The Acquisition of Computational Thinking through Mentoring: An Exploratory Study
Abstract
:1. Introduction
1.1. Robotics and Computational Thinking: The STEAM Approach
1.2. Mentoring
1.3. Aims
- Are second-grade students able to learn CT skills through a mentoring process?
- What elements of the teaching–learning process are enhanced in a mentoring experience between fourth- and second-grade students?
2. Materials and Methods
2.1. Participants
2.2. Materials
2.2.1. Bee-Bot
- Two turn instructions (right or left): Make the robot turn 90 degrees (clockwise or anti-clockwise) over itself.
- Forward and Reverse: Correspond to straight-line movements of the robot of 15 cm; the robot does not change its orientation.
- GO: Executes the instructions introduced up to that moment.
- PAUSE: Executes a one-second stop between the instructions where this instruction is located.
- CLEAR: Clears all sequenced instructions.
2.2.2. The Coding Box and the Path Tasks
2.2.3. CT Assessment Instrument
2.3. Mentoring Experience Design
2.4. Mentoring Experience Implementation
3. Results and Discussion
3.1. Impact of the Mentoring Experience
3.2. CT Assessment
4. Final Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Wing, J.M. Computational Thinking. Commun. ACM 2006, 49, 33–35. [Google Scholar] [CrossRef]
- Bers, M.U. Coding as another language: A pedagogical approach for teaching computer science in early childhood. J. Comput. Educ. 2019, 6, 499–528. [Google Scholar] [CrossRef]
- Grover, S.; Pea, R. Computational Thinking in K-12: A Review of the State of the Field. Educ. Res. 2013, 42, 38–43. [Google Scholar] [CrossRef]
- Weintrop, D. Block-based programming in computer science education. Commun. ACM 2019, 62, 22–25. [Google Scholar] [CrossRef]
- González-González, C.S. State of the art in the teaching of computational thinking and programming in childhood education. Educ. Knowl. Soc. 2019, 20, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, M.; Clarke-Midura, J.; Shumway, J.F.; Lee, V.R. An Emerging Technology Report on Computational Toys in Early Childhood. Technol. Knowl. Learn. 2020, 25, 213–224. [Google Scholar] [CrossRef]
- MacDonald, L.; Sherman, A. Student perspectives on mentoring in a science outreach project. Can. J. Sci. Math. Technol. Educ. 2007, 7, 133–147. [Google Scholar] [CrossRef]
- Broome, T.H., Jr. The heroic mentorship. Sci. Commun. 1996, 17, 398–420. [Google Scholar] [CrossRef]
- Grant-Thompson, S.; Atkinson, D. Cross-cultural mentor effectiveness and African-American male students. J. Black Psychol. 1997, 23, 120–134. [Google Scholar] [CrossRef]
- Templin, M.; Doran, R.; Engemann, J. A locally based science mentorship program for high achieving students: Unearthing issues that influence affective outcomes. Sch. Sci. Math. 1999, 99, 205–212. [Google Scholar] [CrossRef]
- Hagenow, N.; McCrae, M. A mentoring relationship: Two perspectives. Nurs. Manag. 1994, 25, 42. [Google Scholar] [CrossRef]
- Freeman, A.; Adams Becker, S.; Cummins, M.; Davis, A.; Hall Giesinger, C. NMC/CoSN Horizon Report: 2017 K–12 Edition; The New Media Consortium: Austin, TX, USA, 2017; ISBN 978-0-9988650-3-4. [Google Scholar]
- Arís, N.; Orcos, L. Educational Robotics in the Stage of Secondary Education: Empirical Study on Motivation and STEM Skills. Educ. Sci. 2019, 9, 73. [Google Scholar] [CrossRef] [Green Version]
- Asghar, A.; Ellington, R.; Rice, E.; Johnson, F.; Prime, G.M. Supporting STEM Education in Secondary Science Contexts. Interdiscip. J. Probl. Based Learn. 2012, 6. [Google Scholar] [CrossRef] [Green Version]
- Julià, C.; Antolì, J.Ò. Enhancing spatial ability and mechanical reasoning through a STEM course. Int. J. Technol. Des. Educ. 2018, 28, 957–983. [Google Scholar] [CrossRef]
- Mellén, J.; Angervall, P. Gender and choice: Differentiating options in Swedish upper secondary STEM programmes. J. Educ. Policy 2020, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Moreno-León, J.; Robles, G.; Román-González, M. Conociendo a Van Gogh a través de la programación de robots en infantil. Validación de un instrumento de evaluación del aprendizaje. Congreso Internacional de Innovación y Tecnología Educativa en Educación Infantil 2014. [Google Scholar] [CrossRef]
- Sullivan, A.; Strawhacker, A.; Bers, M.U. Dancing, Drawing, and Dramatic Robots: Integrating Robotics and the Arts to Teach Foundational STEAM Concepts to Young Children. In Robotics in STEM Education: Redesigning the Learning Experience; Khine, M.S., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 231–260. [Google Scholar] [CrossRef]
- Sánchez, E.; Cózar, R.; González-Calero, J.A. Robotics in the teaching of knowledge and interaction with the environment. A formative study in Early Childhood Education. Revista Interuniversitaria de Formación del Profesorado 2019, 94, 11–28. [Google Scholar]
- Daniela, L.; Lytras, M.D. Educational Robotics for Inclusive Education. Technol. Knowl. Learn. 2019, 24, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Bers, M.U.; Seddighin, S.; Sullivan, A. Ready for Robotics: Bringing Together the T and E of STEM in Early Childhood Teacher Education. J. Technol. Teach. Educ. 2013, 21, 355–377. [Google Scholar]
- Khine, M.S. (Ed.) Robotics in STEM Education: Redesigning the Learning Experience; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Bers, M.U. Blocks to Robots: Learning with Technology in the Early Childhood Classroom; Teachers College Press: New York, NY, USA, 2008. [Google Scholar]
- Sisman, B.; Kucuk, S.; Yaman, Y. The Effects of Robotics Training on Children’s Spatial Ability and Attitude Toward STEM. Int. J. Soc. Robot. 2020. [Google Scholar] [CrossRef]
- Bers, M.U. Tangible Kindergarten: Learning How to Program Robots in Early Childhood. In The Go-To Guide for Engineering Curricula PreK-5: Choosing and Using the Best Instructional Materials for Your Students; Sneider, C.I., Ed.; Corwin: Thousand Oaks, CA, USA, 2014; pp. 133–145. [Google Scholar]
- Papert, S. Mindstorms—Children, Computers and Powerful Ideas; Basic Books Publishers: New York, NY, USA, 1980. [Google Scholar]
- Chao, P.Y. Exploring students’ computational practice, design and performance of problem-solving through a visual programming environment. Comput. Educ. 2016, 95, 202–215. [Google Scholar] [CrossRef]
- Çiftci, S.; Bildiren, A. The effect of coding courses on the cognitive abilities and problem-solving skills of preschool children. Comput. Sci. Educ. 2020, 30, 3–21. [Google Scholar] [CrossRef]
- Clements, D.H.; Gullo, D.F. Effects of computer programming on young children’s cognition. J. Educ. Psychol. 1984, 76, 1051–1058. [Google Scholar] [CrossRef]
- Lye, S.Y.; Koh, J.H.L. Review on teaching and learning of computational thinking through programming: What is next for K-12? Comput. Hum. Behav. 2014, 41, 51–61. [Google Scholar] [CrossRef]
- Newell, A.; Simon, H.A. Human Problem Solving; Prentice-Hall: Englewood Cliffs, NJ, USA, 1972. [Google Scholar]
- Drijvers, P.; Kieran, C.; Mariotti, M.A.; Ainley, J.; Andresen, M.; Cheung, Y.; Dana-Picard, T.; Gueudet, G.; Kidron, I.; Leung, A.; et al. Integrating Technology into Mathematics Education: Theoretical Perspectives. In Mathematics Education and Technology-Rethinking the Terrain; Hoyles, C., Lagrange, J.B., Eds.; Springer: New York, NY, USA, 2010; pp. 89–132. [Google Scholar] [CrossRef]
- Kaput, J.J. Technology and Mathematics Education. In Handbook of Research on Mathematics Teaching and Learning; Grouws, D.A., Ed.; NCTM: Reston, VA, USA, 1992; pp. 511–556. [Google Scholar]
- Wallace, K.J.V. Development of Workforce Skills: Student Perceptions of Mentoring in FIRST Robotics. Ph.D. Dissertation, The University of Southern Mississippi, Hattiesburg, MS, USA, 2014. [Google Scholar]
- Hamilton, M.; Hamilton, S. Why mentoring in the workplace works. New Dir. Youth Dev. 2002, 93, 59–89. [Google Scholar] [CrossRef]
- Cook, T.D.; Campbell, D.T. Quasi-Experimentation: Design & Analysis Issues in Field Settings; Houghton Mifflin: Boston, MA, USA, 1979. [Google Scholar]
- Campbell, D.T.; Stanley, J.C. Experimental and Quasi-Experimental Designs for Research; Rand McNally: Chicago, IL, USA, 1966. [Google Scholar]
- Pérez, G.; Diago, P.D. Estudio exploratorio sobre lenguajes simbólicos de programación en tareas de resolución de problemas con Bee-bot. Magister Revista de Formación del Profesorado e Investigación Educativa 2018, 30, 9–20. [Google Scholar]
- Strawhacker, A.; Bers, M.U. “I want my robot to look for food”: Comparing Kindergartner’s programming comprehension using tangible, graphic, and hybrid user interfaces. Int. J. Technol. Des. Educ. 2015, 25, 293–319. [Google Scholar] [CrossRef]
- Di Lieto, M.C.; Inguaggiato, E.; Castro, E.; Cecchi, F.; Cioni, G.; Dell’Omo, M.; Laschi, C.; Pecini, C.; Santerini, G.; Sgandurra, G.; et al. Educational Robotics intervention on Executive Functions in preschool children: A pilot study. Comput. Hum. Behav. 2017, 71, 16–23. [Google Scholar] [CrossRef]
- Sabena, C. Task design in a paper and pencil and technological environment to promote inclusive learning: An example with polygonal numbers. In Early Child Spatial Development: A Teaching Experiment with Programmable Robots; Aldon, G., Hitt, F., Bazzini, L., Gellert, U., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 13–30. [Google Scholar] [CrossRef]
- Stoeckelmayr, K.; Tesar, M.; Hofmann, A. Kindergarten children programming robots: A first attempt. Int. Conf. Robot. Educ. 2011, 2, 185–192. [Google Scholar]
- Diago, P.D.; Arnau, D.; González-Calero, J.A. Desarrollo del pensamiento computacional en Educación Infantil mediante la resolución de problemas en entornos tecnológicos. In Tendencias y Tecnologías Emergentes en Investigación e Innovación Educativa; Cózar, R., González-Calero, J.A., Eds.; Editorial Graó: Barcelona, Spain, 2018; pp. 197–214. [Google Scholar]
- Diago, P.D.; Arnau, D.; González-Calero, J.A. Elementos de resolución de problemas en primeras edades escolares con Bee-bot. Edma 0-6: Educación Matemática en la Infancia 2018, 7, 12–41. [Google Scholar]
- Román-González, M.; Pérez-González, J.C.; Jiménez-Fernández, C. Which cognitive abilities underlie computational thinking? Criterion validity of the Computational Thinking Test. Comput. Hum. Behav. 2017, 72, 678–691. [Google Scholar] [CrossRef]
- Yin, R.K. Case Study Research: Design and Methods; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 2009. [Google Scholar]
- Dolenc, N.R.; Mitchell, C.E.; Tai, R.H. Hands Off: Mentoring a Student-Led Robotics Team. Int. J. Sci. Educ. Part B 2016, 6, 188–212. [Google Scholar] [CrossRef]
- Karp, T.; Maloney, P. Exciting Young Students In Grades K-8 About STEM Through An Afterschool Robotics Challenge. Am. J. Eng. Educ. 2013, 4, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Mosley, P.; Scollins, L.; Van, P. Robotic Cooperative Learning Promotes Student STEM Interest. Am. J. Eng. Educ. 2016, 7, 117–128. [Google Scholar] [CrossRef]
Session 1. Introduction about robots: What does coding mean? |
What is Bee-bot? Buttons and movements |
Coding with Bee-bot: Use of the coding box |
Completing a path task with Bee-bot |
Session 2. Brief reminder about the use of Bee-bot |
Path task resolution with Bee-bot and the coding box |
Task 1 | Task 2 | Task 3 | Task 4 | Task 5 | Task 6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cervera, N.; Diago, P.D.; Orcos, L.; Yáñez, D.F. The Acquisition of Computational Thinking through Mentoring: An Exploratory Study. Educ. Sci. 2020, 10, 202. https://doi.org/10.3390/educsci10080202
Cervera N, Diago PD, Orcos L, Yáñez DF. The Acquisition of Computational Thinking through Mentoring: An Exploratory Study. Education Sciences. 2020; 10(8):202. https://doi.org/10.3390/educsci10080202
Chicago/Turabian StyleCervera, Núria, Pascual D. Diago, Lara Orcos, and Dionisio F. Yáñez. 2020. "The Acquisition of Computational Thinking through Mentoring: An Exploratory Study" Education Sciences 10, no. 8: 202. https://doi.org/10.3390/educsci10080202
APA StyleCervera, N., Diago, P. D., Orcos, L., & Yáñez, D. F. (2020). The Acquisition of Computational Thinking through Mentoring: An Exploratory Study. Education Sciences, 10(8), 202. https://doi.org/10.3390/educsci10080202