A Model of Scientific Data Reasoning
Abstract
:1. Introduction
2. Data Sensemaking
2.1. Sensemaking of Set Means and Variance
2.2. Refining Data Sensemaking
2.3. Sensemaking and Reasoning from Associations between Variables
2.4. Making Sense of and Reasoning with Covariation Data
2.5. Sensemaking of and Reasoning with Group Comparisons
3. Scientific Data Reasoning
3.1. External Representations
3.2. Scientific Hypothesis Testing
3.3. Probabilistic Conclusions
4. Heuristics in Data Reasoning
5. Future Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Klahr, D.; Dunbar, K. Dual space search during scientific seasoning. Cogn. Sci. 1988, 12, 1–48. [Google Scholar] [CrossRef]
- Koslowski, B. Theory and Evidence: The Development of Scientific Reasoning; MIT Press: Cambridge, MA, USA, 1996; ISBN 978-0-262-11209-4. [Google Scholar]
- Kuhn, D.; Amsel, E.; O’Loughlin, M.; Schauble, L.; Leadbeater, B.; Yotive, W. The Development of Scientific Thinking Skills; Academic Press: San Diego, CA, USA, 1988; ISBN 978-0-12-428430-2. [Google Scholar]
- Grolemund, G.; Wickham, H. A cognitive interpretation of data analysis. Int. Stat. Rev. 2014, 82, 184–204. [Google Scholar] [CrossRef]
- Zimmerman, C.; Klahr, D. Development of scientific thinking. In Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience; Wixted, J.T., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2018; pp. 1–25. ISBN 978-1-119-17016-7. [Google Scholar]
- Fischer, F.; Kollar, I.; Ufer, S.; Sodian, B.; Hussmann, H.; Pekrun, R.; Neuhaus, B.; Dorner, B.; Pankofer, S.; Fischer, M.; et al. Scientific reasoning and argumentation: Advancing an interdisciplinary research agenda in education. Frontline Learn. Res. 2014, 2, 28–45. [Google Scholar]
- Morris, B.J.; Croker, S.; Masnick, A.M.; Zimmerman, C. The emergence of scientific reasoning. In Current Topics in Children’s Learning and Cognition; Kloos, H., Ed.; InTech: Rijeka, Croatia, 2012; ISBN 978-953-51-0855-9. [Google Scholar]
- Zimmerman, C. The development of scientific reasoning skills. Dev. Rev. 2000, 20, 99–149. [Google Scholar] [CrossRef] [Green Version]
- Klahr, D.; Chen, Z. Overcoming the positive-capture strategy in young children: Learning about indeterminacy. Child Dev. 2003, 74, 1275–1296. [Google Scholar] [CrossRef]
- Sodian, B.; Zaitchik, D.; Carey, S. Young children’s differentiation of hypothetical beliefs from evidence. Child Dev. 1991, 62, 753–766. [Google Scholar] [CrossRef]
- Ruffman, T.; Perner, J.; Olson, D.R.; Doherty, M. Reflecting on scientific thinking: Children’s understanding of the hypothesis-evidence relation. Child Dev. 1993, 64, 1617–1636. [Google Scholar] [CrossRef]
- Lehrer, R.; Schauble, L.; Wisittanawat, P. Getting a grip on variability. Bull. Math. Biol. 2020, 82, 106. [Google Scholar] [CrossRef]
- Lehrer, R.; Schauble, L. Modeling natural variation through distribution. Am. Educ. Res. J. 2004, 41, 635–679. [Google Scholar] [CrossRef]
- Petrosino, A.J.; Lehrer, R.; Schauble, L. Structuring error and experimental variation as distribution in the fourth grade. Math. Think. Learn. 2003, 5, 131–156. [Google Scholar] [CrossRef]
- Chinn, C.A.; Malhotra, B.A. Children’s responses to anomalous scientific data: How is conceptual change impeded? J. Educ. Psychol. 2002, 94, 327–343. [Google Scholar] [CrossRef]
- Koslowski, B.; Okagaki, L.; Lorenz, C.; Umbach, D. When covariation is not enough: The role of causal mechanism, sampling method, and sample size in causal reasoning. Child Dev. 1989, 60, 1316–1327. [Google Scholar] [CrossRef]
- Kuhn, D. What is scientific thinking and how does it develop? In The Wiley-Blackwell Handbook of Childhood Cognitive Development, 2nd ed.; Wiley-Blackwell: Malden, MA, USA, 2011; pp. 497–523. ISBN 978-1-4051-9116-6. [Google Scholar]
- van Lieshout, L.L.; de Lange, F.P.; Cools, R. Why so curious? Quantifying mechanisms of information seeking. Curr. Opin. Behav. Sci. 2020, 35, 112–117. [Google Scholar] [CrossRef]
- Engelmann, K.; Neuhaus, B.J.; Fischer, F. Fostering scientific reasoning in education—Meta-analytic evidence from intervention studies. Educ. Res. Eval. 2016, 22, 333–349. [Google Scholar] [CrossRef]
- Shah, P.; Michal, A.; Ibrahim, A.; Rhodes, R.; Rodriguez, F. What makes everyday scientific reasoning so challenging? In Psychology of Learning and Motivation; Elsevier: Amsterdam, The Netherlands, 2017; Volume 66, pp. 251–299. ISBN 978-0-12-812118-4. [Google Scholar]
- Zhang, J. The nature of external representations in problem solving. Cogn. Sci. 1997, 21, 179–217. [Google Scholar] [CrossRef]
- Koerber, S.; Mayer, D.; Osterhaus, C.; Schwippert, K.; Sodian, B. The development of scientific thinking in elementary school: A comprehensive inventory. Child Dev. 2015, 86, 327–336. [Google Scholar] [CrossRef]
- Di Blas, N.; Mazuran, M.; Paolini, P.; Quintarelli, E.; Tanca, L. Exploratory computing: A comprehensive approach to data sensemaking. Int. J. Data Sci. Anal. 2017, 3, 61–77. [Google Scholar] [CrossRef] [Green Version]
- Koesten, L.; Gregory, K.; Groth, P.; Simperl, E. Talking datasets—Understanding data sensemaking behaviours. Int. J. Hum.-Comput. Stud. 2021, 146, 102562. [Google Scholar] [CrossRef]
- Alvarez, G.A. Representing multiple objects as an ensemble enhances visual cognition. Trends Cogn. Sci. 2011, 15, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Brezis, N.; Bronfman, Z.Z.; Usher, M. Adaptive spontaneous transitions between two mechanisms of numerical averaging. Sci. Rep. 2015, 5, 10415. [Google Scholar] [CrossRef] [Green Version]
- Whitney, D.; Yamanashi Leib, A. Ensemble perception. Annu. Rev. Psychol. 2018, 69, 105–129. [Google Scholar] [CrossRef] [PubMed]
- Morris, B.J.; Masnick, A.M. Comparing data sets: Implicit summaries of the statistical properties of number sets. Cogn. Sci. 2015, 39, 156–170. [Google Scholar] [CrossRef] [PubMed]
- Shaklee, H.; Paszek, D. Covariation judgment: Systematic rule use in middle childhood. Child Dev. 1985, 56, 1229–1240. [Google Scholar] [CrossRef]
- Makar, K.; Rubin, A. Learning about statistical inference. In International Handbook of Research in Statistics Education; Ben-Zvi, D., Makar, K., Garfield, J., Eds.; Springer International Handbooks of Education; Springer International Publishing: Cham, Switzerland, 2018; pp. 261–294. ISBN 978-3-319-66195-7. [Google Scholar]
- Cowan, N. Mental objects in working memory: Development of basic capacity or of cognitive completion? Adv. Child Dev. Behav. 2017, 52, 81–104. [Google Scholar]
- Tversky, A.; Kahneman, D. Judgment under uncertainty: Heuristics and biases. Science 1974, 185, 1124–1131. [Google Scholar] [CrossRef]
- Makar, K. Developing young children’s emergent inferential practices in statistics. Math. Think. Learn. 2016, 18, 1–24. [Google Scholar] [CrossRef]
- Makar, K.; Bakker, A.; Ben-Zvi, D. The reasoning behind informal statistical inference. Math. Think. Learn. 2011, 13, 152–173. [Google Scholar] [CrossRef]
- Watson, J.M.; Moritz, J.B. The beginning of statistical inference: Comparing two data sets. Educ. Stud. Math. 1999, 37, 145–168. [Google Scholar] [CrossRef]
- Zieffler, A.; Garfield, J.; Delmas, R.; Reading, C. A framework to support research on informal inferential reasoning. Stat. Educ. Res. J. 2008, 7, 40–58. [Google Scholar]
- Koslowski, B. Inference to the best explanation (IBE) and the causal and scientific reasoning of nonscientists. In Psychology of Science: Implicit and Explicit Processes; Proctor, R.W., Capaldi, E.J., Eds.; OUP: New York, NY, USA, 2012; ISBN 978-0-19-975362-8. [Google Scholar]
- Chen, Z.; Klahr, D. All other things being equal: Acquisition and transfer of the control of variables strategy. Child Dev. 1999, 70, 1098–1120. [Google Scholar] [CrossRef] [Green Version]
- Krüger, D.; Hartmann, S.; Nordmeier, V.; Upmeier zu Belzen, A. Measuring scientific reasoning competencies. In Student Learning in German Higher Education: Innovative Measurement Approaches and Research Results; Zlatkin-Troitschanskaia, O., Pant, H.A., Toepper, M., Lautenbach, C., Eds.; Springer Fachmedien: Wiesbaden, Germany, 2020; pp. 261–280. ISBN 978-3-658-27886-1. [Google Scholar]
- Klahr, D. Exploring Science: The Cognition and Development of Discovery Processes; MIT Press: Cambridge, MA, USA, 2002; ISBN 978-0-262-61176-3. [Google Scholar]
- Jones, P.R.; Dekker, T.M. The development of perceptual averaging: Learning what to do, not just how to do it. Dev. Sci. 2018, 21, e12584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obrecht, N.A.; Chapman, G.B.; Gelman, R. Intuitive t tests: Lay use of statistical information. Psychon. Bull. Rev. 2007, 14, 1147–1152. [Google Scholar] [CrossRef] [PubMed]
- Peterson, C.R.; Beach, L.R. Man as an intuitive statistician. Psychol. Bull. 1967, 68, 29–46. [Google Scholar] [CrossRef] [Green Version]
- Shaklee, H.; Mims, M. Development of rule use in judgments of covariation between events. Child Dev. 1981, 52, 317–325. [Google Scholar] [CrossRef]
- Shaklee, H.; Holt, P.; Elek, S.; Hall, L. Covariation judgment: Improving rule use among children, adolescents, and adults. Child Dev. 1988, 59, 755–768. [Google Scholar] [CrossRef]
- Trumpower, D.L. Formative use of intuitive Analysis of Variance. Math. Think. Learn. 2013, 15, 291–313. [Google Scholar] [CrossRef]
- Martin, L.; Schwartz, D.L. Prospective adaptation in the use of external representations. Cogn. Instr. 2009, 27, 370–400. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H. An exploration of the relations between external representations and working memory. PLoS ONE 2009, 4, e6513. [Google Scholar] [CrossRef] [Green Version]
- Bonawitz, E.B.; van Schijndel, T.J.P.; Friel, D.; Schulz, L. Children balance theories and evidence in exploration, explanation, and learning. Cogn. Psychol. 2012, 64, 215–234. [Google Scholar] [CrossRef] [Green Version]
- Klahr, D.; Nigam, M. The equivalence of learning paths in early science instruction: Effects of direct instruction and discovery learning. Psychol. Sci. 2004, 15, 661–667. [Google Scholar] [CrossRef]
- Köksal-Tuncer, Ö.; Sodian, B. The development of scientific reasoning: Hypothesis testing and argumentation from evidence in young children. Cogn. Dev. 2018, 48, 135–145. [Google Scholar] [CrossRef]
- Sandoval, W.A.; Sodian, B.; Koerber, S.; Wong, J. Developing children’s early competencies to engage with science. Educ. Psychol. 2014, 49, 139–152. [Google Scholar] [CrossRef]
- Wild, C.J.; Utts, J.M.; Horton, N.J. What is statistics? In International Handbook of Research in Statistics Education; Ben-Zvi, D., Makar, K., Garfield, J., Eds.; Springer International Handbooks of Education; Springer International Publishing: Cham, Switzerland, 2018; pp. 5–36. ISBN 978-3-319-66195-7. [Google Scholar]
- Klayman, J.; Ha, Y. Confirmation, disconfirmation, and information in hypothesis testing. Psychol. Rev. 1987, 94, 211–228. [Google Scholar] [CrossRef]
- Mynatt, C.R.; Doherty, M.E.; Tweney, R.D. Confirmation bias in a simulated research environment: An experimental study of scientific inference. Q. J. Exp. Psychol. 1977, 29, 85–95. [Google Scholar] [CrossRef]
- Alibali, M.W.; Crooks, N.M.; McNeil, N.M. Perceptual support promotes strategy generation: Evidence from equation solving. Br. J. Dev. Psychol. 2018, 36, 153–168. [Google Scholar] [CrossRef]
- Batanero, C.; Estepa, A.; Godino, J.D.; Green, D.R. Intuitive strategies and preconceptions about association in contingency tables. J. Res. Math. Educ. 1996, 27, 151–169. [Google Scholar] [CrossRef]
- Arena, D.A.; Schwartz, D.L. Experience and explanation: Using videogames to prepare students for formal instruction in statistics. J. Sci. Educ. Technol. 2014, 23, 538–548. [Google Scholar] [CrossRef] [Green Version]
- Kapur, M. Productive failure. Cogn. Instr. 2008, 26, 379–424. [Google Scholar] [CrossRef]
- Kapur, M. Productive failure in learning math. Cogn. Sci. 2014, 38, 1008–1022. [Google Scholar] [CrossRef]
- Dehaene, S. The Number Sense: How the Mind Creates Mathematics; Rev and Updated Edition; Oxford University Press: New York, NY, USA, 2011; ISBN 978-0-19-975387-1. [Google Scholar]
- Hyde, D.C. Two systems of non-symbolic numerical cognition. Front. Hum. Neurosci. 2011, 5, 150. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, D.; de Gardelle, V.; Usher, M. Ensemble perception: Extracting the average of perceptual versus numerical stimuli. Atten. Percept. Psychophys. 2021, 83, 956–969. [Google Scholar] [CrossRef] [PubMed]
- Malmi, R.A.; Samson, D.J. Intuitive averaging of categorized numerical stimuli. J. Verbal Learn. Verbal Behav. 1983, 2, 547–559. [Google Scholar] [CrossRef]
- Beach, L.R.; Swenson, R.G. Intuitive estimation of means. Psychon. Sci. 1966, 5, 161–162. [Google Scholar] [CrossRef] [Green Version]
- Grebstein, L.C. Relative accuracy of actuarial prediction, experienced clinicians, and graduate students in a clinical judgment task. J. Consult. Psychol. 1963, 27, 127–132. [Google Scholar] [CrossRef]
- Irwin, F.W.; Smith, W.A.S. Value, cost, and information as determiners of decision. J. Exp. Psychol. 1957, 54, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Masnick, A.M.; Morris, B.J. Investigating the development of data evaluation: The role of data characteristics. Child Dev. 2008, 79, 1032–1048. [Google Scholar] [CrossRef] [Green Version]
- Spencer, J. Estimating averages. Ergonomics 1961, 4, 317–328. [Google Scholar] [CrossRef]
- Spencer, J. A further study of estimating averages. Ergonomics 1963, 6, 255–265. [Google Scholar] [CrossRef]
- Obrecht, N.A.; Chapman, G.B.; Suárez, M.T. Laypeople do use sample variance: The effect of embedding data in a variance-implying story. Think. Reason. 2010, 16, 26–44. [Google Scholar] [CrossRef]
- Irwin, F.W.; Smith, W.A.S.; Mayfield, J.F. Tests of two theories of decision in an “expanded judgment” situation. J. Exp. Psychol. 1956, 51, 261–268. [Google Scholar] [CrossRef]
- Jacobs, J.E.; Narloch, R.H. Children’s use of sample size and variability to make social inferences. J. Appl. Dev. Psychol. 2001, 22, 311–331. [Google Scholar] [CrossRef]
- Obrecht, N.A. Sample size weighting follows a curvilinear function. J. Exp. Psychol. Learn. Mem. Cogn. 2019, 45, 614–626. [Google Scholar] [CrossRef]
- Wagemans, J.; Elder, J.H.; Kubovy, M.; Palmer, S.E.; Peterson, M.A.; Singh, M.; von der Heydt, R. A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure–ground organization. Psychol. Bull. 2012, 138, 1172–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.R.; Sobel, K.V.; York, A.K.; Puri, A.M. Dissociating parallel and serial processing of numerical value. J. Numer. Cogn. 2018, 4, 360–379. [Google Scholar] [CrossRef] [Green Version]
- Van Opstal, F.; de Lange, F.P.; Dehaene, S. Rapid parallel semantic processing of numbers without awareness. Cognition 2011, 120, 136–147. [Google Scholar] [CrossRef]
- Dehaene, S.; Akhavein, R. Attention, automaticity, and levels of representation in number processing. J. Exp. Psychol. Learn. Mem. Cogn. 1995, 21, 314–326. [Google Scholar] [CrossRef]
- Lee, K.R.; Dague, T.D.; Sobel, K.V.; Paternoster, N.J.; Puri, A.M. Set size and ensemble perception of numerical value. Atten. Percept. Psychophys. 2021, 83, 1169–1178. [Google Scholar] [CrossRef] [PubMed]
- Zosh, J.M.; Halberda, J.; Feigenson, L. Memory for multiple visual ensembles in infancy. J. Exp. Psychol. Gen. 2011, 140, 141–158. [Google Scholar] [CrossRef] [Green Version]
- Sweeny, T.D.; Wurnitsch, N.; Gopnik, A.; Whitney, D. Ensemble perception of size in 4–5-year-old children. Dev. Sci. 2015, 18, 556–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, F.; Spelke, E.S. Large number discrimination in 6-month-old infants. Cognition 2000, 74, B1–B11. [Google Scholar] [CrossRef]
- Halberda, J.; Feigenson, L. Developmental change in the acuity of the “number sense”: The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Dev. Psychol. 2008, 44, 1457–1465. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, G.; Neumann, M.; Ewing, L.; Bank, S.; Read, A.; Engfors, L.M.; Emiechel, R.; Palermo, R. Ensemble coding of faces occurs in children and develops dissociably from coding of individual faces. Dev. Sci. 2018, 21, e12540. [Google Scholar] [CrossRef] [PubMed]
- Wild, C.J.; Pfannkuch, M. Statistical thinking in empirical enquiry. Int. Stat. Rev. 1999, 67, 223–248. [Google Scholar] [CrossRef]
- Lee, V.R.; Wilkerson, M.H. Data use by middle and secondary students in the digital age: A status report and future prospects. In Commissioned Paper for the National Academies of Sciences, Engineering, and Medicine, Board on Science Education, Committee on Science Investigations and Engineering Design for Grades 6–12; National Academy of Sciences Engineering, and Medicine: Washington, DC, USA, 2018; p. 43. [Google Scholar]
- Cobb, G.W.; Moore, D.S. Mathematics, statistics, and teaching. Am. Math. Mon. 1997, 104, 801–823. [Google Scholar] [CrossRef]
- Lubben, F.; Millar, R. Children’s ideas about the reliability of experimental data. Int. J. Sci. Educ. 1996, 18, 955–968. [Google Scholar] [CrossRef]
- Masnick, A.M.; Klahr, D. Error matters: An initial exploration of elementary school children’s understanding of experimental error. J. Cogn. Dev. 2003, 4, 67–98. [Google Scholar] [CrossRef]
- Kanari, Z.; Millar, R. Reasoning from data: How students collect and interpret data in science investigations. J. Res. Sci. Teach. 2004, 41, 748–769. [Google Scholar] [CrossRef]
- Masnick, A.M.; Klahr, D.; Knowles, E.R. Data-driven belief revision in children and adults. J. Cogn. Dev. 2017, 18, 87–109. [Google Scholar] [CrossRef]
- Lehrer, R. Modeling signal-noise processes supports student construction of a hierarchical image of sample. SERJ 2017, 16, 64–85. [Google Scholar] [CrossRef]
- Alibali, M.W.; Brown, S.A.; Menendez, D. Understanding strategy change: Contextual, individual, and metacognitive factors. Adv. Child Dev. Behav. 2019, 56, 227–256. [Google Scholar] [PubMed]
- Siegler, R.; Jenkins, E.A. How Children Discover New Strategies; Psychology Press: New York, NY, USA, 1989; ISBN 978-1-315-80774-4. [Google Scholar]
- Hancock, C.; Kaput, J.J.; Goldsmith, L.T. Authentic inquiry with data: Critical barriers to classroom implementation. Educ. Psychol. 1992, 27, 337–364. [Google Scholar] [CrossRef]
- Garfield, J.; Ben-Zvi, D. How students learn statistics revisited: A current review of research on teaching and learning statistics. Int. Stat. Rev. 2007, 75, 372–396. [Google Scholar] [CrossRef]
- Konold, C.; Higgins, T.; Russell, S.J.; Khalil, K. Data seen through different lenses. Educ. Stud. Math. 2015, 88, 305–325. [Google Scholar] [CrossRef]
- Konold, C.; Pollatsek, A. Data analysis as the search for signals in noisy processes. J. Res. Math. Educ. 2002, 33, 259. [Google Scholar] [CrossRef] [Green Version]
- Mokros, J.; Russell, S.J. Children’s concepts of average and representativeness. J. Res. Math. Educ. 1995, 26, 20–39. [Google Scholar] [CrossRef]
- Pollatsek, A.; Lima, S.; Well, A.D. Concept or computation: Students’ understanding of the mean. Educ. Stud. Math. 1981, 12, 191–204. [Google Scholar] [CrossRef]
- Buffler, A.; Allie, S.; Lubben, F. The development of first year physics students’ ideas about measurement in terms of point and set paradigms. Int. J. Sci. Educ. 2001, 23, 1137–1156. [Google Scholar] [CrossRef]
- Lubben, F.; Campbell, B.; Buffler, A.; Allie, S. Point and set reasoning in practical science measurement by entering university freshmen. Sci. Educ. 2001, 85, 311–327. [Google Scholar] [CrossRef]
- Willingham, D.T. Why Don’t Students Like School? A Cognitive Scientist Answers Questions about How the Mind Works and What It Means for the Classroom, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2021; ISBN 978-1-119-71580-1. [Google Scholar]
- Schwartz, D.L.; Martin, T. Inventing to prepare for future learning: The hidden efficiency of encouraging original student production in statistics instruction. Cogn. Instr. 2004, 22, 129–184. [Google Scholar] [CrossRef]
- Kerlinger, F.N.; Lee, H.B. Foundations of Behavioral Research; Harcourt College Publishers: Fort Worth, TX, USA, 2000; ISBN 978-0-15-507897-0. [Google Scholar]
- Biehler, R.; Frischemeier, D.; Reading, C.; Shaughnessy, J.M. Reasoning about data. In International Handbook of Research in Statistics Education; Ben-Zvi, D., Makar, K., Garfield, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 139–192. [Google Scholar]
- Koerber, S.; Sodian, B.; Thoermer, C.; Nett, U. Scientific reasoning in young children: Preschoolers’ ability to evaluate covariation evidence. Swiss J. Psychol. 2005, 64, 141–152. [Google Scholar] [CrossRef]
- Shaklee, H.; Mims, M. Sources of error in judging event covariations: Effects of memory demands. J. Exp. Psychol. Learn. Mem. Cogn. 1982, 8, 208–224. [Google Scholar] [CrossRef]
- Shaklee, H.; Tucker, D. A rule analysis of judgments of covariation between events. Mem. Cogn. 1980, 8, 459–467. [Google Scholar] [CrossRef] [Green Version]
- Obersteiner, A.; Bernhard, M.; Reiss, K. Primary school children’s strategies in solving contingency table problems: The role of intuition and inhibition. ZDM Math. Educ. 2015, 47, 825–836. [Google Scholar] [CrossRef]
- Osterhaus, C.; Magee, J.; Saffran, A.; Alibali, M.W. Supporting successful interpretations of covariation data: Beneficial effects of variable symmetry and problem context. Q. J. Exp. Psychol. 2019, 72, 994–1004. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.; Walther, D.B.; Finn, A.S. Children automatically abstract categorical regularities during statistical learning. Dev. Sci. 2021, 24, e13072. [Google Scholar] [CrossRef]
- Student. The probable error of a mean. Biometrika 1908, 6, 1–25. [Google Scholar] [CrossRef]
- Spitzer, B.; Waschke, L.; Summerfield, C. Selective overweighting of larger magnitudes during noisy numerical comparison. Nat. Hum. Behav. 2017, 1, 0145. [Google Scholar] [CrossRef] [PubMed]
- Dehaene, S.; Dehaene-Lambertz, G.; Cohen, L. Abstract representations of numbers in the animal and human brain. Trends Neurosci. 1998, 21, 355–361. [Google Scholar] [CrossRef]
- Eckert, J.; Call, J.; Hermes, J.; Herrmann, E.; Rakoczy, H. Intuitive statistical inferences in chimpanzees and humans follow Weber’s Law. Cognition 2018, 180, 99–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libertus, M.E.; Brannon, E.M. Behavioral and neural basis of number sense in infancy. Curr. Dir. Psychol. Sci. 2009, 18, 346–351. [Google Scholar] [CrossRef] [Green Version]
- Dehaene, S. Origins of mathematical intuitions: The case of arithmetic. Ann. N. Y. Acad. Sci. 2009, 1156, 232–259. [Google Scholar] [CrossRef] [PubMed]
- Wickens, C.D.; Helton, W.S.; Hollands, J.G.; Banbury, S. Engineering Psychology and Human Performance, 5th ed.; Routledge: New York, NY, USA, 2021; ISBN 978-1-00-317761-6. [Google Scholar]
- Koerber, S.; Osterhaus, C.; Sodian, B. Diagrams support revision of prior belief in primary-school children. Frontline Learn. Res. 2017, 5, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Siegler, R.S.; Liebert, R.M. Acquisition of formal scientific reasoning by 10- and 13-year-olds: Designing a factorial experiment. Dev. Psychol. 1975, 11, 401–402. [Google Scholar] [CrossRef]
- Trickett, S.B.; Trafton, J.G.; Schunn, C.D. How do scientists respond to anomalies? Different strategies used in basic and applied science. Top. Cogn. Sci. 2009, 1, 711–729. [Google Scholar] [CrossRef] [PubMed]
- Godau, C.; Vogelgesang, T.; Gaschler, R. Perception of bar graphs—A biased impression? Comput. Hum. Behav. 2016, 59, 67–73. [Google Scholar] [CrossRef]
- Pinker, S. A theory of graph comprehension. In Artificial Intelligence and the Future of Testing; Freedle, R.O., Ed.; Psychology Press: New York, NY, USA, 1990; pp. 73–126. ISBN 978-0-8058-0117-0. [Google Scholar]
- Zacks, J.M.; Tversky, B. Event structure in perception and conception. Psychol. Bull. 2001, 127, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Köksal, Ö.; Sodian, B.; Legare, C.H. Young children’s metacognitive awareness of confounded evidence. J. Exp. Child Psychol. 2021, 205, 105080. [Google Scholar] [CrossRef]
- Tschirgi, J.E. Sensible reasoning: A hypothesis about hypotheses. Child Dev. 1980, 51, 1–10. [Google Scholar] [CrossRef]
- Samarapungavan, A.; Mantzicopoulos, P.; Patrick, H. Learning science through inquiry in kindergarten. Sci. Educ. 2008, 92, 868–908. [Google Scholar] [CrossRef]
- Inhelder, B.; Piaget, J. The Growth of Logical Thinking from Childhood to Adolescence: An Essay on the Construction of Formal Operational Structures; Basic Books: New York, NY, USA, 1958; ISBN 978-0-415-21002-7. [Google Scholar]
- Crowell, A.; Kuhn, D. Developing dialogic argumentation skills: A 3-year intervention study. J. Cogn. Dev. 2014, 15, 363–381. [Google Scholar] [CrossRef]
- Kuhn, D.; David, D., Jr. Metacognition: A bridge between cognitive psychology and educational practice. Theory Pract. 2004, 43, 268–273. [Google Scholar] [CrossRef]
- Garcia-Mila, M.; Andersen, C. Cognitive foundations of learning argumentation. In Argumentation in Science Education: Perspectives from Classroom-Based Research; Erduran, S., Jiménez-Aleixandre, M.P., Eds.; Science & Technology Education Library; Springer: Dordrecht, The Netherlands, 2007; pp. 29–45. ISBN 978-1-4020-6670-2. [Google Scholar]
- Hermansen, T.K.; Ronfard, S.; Harris, P.L.; Zambrana, I.M. Preschool children rarely seek empirical data that could help them complete a task when observation and testimony conflict. Child Dev. 2021, 92, 2546–2562. [Google Scholar] [CrossRef]
- Jirout, J.; Klahr, D. Children’s scientific curiosity: In search of an operational definition of an elusive concept. Dev. Rev. 2012, 32, 125–160. [Google Scholar] [CrossRef]
- Jirout, J.; Zimmerman, C. Development of science process skills in the early childhood years. In Research in Early Childhood Science Education; Cabe Trundle, K., Saçkes, M., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 143–165. ISBN 978-94-017-9504-3. [Google Scholar]
- Klahr, D.; Chen, Z.; Toth, E.E. Cognitive development and science education: Ships that pass in the night or beacons of mutual illumination? In Cognition and Instruction: Twenty-Five Years of Progress; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 2001; pp. 75–119. ISBN 978-0-8058-3823-7. [Google Scholar]
- McComas, W.F.; Olson, J.K. The Nature of Science in international science education standards documents. In The Nature of Science in Science Education: Rationales and Strategies; McComas, W.F., Ed.; Science & Technology Education Library; Springer: Dordrecht, The Netherlands, 2002; pp. 41–52. ISBN 978-0-306-47215-2. [Google Scholar]
- Osborne, J.; Collins, S.; Ratcliffe, M.; Millar, R.; Duschl, R. What “ideas-about-science” should be taught in school science? A Delphi study of the expert community. J. Res. Sci. Teach. 2003, 40, 692–720. [Google Scholar] [CrossRef] [Green Version]
- Priemer, B.; Hellwig, J. Learning about measurement uncertainties in secondary education: A model of the subject matter. Int. J. Sci. Math. Educ. 2018, 16, 45–68. [Google Scholar] [CrossRef]
- Duschl, R.A.; Grandy, R. Two views about explicitly teaching Nature of Science. Sci. Educ. 2013, 22, 2109–2139. [Google Scholar] [CrossRef]
- Fay, A.L.; Klahr, D. Knowing about guessing and guessing about knowing: Preschoolers’ understanding of indeterminacy. Child Dev. 1996, 67, 689–716. [Google Scholar] [CrossRef]
- Metz, K.E. Emergent understanding and attribution of randomness: Comparative analysis of the reasoning of primary grade children and undergraduates. Cogn. Instr. 1998, 16, 265–285. [Google Scholar] [CrossRef]
- Denison, S.; Xu, F. Infant statisticians: The origins of reasoning under uncertainty. Perspect. Psychol. Sci. 2019, 14, 499–509. [Google Scholar] [CrossRef]
- O’Grady, S.; Xu, F. The development of nonsymbolic probability judgments in children. Child Dev. 2020, 91, 784–798. [Google Scholar] [CrossRef] [PubMed]
- Silberzahn, R.; Uhlmann, E.L.; Martin, D.P.; Anselmi, P.; Aust, F.; Awtrey, E.; Bahník, Š.; Bai, F.; Bannard, C.; Bonnier, E.; et al. Many analysts, one data set: Making transparent how variations in analytic choices affect results. Adv. Methods Pract. Psychol. Sci. 2018, 1, 337–356. [Google Scholar] [CrossRef] [Green Version]
- Gigerenzer, G. Why heuristics work. Perspect. Psychol. Sci. 2008, 3, 20–29. [Google Scholar] [CrossRef]
- DeMiguel, V.; Garlappi, L.; Nogales, F.J.; Uppal, R. A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms. Manag. Sci. 2009, 55, 798–812. [Google Scholar] [CrossRef] [Green Version]
- Gigerenzer, G.; Gaissmaier, W. Heuristic decision making. Ann. Rev. Psychol. 2011, 62, 451–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Čavojová, V.; Šrol, J.; Jurkovič, M. Why should we try to think like scientists? Scientific reasoning and susceptibility to epistemically suspect beliefs and cognitive biases. Appl. Cogn. Psychol. 2020, 34, 85–95. [Google Scholar] [CrossRef]
- Beilock, S.L.; DeCaro, M.S. From poor performance to success under stress: Working memory, strategy selection, and mathematical problem solving under pressure. J. Exp. Psychol. Learn. Mem. Cogn. 2007, 33, 983–998. [Google Scholar] [CrossRef] [PubMed]
- Raab, M.; Gigerenzer, G. The power of simplicity: A fast-and-frugal heuristics approach to performance science. Front. Psychol. 2015, 6, 1672. [Google Scholar] [CrossRef] [Green Version]
- Ahn, W.; Kalish, C.W.; Medin, D.L.; Gelman, S.A. The role of covariation versus mechanism information in causal attribution. Cognition 1995, 54, 299–352. [Google Scholar] [CrossRef]
- Amsel, E.; Brock, S. The development of evidence evaluation skills. Cogn. Dev. 1996, 11, 523–550. [Google Scholar] [CrossRef]
- Blanco, N.J.; Sloutsky, V.M. Adaptive flexibility in category learning? Young children exhibit smaller costs of selective attention than adults. Dev. Psychol. 2019, 55, 2060–2076. [Google Scholar] [CrossRef] [PubMed]
- Nokes, T.J.; Schunn, C.D.; Chi, M. Problem solving and human expertise. In International Encyclopedia of Education; Elsevier Ltd.: Amsterdam, The Netherlands, 2010; pp. 265–272. ISBN 978-0-08-044894-7. [Google Scholar]
- Konold, C.; Robinson, A.; Khalil, K.; Pollatsek, A.; Well, A.; Wing, R.; Mayr, S. Students’ use of modal clumps to summarize data. In Proceedings of the Sixth International Conference on Teaching Statistics, Cape Town, South Africa, 7–12 July 2002; p. 6. [Google Scholar]
- Saffran, A.; Barchfeld, P.; Alibali, M.W.; Reiss, K.; Sodian, B. Children’s interpretations of covariation data: Explanations reveal understanding of relevant comparisons. Learn. Instr. 2019, 59, 13–20. [Google Scholar] [CrossRef]
- Saffran, A.; Barchfeld, P.; Sodian, B.; Alibali, M.W. Children’s and adults’ interpretation of covariation data: Does symmetry of variables matter? Dev. Psychol. 2016, 52, 1530–1544. [Google Scholar] [CrossRef] [Green Version]
- McNeil, N.M.; Alibali, M.W. Knowledge change as a function of mathematics experience: All contexts are not created equal. J. Cogn. Dev. 2005, 6, 285–306. [Google Scholar] [CrossRef]
- McNeil, N.M.; Grandau, L.; Knuth, E.J.; Alibali, M.W.; Stephens, A.C.; Hattikudur, S.; Krill, D.E. Middle-school students’ understanding of the equal sign: The books they read can’t help. Cogn. Instr. 2006, 24, 367–385. [Google Scholar] [CrossRef] [Green Version]
- Morris, B.J.; Masnick, A.M.; Baker, K.; Junglen, A. An analysis of data activities and instructional supports in middle school science textbooks. Int. J. Sci. Educ. 2015, 37, 2708–2720. [Google Scholar] [CrossRef]
- Siegler, R.S.; Im, S.; Schiller, L.K.; Tian, J.; Braithwaite, D.W. The sleep of reason produces monsters: How and when biased input shapes mathematics learning. Ann. Rev. Dev. Psychol. 2020, 2, 413–435. [Google Scholar] [CrossRef]
- Shtulman, A.; Walker, C. Developing an understanding of science. Ann. Rev. Dev. Psychol. 2020, 2, 111–132. [Google Scholar] [CrossRef]
Processes | Examples | Key References | |
---|---|---|---|
Data Sensemaking | Summarization | Product of perceptual and cognitive mechanisms Implicit grouping of numbers that yields summary values (e.g., mean, variance) | [25,27,28,41,42,43] |
Data Reasoning | Detecting Patterns | Detecting covariation between variables | [3,11,44,45] |
Detecting Differences | Noticing differences between sets | [28,41,42,43,46] | |
Scientific Data Reasoning | External Representation | External representations | [21,47,48] |
Scientific hypothesis testing | Conducting unconfounded experiments | [38,49,50,51,52] | |
Probabilistic Conclusions | Evaluating the likelihood of conclusions or inferences | [4,20,53] | |
Limits to Data sensemaking and reasoning | Heuristics and biases | Confirmation bias, Anchoring effect | [15,32,54,55] |
Sources of Change | Strategies | Acquiring better strategies for summarization, reasoning | [41,44,56,57] |
Instruction | Using data sensemaking to support formal reasoning and analysis | [58,59,60] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masnick, A.M.; Morris, B.J. A Model of Scientific Data Reasoning. Educ. Sci. 2022, 12, 71. https://doi.org/10.3390/educsci12020071
Masnick AM, Morris BJ. A Model of Scientific Data Reasoning. Education Sciences. 2022; 12(2):71. https://doi.org/10.3390/educsci12020071
Chicago/Turabian StyleMasnick, Amy M., and Bradley J. Morris. 2022. "A Model of Scientific Data Reasoning" Education Sciences 12, no. 2: 71. https://doi.org/10.3390/educsci12020071
APA StyleMasnick, A. M., & Morris, B. J. (2022). A Model of Scientific Data Reasoning. Education Sciences, 12(2), 71. https://doi.org/10.3390/educsci12020071