The Comparison of Students’ Self-Assessment, Gender, and Programming-Oriented Spreadsheet Skills
Abstract
:1. Introduction
1.1. Should We Teach Students to Program?
- Schools have made programming isolated and disconnected.
- Schools should adopt a “whole programming” approach.
- expanded to end-user computing;
- socially sanctioned for intellectual advances for everyone; and
- embedded in a rich cognitive context.
- making programming easier to learn and do; and
- expressiveness and usefulness.
1.2. Problems We Are Faced with
- is a category of informal knowledge distinct from “scientific medicine [pedagogy]”;
- is usually unwritten and transmitted orally;
- is not necessarily integrated into a coherent system, and may be contradictory;
- is sometimes associated with quackery;
- [but]… it may also preserve important knowledge and cultural tradition from the past.
- “I’ve been teaching for N years, and…”
- “When I was a student…”
2. Mini Competence Tests
- general questions;
- spreadsheet functions; and
- mini problems to solve.
2.1. General Section
- file management;
- text management;
- spreadsheet management;
- database management;
- algorithms and programming; and
- resource (citation) management.
- solving ECDL tests (ECDL);
- solving maturation exam tests (maturation);
- formulating algorithms (algorithm1);
- writing and drawing algorithms (algorithm2);
- creating multilevel functions (multilevel functions);
- working alone, based on a list of tasks (alone);
- programming;
- typing spreadsheet tables (typing);
- checking the correctness of outputs (output); and
- playing.
2.2. Spreadsheet Functions
- make students learn functions; and
- teach these functions at all or just let students navigate on the user interface.
2.3. Spreadsheet Problems and Their SOLO Categories
- The task is ignored or the answer has no relation either to the task or the correct answer (pre-structural, P).
- One of the items is recognizable (uni-structural, U).
- Several items are correct, but the connection(s) between these items are not formulated (multi-structural, M).
- Both the items and the connection between them are clearly formulated (relational, R).
3. Spreadsheet Problems Presented in the Test
3.1. Formula Completion
3.2. Order of Execution
- Calculating the average is the first step, one item.
- Calculating the average, one item.
- Calculating the average is followed by the subtraction, one item.
- The subtraction is followed by the yes/no question, one item.
- The question is followed by calling the IF() function, one item.
- Calling the IF() function is the last step, one item.
3.3. Array Formula Task
4. The Sample
5. Hypotheses
6. Results
6.1. Students’ Results in the Spreadsheet Tasks
6.2. Gender Issue
- In Grade Seven, there is no significant difference in any of the tasks (p = 0.632, p = 0.069, and p = 0.704, respectively).
- In Grade Eight, there is no difference in the formula completion and the array formula task (p = 0.948 and p = 0.355). However, in the execution order task, the difference is significant (p = 0.01).
- In Grade Nine, there is a significant difference in all three tasks (p < 0.001, p < 0,001, and p = 0.014, respectively).
- In Grade Ten, there is a significant difference in the formula completion task (p = 0.005), while there is no difference in the other two tasks (p = 0.406 and p = 0.224).
6.3. Studied vs. Results
6.4. Self-Assessment
6.5. Spreadsheet Functions
6.6. SOLO Categories: The Level of Understanding
- Diagonal of the matrix: the number of those students who gave a proper self-assessment value.
- Upper triangle of the matrix: the number of those students who overestimated their knowledge.
- Lower triangle of the matrix: the number of those students who underestimated their knowledge.
7. Relationships beyond the Results
7.1. Self-Assessment vs. Classroom Activities
7.2. Number of Functions vs. Self-Assessment
7.3. Number of Functions vs. Results
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zsakó, L. National Base Curriculum 2020. In Hungarian: Informatika Nemzeti Alaptanterv 2020; INFODIDACT 2015; Péter, S., László, Z., Eds.; Webdidaktika Alapítvány: Zamárdi, Magyarország, 2015; Available online: https://people.inf.elte.hu/szlavi/InfoDidact15/Manuscripts/ZsL.pdf (accessed on 16 July 2021).
- Informatics Education in Europe: Are We All in The Same Boat? ACM 2013. Available online: https://www.informatics-europe.org/images/documents/informatics-education-acm-ie.pdf (accessed on 16 July 2021).
- Informatics Education in Europe: Are We All in The Same Boat? ACM 2017. Available online: https://dl.acm.org/doi/pdf/10.1145/3106077 (accessed on 16 July 2021).
- National Base Curriculum 1995. In Hungarian: 130/1995. (X. 26.) Korm. Rendelete a Nemzeti Alaptanterv Kiadásáról, Beveze-téséről és Alkalmazásáról; Korona Kiadó: Budapest, Hungary, 1995; ISBN 963 8153 87 3.
- National Base Curriculum 2009. In Hungarian: 202/2007. (VII. 31.) Korm. Rendelete a Nemzeti Alaptanterv Kiadásáról, Beveze-téséről és Alkalmazásáról. Available online: http://www.nefmi.gov.hu/letolt/kozokt/nat_070926.pdf (accessed on 12 June 2021).
- National Base Curriculum 2012. In Hungarian: 110/2012. (VI. 4.) Korm. Rendelete a Nemzeti Alaptanterv Kiadásáról, Bevezetéséről és Alkalmazásáról. Available online: http://ofi.hu/sites/default/files/attachments/mk_nat_20121.pdf (accessed on 12 June 2021).
- National Base Curriculum 2020. In Hungarian: 5/2020. (I. 31.) Korm. Rendelete a Nemzeti Alaptanterv Kiadásáról, Bevezetéséről és Alkalmazásáról Szóló 110/2012. (VI. 4.). Available online: http://ofi.hu/sites/default/files/attachments/mk_nat_20121.pdf (accessed on 12 June 2021).
- Frame Curricula for Primary School Grades 5–8 Compulsory Subjects 2.2.15. In Hungarian: Kerettanterv az Általános Iskola 5–8. Évfolyamára. Kötelező Tantárgyak 2.2.15. Available online: http://kerettanterv.ofi.hu/02_melleklet_5-8/2.2.15_informat_5-8.doc (accessed on 12 June 2021).
- Frame Curricula for Grammar School Grades 9–12. Compulsory Subjects 3.2.16. In Hungarian: Kerettanterv a Gimnáziumok 9–12. Évfolyama Számára. Kötelező Tantárgyak 3.2.16. Available online: http://kerettanterv.ofi.hu/03_melleklet_9-12/3.2.16_informat_9-12.doc (accessed on 12 June 2021).
- Nagy, T.K. Analyzing the Informatics Frame Curricula. In Hungarian: Az Informatika Kerettanterv Elemzése. 3th International Interdisciplinary Conference 2018. Available online: https://detep.unideb.hu/sites/default/files/upload_documents/kotet_interdisz_3.pdf (accessed on 16 July 2021).
- Nagy, T.K.; Csernoch, M. Measuring the Level of Computer Problem Solving Abilities in Teaching Informatics. In Hungarian: Számítógépes Problémamegoldás Mérése az Informatika órán; Péter, S., László, Z., Eds.; InfoDidact Conference 2018 Budapest; Webdidaktika, Alapítvány: Zamárdi, Magyarország, 2019; Available online: https://people.inf.elte.hu/szlavi/InfoDidact18/Infodidact2018.pdf (accessed on 16 July 2021).
- Nagy, T.K.; Csernoch, M. The Paradox of the Hungarian Frame Curricula in Informatics. In Turkish Online Journal of Educational Technology. INTE 2018. Available online: http://www.tojet.net/special/2018_12_3.pdf (accessed on 16 July 2021).
- Frame Curricula for Primary School Grades 1–4. In Hungarian: Kerettanterv az Általános Iskola 1–4. Évfolyamára. Available online: https://www.oktatas.hu/pub_bin/dload/kozoktatas/kerettanterv/Digitalis_kultura_A.docx (accessed on 16 July 2021).
- Frame Curricula for Primary School Grades 5–8. In Hungarian: Kerettanterv az Általános Iskola 5–8. Évfolyamára. Available online: https://www.oktatas.hu/pub_bin/dload/kozoktatas/kerettanterv/Digitalis_kultura_F.docx (accessed on 16 July 2021).
- Gove, M. Michael Gove Speech at the BETT Show 2012. Published 13 January 2012. Digital Literacy Campaign. Available online: http://www.theguardian.com/education/2012/jan/11/digital-literacy-michael-gove-speech (accessed on 16 July 2021).
- Bell, T.; Newton, H. Unplugging Computer Science. In Improving Computer Science Education; Kadijevich, D.M., Angeli, C., Schulte, C., Eds.; Routledge: London, UK, 2013. [Google Scholar]
- Gander, W. Informatics in Schools?—Urgently Needed! ECSS 2012 20–21 November 2012, Barcelona. Available online: http://www.inf.ethz.ch/personal/gander/talks/GanderECSS2012.pdf (accessed on 17 June 2021).
- Hromkovic, J.; Steffen, B. Why Teaching Informatics in Schools Is as Important as Teaching Mathematics and Natural Sciences? 2011. Available online: http://link.springer.com/chapter/10.1007/978-3-642-24722-4_3?no-access=true#page-1 (accessed on 14 June 2021).
- Wing, J.M. Computational thinking. Commun. ACM 2006, 49, 33–35. [Google Scholar] [CrossRef]
- Baranyi, P.; Gilányi, A. Mathability: Emulating and enhancing human mathematical capabilities. In Proceedings of the 2013 IEEE 4th International Conference on Cognitive Infocommunications (CogInfoCom), Budapest, Hungary, 2–5 December 2013; pp. 555–558. [Google Scholar] [CrossRef]
- Baranyi, P.; Csapo, A.; Sallai, G. Cognitive Infocommunications (CogInfoCom); Springer International Publishing: Cham, Switzerland, 2015; p. 191. Available online: http://www.springer.com/us/book/9783319196077#aboutBook (accessed on 16 July 2021).
- Soloway, E. Should we teach students to program? Commun. ACM 1993, 36, 21–24. [Google Scholar] [CrossRef]
- Booth, S. Learning to Program: A Phenomenographic Perspective; Acta Universitatis Gothoburgensis: Gothenburg, Sweden, 1992. [Google Scholar]
- Ben-Ari, M. Non-myths about programming. Commun. ACM 2011, 54. [Google Scholar] [CrossRef]
- Mishra, P.; Koehler, M. Technological pedagogical content knowledge: A framework for teacher knowledge. Teach. Coll. Rec. 2006, 108, 1017–1054. [Google Scholar] [CrossRef]
- Chen, J.A.; Morris, D.B.; Mansour, N. Science Teachers’ Beliefs. Perceptions of Efficacy and the Nature of Scientific Knowledge and Knowing. In International Handbook of Research on Teachers’ Beliefs; Fives, H., Gill, M.G., Eds.; Routledge: London, UK, 2015. [Google Scholar]
- Warren, P. Learning to Program: Spreadsheets, Scripting and HCI. In Proceedings of the Sixth Australasian Conference on Computing Education 30, Dunedin, New Zealand, 18–22 January 2004; pp. 327–333. Available online: http://dl.acm.org/citation.cfm?id=979968.980012 (accessed on 16 June 2021).
- Sestoft, P. Spreadsheet Technology; Version 0.12 of 2012-01-31; IT University Technical Report ITU-TR-2011-142; IT University of Copenhagen: Copenhagen, Denmark, 2011. [Google Scholar]
- Csernoch, M. Programming with Spreadsheet Functions: Sprego. In Hungarian, Programozás Táblázatkezelő Függvényekkel—Sprego; Műszaki Könyvkiadó: Budapest, Hungary, 2014. [Google Scholar]
- Csernoch, M.; Biró, P. Sprego Programming. Spreadsheets in Education (eJSiE), 2015, Volume 8. Available online: https://sie.scholasticahq.com/article/4638-sprego-programming (accessed on 17 July 2021).
- Aho, A.V. Computation and computational thinking. Comput. J. 2012, 55, 832–835. [Google Scholar] [CrossRef]
- Selby, C.; Woollard, J. Computational Thinking: The Developing Definition. In Proceedings of the ITiCSE Conference, Canterbury, UK, 1–3 July 2013; Available online: https://people.cs.vt.edu/~kafura/CS6604/Papers/CT-Developing-Definition.pdf (accessed on 16 June 2021).
- Mannila, L.; Dagiene, V.; Demo, B.; Grgurina, N.; Mirolo, C.; Rolandsson, L.; Settle, A. Computational thinking in K-9 education. In Proceedings of the Working Group Reports of the 2014 on Innovation & Technology in Computer Science Education Conference, Uppsala, Sweden, 21–25 June 2014; pp. 1–29. [Google Scholar]
- Tedre, M.; Denning, P.J. The long quest for computational thinking. In Proceedings of the 16th Koli Calling International Conference on Computing Education Research, Koli, Finland, 24–27 November 2016; pp. 120–129. [Google Scholar]
- Denning, P.J. Remaining trouble spots with computational thinking. Commun. ACM 2017, 60, 33–39. [Google Scholar] [CrossRef]
- Bower, M.; Wood, L.N.; Lai, J.W.M.; Howe, C.; Lister, R.; Mason, R. Improving the Computational Thinking Pedagogical Capabilities. Aust. J. Teach. Educ. 2017, 42, 53–72. [Google Scholar] [CrossRef] [Green Version]
- Shute, V.J.; Sun, C.; Asbell-Clarke, J. Demystifying computational thinking. Educ. Res. Rev. 2017, 22, 142–158. [Google Scholar] [CrossRef]
- Freiermuth, K.; Hromkovic, J.; Steffen, B. Creating and Testing Textbooks for Secondary Schools. In Proceedings of the 3rd International Conference on Informatics in Secondary Schools—Evolution and Perspectives: Informatics Education—Supporting Computational Thinking; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Garrett, N. Textbooks for Responsible Data Analysis in Excel. J. Educ. Bus. 2015, 90, 169–174. [Google Scholar] [CrossRef]
- Csernoch, M. Thinking Fast and Slow in Computer Problem Solving. J. Softw. Eng. Appl. 2017, 10, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Biró, P.; Csernoch, M.; Abari, K.; Máth, J. Testing Algorithmic and Application Skills. Turk. Online J. Educ. Technol. Spec. 2015, 536–543. Available online: http://www.tojet.net/special/2015_8_1.pdf (accessed on 18 July 2021).
- Csernoch, M.; Biró, P.; Máth, J.; Abari, K. Testing Algorithmic Skills in Traditional and Non-Traditional Programming Environments. Inform. Educ. 2015, 14, 175–197. [Google Scholar] [CrossRef] [Green Version]
- Angeli, C. Teaching Spreadsheets: A TPCK Perspective. In Improving Computer Science Education; Kadijevich, D.M., Angeli, C., Schulte, C., Eds.; Routledge: London, UK, 2013. [Google Scholar]
- Angeli, C.; Valanides, N. Technological Pedagogical Content Knowledge. Exploring, Developing, and Assessing TPCK; Springer: Boston, MA, USA, 2015. [Google Scholar] [CrossRef]
- Hattie, J. Visible Learning for Teachers: Maximizing Impact on Learning; Routledge: London, UK, 2012. [Google Scholar]
- OECD—PISA 2009 Results: Students on Line: Digital Technologies and Performance, 2011 (Volume VI). Available online: https://www.oecd.org/pisa/pisaproducts/48270093.pdf (accessed on 18 July 2021).
- NJSzT—Nemes Tihamér International Informatics Contest—Programming. In Hungarian: Nemes Tihamér Nemzetközi Informatikai Tanulmányi Verseny—Programozás. 2020. Available online: http://nemes.inf.elte.hu/ (accessed on 15 May 2021).
- NJSzT—Nemes Tihamér International Informatics Contest—Applied Informatics. In Hungarian: Nemes Tihamér Nemzetközi Informatikai Tanulmányi Verseny—Alkalmazás Kategória. 2020. Available online: http://tehetseg.inf.elte.hu/nemesa/index.html (accessed on 16 June 2021).
- Biró, P.; Csernoch, M. Deep and surface metacognitive processes in non-traditional programming tasks. In Proceedings of the 5th IEEE International Conference on Cognitive Info-communications Conference, Vietri sul Mare, Italy, 4–5 November 2014; pp. 49–54. [Google Scholar] [CrossRef]
- Lister, R. After the gold rush: Toward sustainable scholarship in computing. In Proceedings of the Tenth Conference on Australasian Computing Education, Wollongong, Australia, 22–25 January 2008; Volume 78. [Google Scholar]
- Csernoch, M.; Biró, P. Are digital natives spreadsheet natives? In Proceedings of the EuSpRIG 2019 Conference Spreadsheet Risk Management, Nice, France, 27–31 May 2019; pp. 1–12. [Google Scholar]
- Prensky, M. Digital Natives, Digital Immigrants. On the Horizon, MCB University Press, Volume 9, October 2001. Available online: http://www.marcprensky.com/writing/Prensky%20-%20Digital%20Natives,%20Digital%20Immigrants%20-%20Part1.pdf (accessed on 14 June 2020).
- Kirschner, P.A.; De Bruyckere, P. The myths of the digital native and the multitasker. Teach. Teach. Educ. 2017, 67, 135–142. [Google Scholar] [CrossRef]
- Kirschner, P.A.; Sweller, J.; Clark, R.E. Why Minimal Guidance During Instruction Does Not Work: An Analysis of the Failure of Constructivist Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching. Educ. Psychol. 2006, 41, 75–86. [Google Scholar] [CrossRef]
- Sebestyén, K. Can you also Be a Teacher of Informatics(?). Hungarian: Te Is Lehetsz Informatikatanár (?). INFODIDACT 2014: Informatika Szakmódszertani Konferencia (ed. Szlávi Péter, Zsakó László), 2014. 2014. Available online: http://people.inf.elte.hu/szlavi/InfoDidact14/Manuscripts/SK.pdf (accessed on 16 May 2021).
- Csernoch, M.; Biró, P. First year students’ attitude to computer problem solving. In Proceedings of the IEEE 8th International Conference on Cognitive InfoCommunications: CogInfoCom, Debrecen, Hungary, 11–14 September 2017; pp. 225–230. [Google Scholar]
- Biró, P.; Csernoch, M. The mathability of computer problem solving approaches. In Proceedings of the 2015 6th IEEE International Conference on Cognitive Infocommunications (CogInfoCom2015), Gyor, Hungary, 19–21 October 2015; pp. 111–114. [Google Scholar] [CrossRef]
- Biró, P.; Csernoch, M. The mathability of spreadsheet tools. In Proceedings of the 2015 6th IEEE International Conference on Cognitive Infocommunications (CogInfoCom2015), Gyor, Hungary, 19–21 October 2015; pp. 105–110. [Google Scholar] [CrossRef]
- Biró, P.; Csernoch, M. Maths problems in pseudo-codes compared to computer usage. In Proceedings of the END2018: International conference on Education and New Developments, Lisboa, Portugal, 24–26 June 2018; pp. 341–346. [Google Scholar]
- OECD—PISA 2015 Results (Volume I). Excellence and Equity in Education. Published on 6 December 2016. Available online: https://read.oecd.org/10.1787/9789264266490-en?format=pdf (accessed on 10 September 2021).
- OECD—PISA 2018 Results (Volume I). What Students Know and Can Do. Published on 3 December 2019. Available online: https://read.oecd.org/10.1787/5f07c754-en?format=pdf (accessed on 10 September 2021).
- Csernoch, M.; Papp, P. Spreadsheeting is problem solving? In Hungarian: Táblázatkezelés is problémamegoldás? In Proceedings of the InfoDidact Conference, Budapest, Hungary, 18–20 November 2019; pp. 187–202. [Google Scholar]
- Dancsó, T.; Korom, P. Informatics for Grades 9–10. In Hungarian: Informatika 9–10. A Gimnáziumok Számára; Nemzedékek Tudása Tankönyvkiadó (Oktatáskutató és Fejlesztő Intézet): Budapest, Hungary, 2013. [Google Scholar]
- Kahneman, D. Thinking, Fast and Slow; Farrar, Straus and Giroux: New York, NY, USA, 2011. [Google Scholar]
- Sheard, J.; Carbone, A.; Lister, R.; Simon, B.; Thompson, E.; Whalley, J.L. Going SOLO to assess novice programmers. SIGCSE Bull. 2008, 40, 209–213. [Google Scholar] [CrossRef] [Green Version]
- Biggs, J.B.; Collis, K.E. Evaluating the Quality of Learning: The SOLO Taxonomy; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Social Blade, Top 250 YouTubers in Hungary Sorted by SB Rank, 2018. Available online: https://socialblade.com/youtube/top/country/hu (accessed on 12 May 2021).
- Csernoch, M.; Dani, E. Data-structure validator: An application of the HY-DE model. In Proceedings of the 8th IEEE Inter-national Conference on Cognitive Infocommunications, Debrecen, Hungary, 11–14 September 2017; pp. 197–202. [Google Scholar]
- Csernoch, M. From webtables to datatables. In Proceedings of the EuSpRIG 2019 Conference Spreadsheet Risk Management, Nice, France, 27–31 May 2019; pp. 1–22. [Google Scholar]
- Nagy, T.; Csernoch, M.; Máth, J. Cross-curricular connections and knowledge-transfer elements in data management. Acta Polytech. Hung. 2021. accepted for publication. [Google Scholar]
- Booth, S. Learning to Program: A Phenomenographic Perspective; Goteborg Studies in Educational Sciences 89; Acta Univesitatis Gothoburgenis: Gothenburg, Sweden, 1992. [Google Scholar]
- Burnett, M.M.; Scaffidi, C. End-User Development. In The Encyclopedia of Human-Computer Interaction, 2nd ed.; Interaction Design Foundation: London, UK, 2012; Available online: https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/end-user-development (accessed on 14 July 2020).
- Hubwieser, P. Functional Modelling in Secondary Schools Using Spreadsheets. Educ. Inf. Technol. 2004, 9, 175–183. [Google Scholar] [CrossRef]
- Abraham, R.; Burnett, M.; Erwig, M. Spreadsheet Programming. In Wiley Encyclopedia of Computer Science and Engineering; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar] [CrossRef] [Green Version]
- Csapó, G.; Csernoch, M.; Abari, K. Sprego: Case study on the effectiveness of teaching spreadsheet management with schema construction. Educ. Inf. Technol. 2020, 25, 1585–1605. [Google Scholar] [CrossRef] [Green Version]
- Csapó, G.; Sebestyén, K.; Csernoch, M.; Abari, K. Case study: Developing long-term knowledge with Sprego. Educ. Inf. Technol. 2020, 26, 965–982. [Google Scholar] [CrossRef]
- Takács, V.L.; Bubnó, K. Mathability in Business Education. Acta Polytech. Hung. 2021. accepted for publication. [Google Scholar]
- Lister, R.; Simon, B.; Thompson, E.; Whalley, J.L.; Prasad, C. Not seeing the forest for the trees: Novice programmers and the SOLO taxonomy. In Proceedings of the 11th Annual SIGCSE Conference on Innovation and Technology in Computer Science Education, New York, NY, USA, 12–15 March 2006; pp. 118–122. [Google Scholar]
- Ahadi, A.; Lister, R.; Lal, S.; Leinonen, J.; Hellas, A. Performance and Consistency in Learning to Program. In Proceedings of the Nineteenth Australasian Computing Education Conference (ACE ‘17). Association for Computing Machinery, New York, NY, USA, 2–4 February 2017; pp. 11–16. [Google Scholar] [CrossRef] [Green Version]
- Stout, J.; Tamer, B. Collaborative learning eliminates the negative impact of gender stereotypes on women’s self-concept. In Proceedings of the 47th ACM Technical Symposium on Computing Science Education (SIGCSE ‘16). Association for Computing Machinery, New York, NY, USA, 3–5 March 2016; p. 496. [Google Scholar] [CrossRef]
- Osztián, E. Interactive, Multi-Sensory Electronic Teaching-Learning Environment for Developing Computational Thinking Skills. In Hungarian: Interaktív, Többérzékszerves Elektronikus Oktatási Környezet a Számítógépes Gondolkodás Fejlesztéséhez. Ph.D. Dissertation, University of Debrecen, Debrecen, Hungary, 2021. Available online: https://dea.lib.unideb.hu/dea/handle/2437/302091 (accessed on 8 July 2021).
- European Qualifications Framework. Description of the Eight EQF Levels. Available online: https://europa.eu/europass/en/description-eight-eqf-levels (accessed on 10 September 2021).
- Carretero, S.; Vuorikari, R.; Punie, Y. DigComp 2.1 the Digital Competence Framework for Citizens with Eight Proficiency Levels and Examples of Use. Available online: https://op.europa.eu/en/publication-detail/-/publication/3c5e7879-308f-11e7-9412-01aa75ed71a1/language-en (accessed on 10 September 2021).
- Panko, R.; Port, D. End User Computing: The Dark Matter (and Dark Energy) of Corporate It. J. Organ. End User Comput. 2013, 25, 1–19. [Google Scholar] [CrossRef]
- EuSpRIG Horror Stories. European Spreadsheet Risk Interest Group (2021). Available online: http://www.eusprig.org/horror-stories.htm (accessed on 14 June 2021).
- Pólya, G. How To Solve It. A New Aspect of Mathematical Method; (2nd Edition 1957); Princeton University Press: Princeton, NJ, USA, 1954. [Google Scholar]
- Descartes, R.; Lessing, J. Rosenwald Collection, Discours de la Methode Pour Bien Conduire sa Raison, & Chercher la Verité dans les Sciences. Plus La Dioptriqve. Les Meteores. Et La Geometrie. Qui sont des Essais de cete Methode”. A Leyde, De li’mprimerie de I. Maire, 1637. Available online: https://www.loc.gov/item/32034972/ (accessed on 30 January 2021).
- Sweller, J.; Ayres, P.; Kalyuga, S. Cognitive Load Theory. Explorations in the Learning Sciences; Instructional Systems and Performance Technologies; Springer: Berlin, Germany, 2011. [Google Scholar]
- Rother, M. Toyota Kata: Managing People for Improvement, Adaptiveness and Superior Results, 1st ed.; McGraw-Hill Education: New York, NY, USA, 2009. [Google Scholar]
- Panko, R. The Cognitive Science of Spreadsheet Errors: Why Thinking is Bad. In Proceedings of the 2013 46th Hawaii International Conference on System Sciences, Wailea, HI, USA, 7–10 January 2013; Volume 10, pp. 4013–4022. [Google Scholar] [CrossRef]
- Kruger, J.; Dunning, D. Unskilled and Unaware of It: How Difficulties in Recognizing One’s Own Incompetence Lead to Inflated Self-Assessments. J. Personal. Soc. Psychol. 1999, 77, 1121–1134. [Google Scholar] [CrossRef]
Grades | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | Sum | |
1995 | no classes are given, only intervals compared to other subjects | ||||||||||||
2009 | 0.5 | 1 | 0.5 | 1 | 1 | 1 | 1.5 | 1 | 1.5 | 1 | 10 | ||
2012 | – | – | – | – | – | 1 | 1 | 1 | 1 | 1 | – | – | 5 |
2020 | – | – | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | – | 11 |
Score | SOLO Category |
---|---|
8 | relational |
7 | relational |
6 | multi-structural |
5 | uni-structural |
4 | uni-structural |
3, if there is one reference operator, one closing parenthesis, and one explanation (only the equal sign is missing from one of the formulae) | uni-structural |
4, if only two equal signs and two closing parentheses are given | pre-structural |
3 | pre-structural |
2 | pre-structural |
1 | pre-structural |
0 | pre-structural |
Step 1 | Calculating the Average or Calling the AVERAGE() Function |
---|---|
Step 2 | subtracting 50 from the average or subtracting |
Step 3 | asking a yes/no question: the difference is less than 50? or asking a question |
Step 4 | calling the IF() function |
Score | SOLO Category |
---|---|
6 | relational |
5, if the first or the last item is listed as first or last (the placement of the first or the last step is not correct) | relational |
5 | multi-structural |
4 | uni-structural |
3 | uni-structural |
2, if these two items arrive from steps (items 2–4) | uni-structural |
2 | pre-structural |
1 | pre-structural |
0 | pre-structural |
Statement | Score | SOLO Category |
---|---|---|
the number of usernames starting with the character L (or l) | 4 | relational |
counts | 3 | multi-structural |
calculates a sum with L | 3 | multi-structural |
calculates a sum | 2 | uni-structural |
starting with L (or l) | 1 | uni-structural |
1 character from left | 1 | pre-structural |
description of a loop | 1 | pre-structural |
tried to solve it but the solution is pre-structural | 0 | pre-structural |
claiming the formula is incorrect | 0 | pre-structural |
Grade | |||||
---|---|---|---|---|---|
7 | 8 | 9 | 10 | Total | |
Studied | 981 | 1439 | 2423 | 2043 | 6886 |
DidNotStudy | 444 | 72 | 277 | 126 | 919 |
NoAnswer | 136 | 128 | 265 | 183 | 712 |
1561 | 1639 | 2965 | 2352 | 8517 |
Grades | ||||||
---|---|---|---|---|---|---|
Task | 7 | 8 | 9 | 10 | Average | Max |
formula completion | 0.75 | 1.28 | 1.28 | 1.79 | 1.32 | 8 |
execution order | 0.54 | 0.89 | 0.74 | 1.21 | 0.86 | 6 |
array formula | 0.08 | 0.14 | 0.15 | 0.29 | 0.18 | 4 |
2nd) | 1st = | 1st ref. op. | 1st reference | |
1st) | 0.707 | 0.451 | 0.820 | 0.323 |
1st) | 2nd = | 2nd ref. op. | 2nd reference | |
2nd) | 0.707 | 0.508 | 0.549 | 0.324 |
Boys | Girls | All | |
---|---|---|---|
formula completion | 1.23 | 1.43 | 1.32 |
execution order | 0.81 | 0.92 | 0.86 |
array formula | 0.17 | 0.18 | 0.18 |
Total | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|
All | 1.32 | 0.75 | 1.28 | 1.28 | 1.79 |
Studied | 1.52 | 1.06 | 1.37 | 1.42 | 1.96 |
DidNotStudy | 0.27 | 0.16 | 0.44 | 0.32 | 0.44 |
NoAnswer | 0.82 | 0.40 | 0.79 | 1.02 | 0.87 |
Total | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|
All | 0.86 | 0.54 | 0.89 | 0.74 | 1.21 |
Studied | 0.99 | 0.78 | 0.95 | 0.82 | 1.33 |
DidNotStudy | 0.14 | 0.09 | 0.26 | 0.17 | 0.17 |
NoAnswer | 0.56 | 0.29 | 0.58 | 0.62 | 0.66 |
Score | SOLO Category | Levels of Science Proficiency in PISA 2018 |
---|---|---|
5 | relational or extended abstract | explain unfamiliar and more complex phenomena |
4 | multi-structural | two or more independent variables |
3 | uni-structural | moderately complex content knowledge |
2 | uni-structural | everyday content knowledge and basic procedural knowledge |
1 | pre-structural | low achievers |
0 | pre-structural |
Grades | ||||||
---|---|---|---|---|---|---|
7 | 8 | 9 | 10 | Total | ||
Number of functions | 0 | 43 | 49 | 102 | 95 | 289 |
1 | 71 | 92 | 65 | 49 | 277 | |
2 | 116 | 99 | 84 | 56 | 355 | |
3 | 57 | 150 | 105 | 103 | 415 | |
4 | 95 | 162 | 138 | 168 | 563 | |
5 | 33 | 194 | 168 | 131 | 526 | |
6 | 11 | 72 | 104 | 149 | 336 | |
7 | 16 | 45 | 100 | 128 | 289 | |
8 | 11 | 28 | 94 | 96 | 229 | |
9 | 4 | 25 | 90 | 82 | 201 | |
10 | 4 | 16 | 51 | 64 | 135 | |
11 | 1 | 14 | 24 | 64 | 103 | |
12 | 0 | 10 | 26 | 40 | 76 | |
13 | 1 | 3 | 18 | 37 | 59 | |
14 | 0 | 2 | 29 | 33 | 64 | |
15 | 0 | 7 | 57 | 120 | 184 |
Cumulative SOLO Category | Number of SOLO Triads |
---|---|
P | 5 |
U | 22 |
M | 33 |
R | 4 |
A-P | A-U | A-M | A-R | |
---|---|---|---|---|
R-P | 586 | 2235 | 2199 | 1700 |
R-U | 9 | 190 | 320 | 270 |
R-M | 5 | 93 | 161 | 192 |
R-R | 0 | 8 | 18 | 15 |
Task | Relationship | |
---|---|---|
Correct Functions | Listed Functions | |
formula completion | 0.436 | 0.427 |
execution order | 0.423 | 0.415 |
array formula | 0.223 | 0.223 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagy, T.; Csernoch, M.; Biró, P. The Comparison of Students’ Self-Assessment, Gender, and Programming-Oriented Spreadsheet Skills. Educ. Sci. 2021, 11, 590. https://doi.org/10.3390/educsci11100590
Nagy T, Csernoch M, Biró P. The Comparison of Students’ Self-Assessment, Gender, and Programming-Oriented Spreadsheet Skills. Education Sciences. 2021; 11(10):590. https://doi.org/10.3390/educsci11100590
Chicago/Turabian StyleNagy, Tímea, Mária Csernoch, and Piroska Biró. 2021. "The Comparison of Students’ Self-Assessment, Gender, and Programming-Oriented Spreadsheet Skills" Education Sciences 11, no. 10: 590. https://doi.org/10.3390/educsci11100590
APA StyleNagy, T., Csernoch, M., & Biró, P. (2021). The Comparison of Students’ Self-Assessment, Gender, and Programming-Oriented Spreadsheet Skills. Education Sciences, 11(10), 590. https://doi.org/10.3390/educsci11100590