An Approach to the Teacher Educator’s Pedagogical Content Knowledge for the Development of Professional Noticing in Pre-Service Teacher Education
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Professional Knowledge of Mathematics Teacher Educators in Pre-Service Teacher Education
2.2. Development of Professional Noticing in Initial Teacher Education
2.3. The Semiotic Registers of Representation and Their Importance in the Teaching/Learning of Mathematics
- The presence of an identifiable representation;
- The treatment of a representation consists of transforming the representation within the same register where it was formulated. For example, transforming 2(x + 1) = 3 into 2x = 1, as both are symbolic representations of the same equation (object);
- The conversion of a representation consists of transforming the representation into another one in another register while preserving part or all of the initial meaning. For example, converting the verbal representation “an odd number” to the symbolic expression 2n + 1.
3. Methodology
3.1. Study Design and Participants
3.2. Instrument
- Identify and describe the strategy or strategies used by the student to solve the task (what has been performed);
- Characterize the ideas or meanings about the asymptote that you believe the student possesses. What information do you rely on as a teacher? (What the teacher understands and where they observe it).
3.3. Data Analysis
- Knowledge of the first threshold problem [26]: This variable takes the values yes or no. Yes, if the PST demonstrates an awareness of how the semiotic register of the task conditions the strategy used by the student; no, otherwise. Reasoning like “since the function is given by a graph, Juan David couldn’t use the algebraic expression of the function to find the limit as it approaches infinity. Therefore, he analyzes the behavior graphically by observing if the graph seems to stabilize around a specific value”, which would be evidence of knowledge of the first threshold problem;
- Treatments: As previously mentioned, we aim to describe the transformations identified by the PSTs in the dialogue within the same register. To do so, the PST must indicate which registers of representation they believe Juan David uses during the fragment. Possible evidence of treatment can be found when Juan David says: “As seen in the image, it seems that it is not defined for negative values of x, so I will focus on the positive values. I would say that it looks like some kind of sine or cosine, and those functions are oscillating.” As we noted before, the student is using a graphical representation of the limit all the time;
- Conversions: This variable considers the transformations identified by the PST in Juan David’s reasoning between different registers. To do so, the PST must indicate which registers of representation they believe Juan David uses during the fragment. Possible evidence of conversion can be found when Juan David says: “the maxima (marked with dots) are becoming more negative each time, so if the larger values are getting smaller and smaller, the function tends to negative infinity.” Now, Juan David changes from a graphical idea of maxima (dots) to a numerical representation (their numerical y coordinates).
4. Results
- Initial level
- Intermediate level
- Advanced Level
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Wu, Y.; Yao, Y.; Cai, J. Learning to Be Mathematics Teacher Educators: From Professional Practice to Personal Development. In International Handbook of Mathematics Teacher Education: 4; Beswick, K., Chapman, O., Eds.; Brill Sense: Paderborn, Germany, 2020; pp. 231–270. [Google Scholar] [CrossRef]
- Escudero-Ávila, D.; Montes, M.; Contreras, L.C. What Do Mathematics Teacher Educators Need to Know? Reflections Emerging from the Content of Mathematics Teacher Education. In The Learning and Development of Mathematics Teacher Educators: International Perspectives and Challenges; Springer: New York, NY, USA, 2021; pp. 23–40. [Google Scholar] [CrossRef]
- Leikin, R. How Far is the Horizon? In International Handbook of Mathematics Teacher Education: Volume 4; Beswick, K., Chapman, O., Eds.; Brill Sense: Paderborn, Germany, 2020; pp. 15–33. [Google Scholar] [CrossRef]
- Ponte, J.P. Estudiando el conocimiento y el desarrollo profesional del profesorado de matemáticas. In Teoría, Crítica y Práctica de la Educación Matemática; Planas, N., Ed.; Graó: Barcelona, Spain, 2012; pp. 83–98. [Google Scholar]
- Bossio, J.L.; Santa, Z.M.; Jaramillo, C.M. Un análisis sobre las barreras de la modelación matemática en la práctica educativa del profesor de básica primaria. Rev. Virtual Univ. Católica Del Norte 2023, 68, 255–285. [Google Scholar] [CrossRef]
- Jacobs, V.R.; Lamb LL, C.; Philipp, R.A. Professional noticing of children’s mathematical thinking. J. Res. Math. Educ. 2010, 41, 169–202. [Google Scholar] [CrossRef]
- Varettoni, M.; Elichiribehety, I. Los registros de representaciones que emplean docentes de Educación Primaria: Un estudio exploratorio. Rev. Electrón. Investig. Educ. Cienc. 2010, 5, 44–51. [Google Scholar] [CrossRef]
- Zaslavsky, O.; Leikin, R. Professional Development of Mathematics Teacher Educators: Growth through Practice. J. Math. Teach. Educ. 2004, 7, 5–32. [Google Scholar] [CrossRef]
- Ozmantar, M.F.; Agac, G. Mathematics teacher educators’ knowledge sources in teacher education practices. Math. Educ. Res. J. 2021, 35, 1–27. [Google Scholar] [CrossRef]
- Azcárate, P. Los procesos de formación: En busca de estrategias y recursos. In Actas del VIII Simposio de la SEIEM. Universidad de Coruña; Castro, E., De la Torre, E., Eds.; Universidade da Coruña: Coruña, Spain, 2004; pp. 1–18. [Google Scholar]
- Pérez-Montilla, A.; Cardeñoso, J.M. Hacia una posible configuración del Conocimiento Profesional del Formador de Docentes de Matemáticas: Un análisis comparativo. Bolema 2023, 37, 148–167. [Google Scholar] [CrossRef]
- Castro-Superfine, A.; Prasad, P.V.; Welder, R.M.; Olanoff, D.; Eubanks-Turner, C. Exploring mathematical knowledge for teaching teachers: Supporting prospective elementary teachers’ relearning of mathematics. Math. Enthus. 2020, 17, 367–402. Available online: https://scholarworks.umt.edu/tme/vol17/iss2/3/ (accessed on 20 April 2023). [CrossRef]
- Chick, H.; Beswick, K. Teaching teachers to teach Boris: A framework for mathematics teacher educator pedagogical content knowledge. J. Math. Teach. Educ. 2018, 21, 475–499. [Google Scholar] [CrossRef]
- Leikin, R.; Zazkis, R.; Meller, M. Research mathematicians as teacher educators: Focusing on mathematics for secondary mathematics teachers. J. Math. Teach. Educ. 2018, 21, 451–473. [Google Scholar] [CrossRef]
- Chapman, O. Mathematics Teacher Educator Knowledge for Teaching Teachers. In The Learning and Development of Mathematics Teacher Educators: International Perspectives and Challenges; Beswick, K., Chapman, O., Eds.; Springer: New York, NY, USA, 2021; pp. 403–416. [Google Scholar] [CrossRef]
- Ponte, J.P.; Chapman, O. Prospective mathematics teachers’ learning and knowledge for teaching. In Handbook of International Research in Mathematics Education: Third Edition; English, L.D., Kirshner, D., Eds.; Routledge: London, UK, 2015; pp. 275–296. [Google Scholar] [CrossRef]
- Ponte, J.P. Mathematics teacher education programs: Practice and research. J. Math. Teach. Educ. 2012, 15, 343–346. [Google Scholar] [CrossRef]
- Shulman, L.S. Knowledge and teaching: Foundations of the new reform. Harv. Educ. Rev. 1987, 57, 1–23. [Google Scholar] [CrossRef]
- Pascual, M.I.; Montes, M.; Contreras, L.C. The Pedagogical Knowledge Deployed by a Primary Mathematics Teacher Educator in Teaching Symmetry. Mathematics 2021, 9, 1241. [Google Scholar] [CrossRef]
- Bezuk, N.; Bay-Williams, J.M.; Clements, D.H.; Martin, W.G.; Aguirre, J.; Boerst, T.; Burroughs, E.A.; Dickey, E.; Gutiérrez, R.; Hughes, E.; et al. Standards for Preparing Teachers of Mathematics; Association of Mathematics Teacher Educators: Orlando, FL, USA, 2017; Available online: https://amte.net/standards (accessed on 20 April 2023).
- Llinares, S. Formación de profesores de matemáticas. Caracterización y desarrollo de competencias docentes. Cuad. Investig. Y Form. Educ. Mat. 2012, 7, 53–62. Available online: http://funes.uniandes.edu.co/21400/1/Llinares2012Formacion.pdf (accessed on 20 April 2023).
- Fernández, C.; Sánchez-Matamoros, G. Mirar profesionalmente el aprendizaje de las matemáticas. Un ejemplo en el domino de la generalización. Uno 2015, 68, 39–48. Available online: https://idus.us.es/handle/11441/41919 (accessed on 20 April 2023).
- Llinares, S. Competencias docentes del maestro en la docencia en matemáticas y el diseño de programas de formación. Uno 2009, 51, 92–101. [Google Scholar]
- Dreher, A.; Kuntze, S. Teachers’ professional knowledge and noticing: The case of multiple representations in the mathematics classroom. Educ. Stud. Math. 2015, 88, 89–114. [Google Scholar] [CrossRef]
- Van Es, E.A.; Sherin, M.G. Learning to notice: Scaffolding new teachers’ interpretations of classroom interactions. J. Technol. Teach. Educ. 2002, 10, 571–596. [Google Scholar]
- Duval, R. Un tema crucial en la educación matemática: La habilidad para cambiar el registro de representación. Gac. Real Soc. Mat. Esp. 2006, 9, 143–168. [Google Scholar]
- Gerster, H.; Schulz, R. Schwierigkeiten Beim Erwerb Mathematischer Konzepte im Anfangsunterricht: Bericht zum Forschungsprojekt, Rechenschwäche—Erkennen, Beheben, Vorbeugen. 2000. Available online: http://nbn-resolving.de/urn:nbn:de:bsz:frei129-opus-161 (accessed on 3 March 2023).
- Ward, E.; Inzunsa, S.; Hernández, S.; López, F. Conceptualización y Uso de Representaciones sobre el Concepto de Límite en Docentes de Bachillerato. In Investigación en Educación Matemática XVII SEIEM; Berciano, A., Gutiérrez, G., Estepa, A., Climent, N., Eds.; SEIEM: Bilbao, Spain, 2013; pp. 523–534. [Google Scholar]
- Duval, R. Registres de représentation sémiotique et fonctionnement cognitif de la pensée. Ann. Didact. Sci. Cogn. 1993, 5, 37–65. [Google Scholar]
- Mc Millan, J.H.; Schumacher, S. Investigación Educativa; Pearson: London, UK, 2005. [Google Scholar]
- Spangler, D.A.; Hallman-Thrasher, A. Using task dialogues to enhance preservice teachers’ abilities to orchestrate discourse. Math. Teach. Educ. 2014, 3, 58–75. [Google Scholar] [CrossRef]
- Medina, A.C. Concepciones históricas asociadas al concepto de límite e implicaciones didácticas. Tecné Episteme Y Didaxis TED 2001, 9. [Google Scholar] [CrossRef]
- Díaz-Lozano, M.E.; Haye, E.E.; Montenegro, F.; Córdoba, L.M. Dificultades de los alumnos para articular representaciones gráficas y algebraicas de funciones lineales y cuadráticas. Unión 2015, 11, 20–38. Available online: http://revistaunion.org/index.php/UNION/article/view/644 (accessed on 20 April 2023).
- Arnal-Palacián, M.; Claros-Mellado, J.; Sánchez-Compaña, M.T. Perfil del futuro docente de matemáticas en la enseñanza del límite infinito de sucesiones. Bolema 2022, 36, 1087–1114. [Google Scholar] [CrossRef]
- Arnal-Palacián, M.; Claros-Mellado, J. Specialized Content Knowledge of preservice teachers on the infinite limit of a sequence. Math. Teach. Res. J. 2022, 14, 169–189. [Google Scholar]
- Van Es, E.A.; Sherin, M.G. Expanding on prior conceptualizations of teacher noticing. ZDM Math. Educ. 2021, 53, 17–27. [Google Scholar] [CrossRef]
- López, L.M.; Zakaryan, D. Relacionando el Conocimiento Especializado del Profesor de Matemáticas con la Competencia Noticing. In V Congreso Iberoamericano sobre Conocimiento Especializado del Profesor de Matemáticas; Moriel-Junior, J., Ed.; Servicio de Publicaciones Universidad de Huelva: Huelva, Spain, 2021; pp. 349–356. [Google Scholar]
- Averill, R.; Anderson, D.; Drake, M. Developing Culturally Responsive Teaching through Professional Noticing within Teacher Educator Modelling. Math. Teach. Educ. Dev. 2015, 17, 64–83. [Google Scholar]
- Amador, J. Professional Noticing Practices of Novice Mathematics Teacher Educators. Int. J. Sci. Math. Educ. 2016, 14, 217–241. [Google Scholar] [CrossRef]
Level of Development | Semiosis Activities | Categories | Perc. of PSTs (Per Level) | Perc. of PSTs (Total) |
---|---|---|---|---|
Initial | Knowledge of the first threshold problem | Yes | 6 (26.1%) | |
No | 17 (73.9%) | 23 (60.5%) | ||
Treatments | HA | 0 (0%) | ||
SA | 1 (4.3%) | |||
No asymptote type specified | 8 (34.8%) | |||
Conversions | HA | 1 (4.3%) | ||
SA | 1 (4.3%) | |||
No asymptote type specified | 0 (0%) | |||
Intermediate | Knowledge of the first threshold problem | Yes | 4 (50%) | 8 (21.1%) |
No | 4 (50%) | |||
Treatments | HA | 3 (37.5%) | ||
SA | 6 (75%) | |||
No asymptote type specified | 3 (37.5%) | |||
Conversions | HA | 0 (0%) | ||
SA | 2 (25%) | |||
No asymptote type specified | 2 (25%) | |||
Advanced | Knowledge of the first threshold problem | Yes | 3 (42.9%) | 7 (18.4%) |
No | 4 (57.1%) | |||
Treatments | HA | 6 (85.7%) | ||
SA | 6 (85.7%) | |||
No asymptote type specified | 1 (14.3%) | |||
Conversions | HA | 4 (57.1%) | ||
SA | 3 (42.9%) | |||
No asymptote type specified | 1 (14.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Montilla, A.; Arnal-Palacián, M. An Approach to the Teacher Educator’s Pedagogical Content Knowledge for the Development of Professional Noticing in Pre-Service Teacher Education. Educ. Sci. 2023, 13, 544. https://doi.org/10.3390/educsci13060544
Pérez-Montilla A, Arnal-Palacián M. An Approach to the Teacher Educator’s Pedagogical Content Knowledge for the Development of Professional Noticing in Pre-Service Teacher Education. Education Sciences. 2023; 13(6):544. https://doi.org/10.3390/educsci13060544
Chicago/Turabian StylePérez-Montilla, Andrés, and Mónica Arnal-Palacián. 2023. "An Approach to the Teacher Educator’s Pedagogical Content Knowledge for the Development of Professional Noticing in Pre-Service Teacher Education" Education Sciences 13, no. 6: 544. https://doi.org/10.3390/educsci13060544
APA StylePérez-Montilla, A., & Arnal-Palacián, M. (2023). An Approach to the Teacher Educator’s Pedagogical Content Knowledge for the Development of Professional Noticing in Pre-Service Teacher Education. Education Sciences, 13(6), 544. https://doi.org/10.3390/educsci13060544