A Gender Bias in Curriculum-Based Measurement across Content Domains: Insights from a German Study
Abstract
:1. Introduction
1.1. Curriculum-Based Measurement
1.2. Origins of CBM
1.3. CBM in Germany
1.4. Different Content Domains
1.5. Biases in Interpreting Progress Data
1.6. A Gender Bias in CBM
1.7. Gender Stereotypes as a Source of Gender Bias
1.8. Pre-Service Teacher Education in Germany
1.9. Research Questions and Hypotheses
- It was assumed that estimates of achievement progress, depicted as CBM graphs, should in general be higher for girls than for boys, irrespective of the content domain.
- In addition, it was hypothesized that estimates of achievement progress in oral reading fluency would be higher for girls than for boys, even when both exhibit identical learning progress.
- On the contrary, it was supposed that estimates of achievement progress in math would be higher for boys than for girls, even when both exhibit the same learning progress.
- Finally, it was assumed that the participants would estimate achievement progress of both girls and boys to be higher when the linear trend of the data is steep rather than flat, and when data variability is high rather than low.
2. Materials and Methods
2.1. Participants
2.2. Materials and Procedure
2.3. Data Analyses
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deno, S.L. Curriculum-based measurement: The emerging alternative. Except. Child. 1985, 52, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Ardoin, S.P.; Christ, T.J.; Morena, L.S.; Cormier, D.C.; Klingbeil, D.A. A systematic review and summarization of the recommendations and research surrounding curriculum-based measurement of oral reading fluency (CBM-R) decision rules. J. Sch. Psychol. 2013, 51, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Christ, T.J.; Zopluoglu, C.; Long, J.D.; Monaghen, B.D. Curriculum-based measurement of oral reading: Quality of progress monitoring outcomes. Except. Child. 2012, 78, 356–373. [Google Scholar] [CrossRef]
- Espin, C.A.; van den Bosch, R.M.; van der Liende, M.; Rippe, R.C.A.; Beutick, M.; Langa, A.; Mol, S.E. A systematic review of CBM professional development materials: Are teachers receiving sufficient instruction in data-based decision-making? J. Learn. Disabil. 2021, 54, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.T.; Förster, N.; Hebbecker, K.; Forthmann, B.; Souvignier, E. Effects of data-based decision-making on low-performing readers in general education classrooms: Cumulative evidence from six intervention studies. J. Learn. Disabil. 2021, 54, 334–348. [Google Scholar] [CrossRef]
- Hosp, M.K.; Hosp, J.L.; Howell, K.W. The ABCs of CBM. A Practical Guide to Curriculum-Based Measurement; Guilford Press: New York, NY, USA, 2007. [Google Scholar]
- Raffe, C.P.; Loughland, T. “We’re not data analysts”: Teachers’ perspectives on factors impacting their use of student assessment data. Issues Educ. Res. 2021, 31, 224–240. [Google Scholar]
- Zeuch, N.; Förster, N.; Souvignier, E. Assessing teachers’ competencies to read and interpret graphs from learning progress assessment: Results from tests and interviews. Learn. Disabil. Res. Pract. 2017, 32, 61–70. [Google Scholar] [CrossRef]
- Klapproth, F. Biased predictions of students’ future achievement: An experimental study on pre-service teachers’ interpretation of curriculum-based measurement graphs. Stud. Educ. Eval. 2018, 59, 67–75. [Google Scholar] [CrossRef]
- Klapproth, F. Stereotype in der Lernverlaufsdiagnostik. In Stereotype in der Schule II; Glock, S., Ed.; Springer: Berlin, Germany, 2022; pp. 49–88. [Google Scholar]
- Klapproth, F.; Holzhüter, L.; Jungmann, T. Prediction of students’ reading outcomes in learning progress monitoring. Evidence for the effect of a gender bias. J. Educ. Res. Online 2022, 14, 16–38. [Google Scholar] [CrossRef]
- Jungjohann, J.; Gebhardt, M.; Scheer, D. Understanding and improving teachers’ graph literacy for data-based decision-making via video intervention. Front. Educ. 2022, 7, 919152. [Google Scholar] [CrossRef]
- Van den Bosch, R.M.; Espin, C.A.; Sikkema-de Jong, M.T.; Chung, S.; Boender, P.D.M.; Saab, N. Teachers‘ visual inspection of curriculum-based measurement progress graphs: An exploratory, descriptive eye-tracking study. Front. Educ. 2022, 7, 921319. [Google Scholar] [CrossRef]
- Van Norman, E.R.; Nelson, P.M.; Shin, J.-E.; Christ, T.J. An evaluation of the effects of graphic aids in improving decision accuracy in a continuous treatment design. J. Behav. Educ. 2013, 22, 283–301. [Google Scholar] [CrossRef]
- Deno, S.L. Developments in curriculum-based measurement. J. Spec. Educ. 2003, 37, 184–192. [Google Scholar] [CrossRef]
- Espin, C.A.; Waymann, M.M.; Deno, S.L.; McMaster, K.L. Data-based decision making: Developing a method for capturing teachers’ understanding of CBM graphs. Learn. Disabil. Res. Pract. 2017, 32, 8–21. [Google Scholar] [CrossRef]
- Van den Bosch, R.M.; Espin, C.A.; Chung, S.; Saab, N. Data-based decision making: Teachers’ comprehension of curriculum-based measurement progress-monitoring graphs. Learn. Disabil. Res. Pract. 2017, 32, 46–60. [Google Scholar] [CrossRef]
- Van den Bosch, R.M.; Espin, C.A.; Pat-El, R.J.; Saab, N. Improving teachers’ comprehension of curriculum-based measurement progress monitoring graphs. J. Learn. Disabil. 2019, 52, 413–427. [Google Scholar] [CrossRef] [PubMed]
- Wilbert, J.; Bosch, J.; Lüke, T. Validity and judgment bias in visual analysis of single-case data. Int. J. Res. Learn. Disabil. 2021, 5, 13–24. [Google Scholar] [CrossRef]
- Klapproth, F. Mental models of growth. In Culture and Development in Japan and Germany; Helfrich, H., Zillekens, M., Hölter, E., Eds.; Daedalus: Münster, Germany, 2006; pp. 141–153. [Google Scholar]
- Gesel, S.A.; LeJeune, L.M.; Chow, J.C.; Sinclair, A.C.; Lemons, C.J. A meta-analysis of the impact of professional development on teachers’ knowledge, skill, and self-efficacy in data-based decision-making. J. Learn. Disabil. 2021, 54, 269–283. [Google Scholar] [CrossRef]
- Lai, M.K.; Schildkamp, K. Inservice teacher professional learning: Use of assessment in data-based decision-making. In Handbook of Human and Social Conditions in Assessment; Brown, G.T.L., Harris, L.R., Eds.; Routledge: Oxfordshire, UK, 2016; pp. 77–94. [Google Scholar]
- Deno, S.L.; Mirkin, P. Data Based Program Modification: A Manual; Leadership Training Institute for Special Education: Minneapolis, MN, USA, 1977. [Google Scholar]
- Tindal, G. Curriculum-based measurement: A brief history of nearly everything from the 1970s to the present. ISRN Educ. 2013, 2013, 958530. [Google Scholar] [CrossRef]
- Klauer, K.J. Erfassung des Lernfortschritts durch curriculumbasierte Messung. Heilpädagogische Forsch. 2006, 32, 16–26. [Google Scholar]
- Blumenthal, S.; Gebhardt, M.; Förster, N.; Souvignier, E. Internetplattformen zur Diagnostik von Lernverläufen von Schülerinnen und Schülern in Deutschland. Ein Vergleich der Plattformen Lernlinie, Levumi und quop. Z. Für Heilpädagogik 2022, 73, 153–167. [Google Scholar]
- Förster, N.; Kuhn, J.-T.; Souvignier, E. Normierung von Verfahren zur Lernverlaufsdiagnostik. Empirische Sonderpädagogik 2017, 9, 116–122. [Google Scholar]
- Mullis, I.V.S.; von Davier, M.; Foy, P.; Fishbein, B.; Reynolds, K.A.; Wry, E. PIRLS 2021. International Results in Reading; Boston College: Chestnut Hill, MA, USA, 2023. [Google Scholar]
- Fuchs, L.S.; Fuchs, D.; Hosp, M.K. Oral reading fluency as an indicator of reading competence: A theoretical, empirical, and historical analysis. Sci. Stud. Read. 2001, 5, 239–256. [Google Scholar] [CrossRef]
- Fuchs, L.S.; Fuchs, D.; Compton, D.L.; Bryant, J.D.; Hamlett, C.L.; Seethaler, P.M. Mathematics screening and progress monitoring at first grade: Implications for responsiveness to intervention. Except. Child. 2007, 73, 311–330. [Google Scholar] [CrossRef]
- Nelson, G.; Kiss, A.J.; Codding, R.S.; McKevett, N.M.; Schmitt, J.F.; Park, S.; Romero, M.E.; Hwang, J. Review of curriculum-based measurement in mathematics: An update and extension of the literature. J. Sch. Psychol. 2023, 97, 1–42. [Google Scholar] [CrossRef] [PubMed]
- Christ, T.J.; Scullin, S.; Tolbize, A.; Jiban, C.L. Implications of Recent Research: Curriculum-Based Measurement of Math Computation. Assess. Eff. Interv. 2008, 33, 198–205. [Google Scholar] [CrossRef]
- Nelson, P.M.; Van Norman, E.R.; Christ, T.J. Visual analysis among novices: Training and trend lines as graphic aids. Contemp. Sch. Psychol. 2017, 21, 93–102. [Google Scholar] [CrossRef]
- McElvany, N.; Lorenz, R.; Frey, A.; Goldhammer, F.; Schilcher, A.; Stubbe, T.C. IGLU 2021. Lesekompetenzen von Grundschulkindern im Internationalen Vergleich und im Trend Über 20 Jahre; Waxmann: Münster, Germany, 2023. [Google Scholar]
- Mullis, I.V.S.; Martin, M.O.; Foy, P.; Hooper, M. PIRLS 2016: International Results in Reading; TIMSS & PIRLS International Study Center; Lynch School of Education; Boston College International Association for the Evaluation of Educational Achievement (IEA): Chestnut Hill, IL, USA, 2017. [Google Scholar]
- Manu, M.; Torppa, M.; Vasalampi, K.; Lerkkanen, M.-K.; Poikkeus, A.-M.; Niemi, P. Reading development from kindergarten to age 18: The role of gender and parental education. Read. Res. Q. 2023, 58, 505–538. [Google Scholar] [CrossRef]
- Meissel, K.; Meyer, F.; Yao, E.S.; Rubie-Davies, C.M. Subjectivity of teacher judgments: Exploring student characteristics that influence teacher judgments of student ability. Teach. Teach. Educ. 2017, 65, 48–60. [Google Scholar] [CrossRef]
- Carlana, M. Implicit stereotypes: Evidence from teachers’ gender bias. Q. J. Econ. 2019, 134, 1163–1224. [Google Scholar] [CrossRef]
- OECD. Are Boys and Girls Equally Prepared for Life? 2014. Available online: https://www.oecd.org/pisa/pisaproducts/PIF-2014-gender-international-version.pdf (accessed on 14 April 2023).
- Tian, L.; Li, X.; Chen, X.; Huebner, E.S. Gender-specific trajectories of academic achievement in Chinese elementary school students: Relations with life satisfaction trajectories and suicidal ideation trajectories. Learn. Instr. 2023, 85, 101751. [Google Scholar] [CrossRef]
- Fu, R.; Chen, X.; Wang, L.; Yang, F. Developmental trajectories of academic achievement in Chinese children: Contributions of early social-behavioral functioning. J. Educ. Psychol. 2016, 108, 1001. [Google Scholar] [CrossRef]
- Hoge, R.D.; Coladarci, T. Teacher-based judgments of academic achievement: A review of literature. Rev. Educ. Res. 1989, 59, 297–313. [Google Scholar] [CrossRef]
- Lorenz, G.; Gentrup, S.; Kristen, C.; Stanat, P.; Kogan, I. Stereotype bei Lehrkräften? Eine Untersuchung systematisch verzerrter Lehrererwartungen. Kölner Z. Für Soziologie Und Sozialpsychologie 2016, 68, 89–111. [Google Scholar] [CrossRef]
- Cvencek, D.; Kapur, M.; Meltzoff, A.N. Math achievement, stereotypes, and math self-concepts among elementary-school students in Singapore. Learn. Instr. 2015, 39, 1–10. [Google Scholar] [CrossRef]
- Glock, S.; Kleen, H. Gender and student misbehavior: Evidence from implicit and explicit measures. Teach. Teach. Educ. 2017, 67, 93–103. [Google Scholar] [CrossRef]
- Jussim, L.; Eccles, J. Teacher expectations: II. Construction and reflection of student achievement. J. Personal. Soc. Psychol. 1992, 63, 947–961. [Google Scholar] [CrossRef]
- Greenwald, A.G.; Banaji, M.R. Implicit social cognition: Attitudes, self-esteem, and stereotypes. Psychol. Rev. 1995, 102, 4–27. [Google Scholar] [CrossRef] [PubMed]
- Schneider, D.J. The Psychology of Stereotyping; Guilford Press: New York, NY, USA, 2004. [Google Scholar]
- Macrae, C.N.; Milne, A.B.; Bodenhausen, G.V. Stereotypes as energy-saving devices: A peek inside the cognitive toolbox. J. Personal. Soc. Psychol. 1994, 66, 37–47. [Google Scholar] [CrossRef]
- Van Knippenberg, A.; Dijksterhuis, A.; Vermeulen, D. Judgement and memory of a criminal act: The effects of stereotypes and cognitive load. Eur. J. Soc. Psychol. 1999, 29, 191–201. [Google Scholar] [CrossRef]
- Fiske, S.T.; Neuberg, S.L. A continuum of impression formation, from category-based to individuating processes: Influences of information and motivation on attention and interpretation. Adv. Exp. Soc. Psychol. 1990, 23, 1–74. [Google Scholar] [CrossRef]
- Campbell, D.T. Stereotypes and the perception of group differences. Am. Psychol. 1967, 22, 817–829. [Google Scholar] [CrossRef]
- Muntoni, F.; Retelsdorf, J. Gender-specific teacher expectations in reading—The role of teachers’ gender stereotypes. Contemp. Educ. Psychol. 2018, 54, 212–220. [Google Scholar] [CrossRef]
- Ellmers, N. Gender stereotypes. Annu. Rev. Psychol. 2018, 69, 275–298. [Google Scholar] [CrossRef]
- Kertz-Welzel, A. Bildung and the master teacher: Issues in preservice teacher education in Germany. In Proceedings of the 18th International Seminar of the ISME Commission on Music Policy: Culture, Education, and Mass Media, Birmingham, UK, 20–22 July 2016; p. 498. [Google Scholar]
- Acar-Erdol, T.; Bostancioglu, A.; Gözütok, F.D. Gender equality perceptions of preservice teachers: Are they ready to teach it? Soc. Psychol. Educ. 2022, 25, 793–818. [Google Scholar] [CrossRef]
- Frühauf, M.; Hildebrandt, J.; Mros, T.; Zander, L.; McElvany, N.; Hannover, B. Does an immigrant teacher help immigrant students cope with negative stereotypes? Preservice teachers’ and school students’ perceptions of teacher bias ad motivational support, as well as stereotype threat effects on immigrant students’ learning. Soc. Psychol. Educ. 2023, 1–41. [Google Scholar] [CrossRef]
- Yendell, O.; Claus, C.; Bonefeld, M.; Karst, K. “I wish I could say, ‘Yeah, both the same’”: Cultural stereotypes and individual differentiations of preservice teachers about different low socioeconomic origins. Soc. Psychol. Educ. 2023, 1–36. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Klein, O.; Doyen, S.; Leys, C.; da Gama, P.A.; Miller, S.; Questienne, L.; Cleeremans, A. Low hopes, high expectations: Expectancy effects and the replicability of behavioral experiments. Perspect. Psychol. Sci. 2012, 7, 572–584. [Google Scholar] [CrossRef] [PubMed]
- Gerhards, J. Die Moderne und Ihre Vornamen: Eine Einladung in die Kultursoziologie, 2nd ed.; VS Verlag: Wiesbaden, Germany, 2010. [Google Scholar]
- Ardoin, S.P.; Christ, T.J. Curriculum-based measurement of oral reading: Standard errors associated with progress monitoring outcomes from DIBELS, AIMSweb, and an experimental passage set. Sch. Psychol. Rev. 2009, 38, 266–283. [Google Scholar] [CrossRef]
- Van Norman, E.R.; Christ, T.J. How accurate are interpretations of curriculum-based measurement progress monitoring data? Visual analysis versus decision rules. J. Sch. Psychol. 2016, 58, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Vygotsky, L.S. Mind in Society: The Development of Higher Psychological Processes; Harvard University Press: Cambridge, MA, USA, 1978. [Google Scholar]
- Jungermann, H. Reasons for uncertainty: From frequencies to stories. Psychol. Beiträge 1997, 39, 126–139. [Google Scholar]
- Darley, J.M.; Gross, P.G. A hypothesis-confirming bias in labeling effects. J. Personal. Soc. Psychol. 1983, 44, 20–33. [Google Scholar] [CrossRef]
- Kunda, Z.; Sherman-Williams, B. Stereotypes and the construal of individuating information. Personal. Soc. Psychol. Bull. 1993, 19, 90–99. [Google Scholar] [CrossRef]
- Li, J.J.; Cutting, L.E.; Ryan, M.; Zilioli, M.; Denckla, M.B.; Mahone, E.M. Response variability in rapid automatized naming predicts reading comprehension. J. Clin. Exp. Neuropsychol. 2009, 31, 877–888. [Google Scholar] [CrossRef] [PubMed]
- Clare Kelly, A.M.; Uddin, L.Q.; Biswal, B.B.; Castellanos, F.X.; Milham, M.P. Competition between functional brain networks mediates behavioral variability. NeuroImage 2008, 39, 527–537. [Google Scholar] [CrossRef]
- Casper, C.; Rothermund, K.; Wentura, D. Automatic stereotype activation is context dependent. Soc. Psychol. 2010, 41, 131–136. [Google Scholar] [CrossRef]
- Bodenhausen, G.V. Emotions, arousal, and stereotypic judgements: A heuristic model of affect and stereotyping. In Affect, Cognition, and Stereotyping; Mackie, D.M., Hamilton, D.L., Eds.; Academic Press: San Diego, CA, USA, 1993; pp. 13–37. [Google Scholar] [CrossRef]
- Tetlock, P.E.; Kim, J.I. Accountability and judgement processes in a personality prediction task. J. Personal. Soc. Psychol. 1987, 52, 700–709. [Google Scholar] [CrossRef]
- Blumenthal, S.; Blumenthal, Y.; Lembke, E.S.; Powell, S.R.; Schultze-Petzold, P.; Thoma, E.R. Educator perspectives on data-based decision making in Germany and the United States. J. Learn. Disabil. 2021, 54, 284–299. [Google Scholar] [CrossRef]
- Jansen, T.; Vögelin, C.; Machts, N.; Keller, S.; Köller, O.; Möller, J. Judgment accuracy in experienced versus student teachers: Assessing essays in English as a foreign language. Teach. Teach. Educ. 2021, 97, 103216. [Google Scholar] [CrossRef]
- McElvany, N.; Schroeder, S.; Hachfeld, A.; Baumert, J.; Richter, T.; Schnotz, W.; Horz, H.; Ullrich, M. Teachers’ diagnostic skills to assess student abilities and task difficulty of learning materials incorporating instructional pictures. Ger. J. Educ. Psychol. 2009, 23, 223–235. [Google Scholar] [CrossRef]
- Kleen, H.; Baumann, T.; Glock, S. Der demografische Match zwischen Schüler*innen und Lehrer*innenmerkmalen: Geschlecht, sozialer Status, Migrationshintergrund—Wer profitiert am meisten? In Stereotype in der Schule; Glock, S., Ed.; Springer VS: Berlin/Heidelberg, Germany, 2022; pp. 379–400. [Google Scholar]
- Statista. Anteil der Weiblichen Lehrkräfte an Allgemeinbildenden Schulen in Deutschland im Schuljahr 2022/2023 Nach Schulart. 2023. Available online: https://de.statista.com/statitik/daten/studie/1129852/umfrage/frauenanteil-unter-den-lehrkraeften-in-deutschalnd-nach-schulart/ (accessed on 23 August 2023).
- IPN. MINT-Nachwuchsbarometer 2023; Joachim-Herz-Stiftung: Hamburg, Germany, 2023. [Google Scholar]
- Steele, C.M.; Aronson, J. Stereotype threat and the intellectual test performance of African Americans. J. Personal. Soc. Psychol. 1995, 69, 797–811. [Google Scholar] [CrossRef]
- Pansu, P.; Régner, I.; Max, S.; Colé, P.; Nezlek, J.B.; Huguet, P. A burden for the boys: Evidence of stereotype threat in boys’ reading performance. J. Exp. Soc. Psychol. 2016, 65, 26–30. [Google Scholar] [CrossRef]
- Friel, S.N.; Curcio, F.R.; Bright, G.W. Making sense of graphs: Critical factors influencing comprehension and instructional implications. J. Res. Math. Educ. 2001, 32, 124–158. [Google Scholar] [CrossRef]
- Mandinach, E.B.; Gummer, E.S. What does it mean for teachers to be data literate: Laying out the skills, knowledge, and dispositions. Teach. Teach. Educ. 2016, 60, 366–376. [Google Scholar] [CrossRef]
- Bonefeld, M. Reflexion eigener Stereotype als Motor zur nachhaltigen Stereotypreduktion bei angehenden Lehrkräften. In Stereotype in der Schule; Glock, S., Ed.; Springer VS: Berlin/Heidelberg, Germany, 2022; pp. 341–378. [Google Scholar]
Domain | Slope | Student Gender | |||
---|---|---|---|---|---|
Male | Female | ||||
Variability | |||||
Low | High | Low | High | ||
Math | Flat | 2.33 (1.65) [1.85, 2.81] | 3.27 (1.56) [2.90, 3.64] | 5.33 (0.83) [4.94, 5.71] | 4.08 (1.53) [3.62, 4.54] |
Steep | 1.51 (0.79) [1.14, 1.88] | 2.63 (1.51) [2.21, 3.05] | 4.71 (1.50) [4.29, 5.14] | 3.06 (1.68) [2.67, 3.46] | |
Reading | Flat | 4.04 (1.72) [3.57, 4.51] | 5.02 (0.99) [4.66, 5.38] | 2.96 (1.73) [2.58, 3.34] | 2.37 (1.71) [1.92, 2.82] |
Steep | 3.90 (1.68) [3.54, 4.27] | 4.45 (1.45) [4.04, 4.86] | 2.55 (1.47) [2.14, 2.96] | 1.80 (1.04) [1.42, 2.19] |
Domain | Slope | Student Gender | |||
---|---|---|---|---|---|
Male | Female | ||||
Variability | |||||
Low | High | Low | High | ||
Math | Flat | 4.53 (1.50) [4.09, 4.98] | 3.63 (1.56) [3.26, 4.01] | 1.61 (0.84) [1.27, 1.96] | 3.00 (1.57) [2.55, 3.45] |
Steep | 5.35 (0.95) [4.96, 5.73] | 4.24 (1.65) [3.84, 4.65] | 2.37 (1.45) [1.95, 2.78] | 4.14 (1.55) [3.78, 4.50] | |
Reading | Flat | 2.80 (1.64) [2.37, 3.24] | 1.76 (1.01) [1.40, 2.13] | 3.82 (1.51) [3.48, 4.16] | 4.61 (1.60) [4.17, 5.05] |
Steep | 3.02 (1.67) [2.64, 3.40] | 2.06 (1.21) [1.66, 2.46] | 4.33 (1.48) [3.93, 4.74] | 5.37 (0.92) [5.02, 5.73] |
Effect | F Ratio | df | p | η2 |
---|---|---|---|---|
Slope | 23.25 | 1, 98 | <0.001 | 0.19 |
Variability | 1.57 | 1, 98 | 0.213 | 0.02 |
Student Gender | 0.06 | 1, 98 | 0.804 | 0.00 |
Condition | 0.15 | 1, 98 | 0.701 | 0.00 |
Slope × Condition | 1.99 | 1, 98 | 0.161 | 0.02 |
Variability × Condition | 4.08 | 1, 98 | 0.046 | 0.04 |
Student Gender × Condition | 186.59 | 1, 98 | <0.001 | 0.66 |
Variability × Slope | 2.79 | 1, 98 | 0.098 | 0.03 |
Variability × Student Gender | 29.46 | 1, 98 | <0.001 | 0.23 |
Slope × Student Gender | 0.92 | 1, 98 | 0.340 | 0.01 |
Slope × Variability × Condition | 0.56 | 1, 98 | 0.457 | 0.01 |
Slope × Student Gender × Condition | 0.04 | 1, 98 | 0.850 | 0.00 |
Variability × Student Gender × Condition | 2.12 | 1, 98 | 0.149 | 0.02 |
Slope × Variability × Student Gender | 0.42 | 1, 98 | 0.519 | 0.00 |
Slope × Variability × Student Gender × Condition | 3.13 | 1, 98 | 0.080 | 0.03 |
Effect | F Ratio | df | p | η2 |
---|---|---|---|---|
Slope | 30.04 | 1, 98 | <0.001 | 0.24 |
Variability | 4.18 | 1, 98 | 0.044 | 0.04 |
Student Gender | 2.75 | 1, 98 | 0.101 | 0.03 |
Condition | 5.40 | 1, 98 | 0.022 | 0.05 |
Slope × Condition | 2.74 | 1, 98 | 0.101 | 0.03 |
Variability × Condition | 7.71 | 1, 98 | 0.007 | 0.07 |
Student Gender × Condition | 181.96 | 1, 98 | <0.001 | 0.65 |
Variability × Slope | 1.29 | 1, 98 | 0.258 | 0.01 |
Variability × Student Gender | 41.96 | 1, 98 | <0.001 | 0.30 |
Slope × Student Gender | 10.56 | 1, 98 | 0.002 | 0.10 |
Slope × Variability × Condition | 0.11 | 1, 98 | 0.743 | 0.00 |
Slope × Student Gender × Condition | 0.60 | 1, 98 | 0.439 | 0.01 |
Variability × Student Gender × Condition | 0.93 | 1, 98 | 0.337 | 0.01 |
Slope × Variability × Student Gender | 2.45 | 1, 98 | 0.121 | 0.02 |
Slope × Variability × Student Gender × Condition | 0.72 | 1, 98 | 0.400 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klapproth, F.; Lippe, H.v.d. A Gender Bias in Curriculum-Based Measurement across Content Domains: Insights from a German Study. Educ. Sci. 2024, 14, 76. https://doi.org/10.3390/educsci14010076
Klapproth F, Lippe Hvd. A Gender Bias in Curriculum-Based Measurement across Content Domains: Insights from a German Study. Education Sciences. 2024; 14(1):76. https://doi.org/10.3390/educsci14010076
Chicago/Turabian StyleKlapproth, Florian, and Holger von der Lippe. 2024. "A Gender Bias in Curriculum-Based Measurement across Content Domains: Insights from a German Study" Education Sciences 14, no. 1: 76. https://doi.org/10.3390/educsci14010076
APA StyleKlapproth, F., & Lippe, H. v. d. (2024). A Gender Bias in Curriculum-Based Measurement across Content Domains: Insights from a German Study. Education Sciences, 14(1), 76. https://doi.org/10.3390/educsci14010076