.L. Students’ Misconceptions about Diffusion: How Can They Be Eliminated? Am. Biol. Teach. 1994, 56, 74–77. [Google Scholar] [CrossRef]
- Zlatev, J. What’s in a schema? Bodily mimesis and the grounding of language. In From Perception to Meaning: Image Schemas in Cognitive Linguistics; Hampe, B., Ed.; Mouton de Gruyter: Berlin, NY, USA, 2005; pp. 313–343. [Google Scholar]
- Hammann, M. Organisationsebenen biologischer Systeme unterscheiden und vernetzen: Empirische Befunde und Empfehlungen für die Praxis. In Biologiedidaktische Forschung: Erträge für die Praxis; Groß, J., Hammann, M., Schmiemann, P., Zabel, J., Eds.; Springer Spektrum: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
Text Passage | Explanation | Source Domain (Image Schemas) | Target Domain | Everyday Meaning of Linguistic Expressions [63] |
---|---|---|---|---|
“The plasma membrane is the edge of life, the boundary that separates the living cell from its surroundings”. “It controls trafficinto and out of the cell it surrounds” | The prepositions into and out express movement of something separated by a barrier. Hence the goal of this is located inside, and outside, the cell. The embodied CONTAINER schema seems here applied together with the SOURCE-PATH-GOAL schema in order to understand the abstract plasma membrane metaphorically as a barrier between two environments. At the same time the PERSON schema seems to serve as the basis for the metaphorical understanding of plasma membranes as “controlling” guards. | container source-path-goal (container-flow) person | The function and task of the plasma membrane (PM) as a barrier and gatekeeper between the cell and its surrounding | Edge: the outside limit of an object Boundary: A line which marks the limits of an area; a dividing line |
Core Idea | Image Schema | Experiential Grounding (Source Domain) | Target Domain | (Anchor Examples [11]) |
---|---|---|---|---|
Cell membranes allow life to exist by enabling compartmentalisation | container | Objects | The plasma membrane as outer boundary | “The plasma membrane is the edge of life, the boundary that separates the living cell from its surroundings”. |
person container-flow | Human characteristics | The plasma membrane as facilitator for discrimination of substance exchange | “the plasma membrane controls traffic into and out of the cell it surrounds”. | |
path-source-path-goal -cycle-process container-flow container | Directional bodily movement/objects | The formation of membranes as prerequisite for the evolution of life | “One of the earliest episodes in the evolution of life may have been the formation of a membrane that enclosed a solution different from the surrounding.” | |
transformation | Objects | The translation of genetic information into proteins | “..a gene that codes for an immune cell-surface protein called CCR5”. |
Core Idea | Image Schema | Experiential Grounding (Source Domain) | Target Domain | (Anchor Examples [11]) |
---|---|---|---|---|
Chemical and physical properties allow for the biological function of cell membranes | person container-flow | Directional bodily movement/objects Human characteristics | Cells’ need for nutrients, and their transport into, and out of cells | “The resources that animal cells require, such as nutrients and oxygen (O2), enter the cytoplasm by crossing the plasma membrane, metabolic by-products, such as carbon dioxide (CO2), exit the cell by crossing the same membrane”. |
component/integral-object | Objects | Membrane function as a result of the interplay of its different components | “Phospholipids form the main fabric of the membrane, but proteins determine most of the membrane’s functions”. | |
locomotion container | Non directional movement Objects | Random substance movement | ..”the movement of molecules of any substance so that they spread out evenly into the available space. Each molecule moves randomly” | |
person force (enablement) container | Human characteristics Bodily movement Objects | Active transport | “To pump a solute across a membrane against its gradient requires work; the cell must expend energy”. | |
force process component/integral- object | Directional bodily movement/objects | The process of developing a scientific model | The acceptance or rejection of a model depends on how well it fits observations and explains experimental results. |
Core Idea | Image Schema | Experiential Grounding (Source Domain) | Target Domain | Anchor Examples [11,18] |
---|---|---|---|---|
Cell membranes are key factors for intercellular coordination in multicellular organisms | person force (blockage) container | Directional bodily movement/objects Human characteristics | Different cell types have different membrane protein composition | “Over time we isolated and characterized more and more different cell types on the basis of the proteins they express on their cell membrane”. |
person contact | Human characteristics | Membrane carbohydrates’ role in cell-cell recognition | “Cell-cell recognition, a cell’s ability to distinguish one type of neighboring cell from another, is crucial to the functioning of an organism.” | |
balance container-flow | Non-directional bodily movement | Balanced substance movement leads to equilibrium | … be a dynamic equilibrium, with as many dye molecules crossing the membrane each second on one direction as in the other”. | |
transformation | Objects | Protein synthesis | “Comparing their genes with the genes of infected individuals, researchers discovered that resistant individuals have an unusual form of a gene that codes for an immune cell-surface protein called CCR5”. | |
source path goal container | Directional bodily movement/objects | Membrane potential as source for energy | “The membrane potential acts like a battery; an energy source that affects the traffic of all charged substances across the membrane”. |
Scientific Terms | Reasons for Ambiguity |
---|---|
barrier, edge of life compartmentalisation environment hierarchy the membrane “allows“ and “controls” substance transport is “traffic” | everyday meaning differs from scientific meaning |
Amphiphile Bilayer Equilibrium Homeostasis Concentration gradient Gene expression Fluid mosaic | unclear everyday meaning |
biological (membrane), cell membrane; plasma membrane receptor, protein, hormone | lack of clarity and precision |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johann, L.; Groß, J.; Messig, D.; Rusk, F. Content-Based and Cognitive-Linguistic Analysis of Cell Membrane Biology: Educational Reconstruction of Scientific Conceptions. Educ. Sci. 2020, 10, 151. https://doi.org/10.3390/educsci10060151
Johann L, Groß J, Messig D, Rusk F. Content-Based and Cognitive-Linguistic Analysis of Cell Membrane Biology: Educational Reconstruction of Scientific Conceptions. Education Sciences. 2020; 10(6):151. https://doi.org/10.3390/educsci10060151
Chicago/Turabian StyleJohann, Leonie, Jorge Groß, Denis Messig, and Fredrik Rusk. 2020. "Content-Based and Cognitive-Linguistic Analysis of Cell Membrane Biology: Educational Reconstruction of Scientific Conceptions" Education Sciences 10, no. 6: 151. https://doi.org/10.3390/educsci10060151
APA StyleJohann, L., Groß, J., Messig, D., & Rusk, F. (2020). Content-Based and Cognitive-Linguistic Analysis of Cell Membrane Biology: Educational Reconstruction of Scientific Conceptions. Education Sciences, 10(6), 151. https://doi.org/10.3390/educsci10060151