Cognitive Study Strategies and Motivational Orientations among University Students: A Latent Profile Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedure
2.2. Measures
2.2.1. Self-Regulated Knowledge Scale-University
2.2.2. Academic Motivation Scale
2.2.3. Dropout Intention Scale
2.2.4. Academic Self-Efficacy
2.2.5. Outcome Questionnaire-45
2.3. Statistical Analyses
3. Results
3.1. Participants’ Characteristics
3.2. Learning Strategies and Motivational Orientation Profiles
3.3. Differences in Academic and Psychological Outcomes between Profiles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | |
---|---|---|---|---|---|---|---|---|---|
1. SRKS-U Extraction | — | ||||||||
2. SRKS-U Networking | 0.20 *** | — | |||||||
3. SRKS-U Practice | 0.23 *** | 0.24 *** | — | ||||||
4. SRKS-U Critique | 0.15 *** | 0.68 *** | 0.16 *** | — | |||||
5. SRKS-U Monitoring | 0.19 *** | 0.44 *** | 0.58 *** | 0.42 *** | — | ||||
6. AMS External | 0.01 | −0.17 *** | −0.07 | −0.13 ** | −0.16 *** | — | |||
7. AMS Introjected | 0.05 | −0.04 | 0.04 | −0.10 * | 0.00 | 0.31 *** | — | ||
8. AMS Identified | 0.12 ** | 0.10 * | 0.13 ** | 0.05 | 0.11 * | −0.22 *** | 0.12 ** | — | |
9. AMS Intrinsic | 0.03 | 0.36 *** | 0.21 *** | 0.41 *** | 0.36 *** | −0.39 *** | 0.06 | 0.33 | — |
References
- Bernardo, A.B.; Esteban, M.; Fernández, E.; Cervero, A.; Tuero, E.; Solano, P. Comparison of Personal, Social and Academic Variables Related to University Drop-out and Persistence. Front. Psychol. 2016, 7, 1610. [Google Scholar] [CrossRef] [PubMed]
- Díaz Mújica, A.; Pérez Villalobos, M.V.; Bernardo Gutiérrez, A.B.; Fernández-Castañón, A.C.; González-Pienda, J.A. Affective and Cognitive Variables Involved in Structural Prediction of University Dropout. Psicothema 2019, 31, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Manganelli, S.; Cavicchiolo, E.; Mallia, L.; Biasi, V.; Lucidi, F.; Alivernini, F. The Interplay between Self-Determined Motivation, Self-Regulated Cognitive Strategies, and Prior Achievement in Predicting Academic Performance. Educ. Psychol. 2019, 39, 470–488. [Google Scholar] [CrossRef]
- Boekaerts, M.; Cascallar, E. How Far Have We Moved Toward the Integration of Theory and Practice in Self-Regulation? Educ. Psychol. Rev. 2006, 18, 199–210. [Google Scholar] [CrossRef]
- Boekaerts, M.; Pintrich, P.R.; Zeidner, M. Handbook of Self-Regulation; Elsevier: Amsterdam, The Netherlands, 2000; ISBN 978-0-08-053320-9. [Google Scholar]
- Zimmerman, B.J. Attaining Self-Regulation: A Social Cognitive Perspective. In Handbook of Self-Regulation; Boekaerts, M., Pintrich, P.R., Zeidner, M., Eds.; Academic Press: San Diego, CA, USA, 2000; pp. 13–39. ISBN 978-0-12-109890-2. [Google Scholar]
- Pintrich, P.R. A Conceptual Framework for Assessing Motivation and Self-Regulated Learning in College Students. Educ. Psychol. Rev. 2004, 16, 385–407. [Google Scholar] [CrossRef]
- Boekaerts, M. Self-Regulated Learning: A New Concept Embraced by Researchers, Policy Makers, Educators, Teachers, and Students. Learn. Instr. 1997, 7, 161–186. [Google Scholar] [CrossRef]
- Richardson, M.; Abraham, C.; Bond, R. Psychological Correlates of University Students’ Academic Performance: A Systematic Review and Meta-Analysis. Psychol. Bull. 2012, 138, 353–387. [Google Scholar] [CrossRef]
- Robbins, S.B.; Lauver, K.; Le, H.; Davis, D.; Langley, R.; Carlstrom, A. Do Psychosocial and Study Skill Factors Predict College Outcomes? A Meta-Analysis. Psychol. Bull. 2004, 130, 261–288. [Google Scholar] [CrossRef] [PubMed]
- Deci, E.L.; Ryan, R.M. Intrinsic Motivation and Self-Determination in Human Behavior; Springer: Boston, MA, USA, 1985; ISBN 978-1-4899-2273-1. [Google Scholar]
- Deci, E.L.; Ryan, R.M. The “What” and “Why” of Goal Pursuits: Human Needs and the Self-Determination of Behavior. Psychol. Inq. 2000, 11, 227–268. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. Intrinsic and Extrinsic Motivations: Classic Definitions and New Directions. Contemp. Educ. Psychol. 2000, 25, 54–67. [Google Scholar] [CrossRef]
- Kotera, Y.; Aledeh, M.; Barnes, K.; Rushforth, A.; Adam, H.; Riswani, R. Academic Motivation of Indonesian University Students: Relationship with Self-Compassion and Resilience. Healthcare 2022, 10, 2092. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. Intrinsic and Extrinsic Motivation from a Self-Determination Theory Perspective: Definitions, Theory, Practices, and Future Directions. Contemp. Educ. Psychol. 2020, 61, 101860. [Google Scholar] [CrossRef]
- Vansteenkiste, M.; Sierens, E.; Soenens, B.; Luyckx, K.; Lens, W. Motivational Profiles from a Self-Determination Perspective: The Quality of Motivation Matters. J. Educ. Psychol. 2009, 101, 671–688. [Google Scholar] [CrossRef]
- Biasi, V.; De Vincenzo, C.; Patrizi, N. Relazioni tra autoregolazione dell’apprendimento, motivazioni e successo accademico degli studenti. Identificazione di fattori predittivi del rischio di drop-out. Ital. J. Educ. Res. 2017, 18, 181–198. [Google Scholar]
- Mega, C.; Ronconi, L.; De Beni, R. What Makes a Good Student? How Emotions, Self-Regulated Learning, and Motivation Contribute to Academic Achievement. J. Educ. Psychol. 2014, 106, 121–131. [Google Scholar] [CrossRef]
- Bernardo, A.B.; Esteban, M.; Cervero, A.; Cerezo, R.; Herrero, F.J. The Influence of Self-Regulation Behaviors on University Students’ Intentions of Persistance. Front. Psychol. 2019, 10, 2284. [Google Scholar] [CrossRef] [PubMed]
- Nemtcan, E.; Sæle, R.G.; Gamst-Klaussen, T.; Svartdal, F. Drop-Out and Transfer-Out Intentions: The Role of Socio-Cognitive Factors. Front. Educ. 2020, 5, 606291. [Google Scholar] [CrossRef]
- Liu, W.C.; Wang, C.K.J.; Kee, Y.H.; Koh, C.; Lim, B.S.C.; Chua, L. College Students’ Motivation and Learning Strategies Profiles and Academic Achievement: A Self-Determination Theory Approach. Educ. Psychol. 2014, 34, 338–353. [Google Scholar] [CrossRef]
- Laursen, B.P.; Hoff, E. Person-Centered and Variable-Centered Approaches to Longitudinal Data. Merrill-Palmer Q. 2006, 52, 377–389. [Google Scholar] [CrossRef]
- Schwinger, M.; Stiensmeier-Pelster, J. Effects of Motivational Regulation on Effort and Achievement: A Mediation Model. Int. J. Educ. Res. 2012, 56, 35–47. [Google Scholar] [CrossRef]
- Heikkilä, A.; Niemivirta, M.; Nieminen, J.; Lonka, K. Interrelations among University Students’ Approaches to Learning, Regulation of Learning, and Cognitive and Attributional Strategies: A Person Oriented Approach. High. Educ. 2011, 61, 513–529. [Google Scholar] [CrossRef]
- Broadbent, J.; Fuller-Tyszkiewicz, M. Profiles in Self-Regulated Learning and Their Correlates for Online and Blended Learning Students. Educ. Technol. Res. Dev. 2018, 66, 1435–1455. [Google Scholar] [CrossRef]
- Manganelli, S.; Alivernini, F.; Mallia, L.; Biasi, V. The Development and Psychometric Properties of the «Self-Regulated Knowledge Scale—University» (SRKS-U). ECPS-Educ. Cult. Psychol. Stud. 2015, 12, 235–254. [Google Scholar] [CrossRef]
- Alivernini, F.; Lucidi, F. The Academic Motivation Scale (AMS): Factorial Structure, Invariance and Validity in the Italian Context. Test. Psychom. Methodol. Appl. Psychol. 2008, 15, 211–220. [Google Scholar]
- Hardre, P.L.; Reeve, J. A Motivational Model of Rural Students’ Intentions to Persist in, versus Drop out of, High School. J. Educ. Psychol. 2003, 95, 347–356. [Google Scholar] [CrossRef]
- Fagioli, S. Orientamento Universitario in Itinere: Principali Modalità e Strumenti. In ECPS—The Series; LED Edizioni Universitarie: Milan, Italy, 2019; ISBN 978-88-7916-892-2. [Google Scholar]
- Pastorelli, C.; Piccioni, L. Scala Di Autoefficacia Scolastica Percepita. In La Valutazione Dell’autoefficacia. Costrutti e Strumenti; Caprara, G.V., Ed.; Erickson: Trento, Italy, 2001. [Google Scholar]
- Biasi, V.; De Vincenzo, C.; Patrizi, N. Strategie Cognitive per l’autoregolazione Dell’apprendimento e Motivazione Allo Studio. Costruzione Di Profili Medi Del Funzionamento Cognitivo e Dell’assetto Motivazionale per La Prevenzione Del Drop-Out. ECPS-Educ. Cult. Psychol. Stud. 2018, 6, 139–159. [Google Scholar] [CrossRef]
- Lambert, M.J.; Gregersen, A.T.; Burlingame, G.M. The Outcome Questionnaire-45. In The Use of Psychological Testing for Treatment Planning and Outcomes Assessment: Instruments for Adults, Volume 3, 3rd ed.; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 2004; pp. 191–234. ISBN 978-0-8058-4331-6. [Google Scholar]
- Lo Coco, G.; Chiappelli, M.; Bensi, L.; Gullo, S.; Prestano, C.; Lambert, M.J. The Factorial Structure of the Outcome Questionnaire-45: A Study with an Italian Sample. Clin. Psychol. Psychother. 2008, 15, 418–423. [Google Scholar] [CrossRef] [PubMed]
- McDonald, R.P. Test Theory: A Unified Treatment, 1st ed.; Psychology Press: London, UK, 2013; ISBN 978-1-4106-0108-7. [Google Scholar]
- Pintrich, P.R. The Role of Goal Orientation in Self-Regulated Learning. In Handbook of Self-Regulation; Elsevier: Amsterdam, The Netherlands, 2000; pp. 451–502. ISBN 978-0-12-109890-2. [Google Scholar]
- Vallerand, R.J.; Blssonnette, R. Intrinsic, Extrinsic, and Amotivational Styles as Predictors of Behavior: A Prospective Study. J. Pers. 1992, 60, 599–620. [Google Scholar] [CrossRef]
- Vallerand, R.J.; Pelletier, L.G.; Blais, M.R.; Briere, N.M.; Senecal, C.; Vallieres, E.F. On the Assessment of Intrinsic, Extrinsic, and Amotivation in Education: Evidence on the Concurrent and Construct Validity of the Academic Motivation Scale. Educ. Psychol. Meas. 1993, 53, 159–172. [Google Scholar] [CrossRef]
- Horn, J.L. A Rationale and Test for the Number of Factors in Factor Analysis. Psychometrika 1965, 30, 179–185. [Google Scholar] [CrossRef]
- Chiappelli, M.; Coco, G.L.; Gullo, S.; Bensi, L.; Prestano, C. The Outcome Questionnaire 45.2. Italian Validation of an Instrument for the Assessment of Phychological Treatments. Epidemiol. Psichiatr. Soc. 2008, 17, 152–161. [Google Scholar] [CrossRef]
- Lambert, M.J.; Burlingame, G.M.; Umphress, V.; Hansen, N.B.; Vermeersch, D.A.; Clouse, G.C.; Yanchar, S.C. The Reliability and Validity of the Outcome Questionnaire. Clin. Psychol. Psychother. 1996, 3, 249–258. [Google Scholar] [CrossRef]
- Hatfield, D.R.; Ogles, B.M. The Use of Outcome Measures by Psychologists in Clinical Practice. Prof. Psychol. Res. Pract. 2004, 35, 485–491. [Google Scholar] [CrossRef]
- Williams, G.A.; Kibowski, F. Latent Class Analysis and Latent Profile Analysis. In Handbook of Methodological Approaches to Community-Based Research; Jason, L.A., Glenwick, D.S., Eds.; Oxford University Press: Oxford, UK, 2015; pp. 143–152. ISBN 978-0-19-024365-4. [Google Scholar]
- Masyn, K.E. Latent Class Analysis and Finite Mixture Modeling; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Spurk, D.; Hirschi, A.; Wang, M.; Valero, D.; Kauffeld, S. Latent Profile Analysis: A Review and “How to” Guide of Its Application within Vocational Behavior Research. J. Vocat. Behav. 2020, 120, 103445. [Google Scholar] [CrossRef]
- Celeux, G.; Soromenho, G. An Entropy Criterion for Assessing the Number of Clusters in a Mixture Model. J. Classif. 1996, 13, 195–212. [Google Scholar] [CrossRef]
- Nylund, K.L.; Asparouhov, T.; Muthén, B.O. Deciding on the Number of Classes in Latent Class Analysis and Growth Mixture Modeling: A Monte Carlo Simulation Study. Struct. Equ. Model. Multidiscip. J. 2007, 14, 535–569. [Google Scholar] [CrossRef]
- The Jamovi Project. Jamovi (Version 2.5), 2024. [Computer Software]. Available online: https://www.jamovi.org/ (accessed on 4 July 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.r-project.org/ (accessed on 4 July 2024).
- Rosenberg, J.; Beymer, P.; Anderson, D.; van Lissa, C.J.; Schmidt, J. tidyLPA: An R Package to Easily Carry Out Latent Profile Analysis (LPA) Using Open-Source or Commercial Software. J. Open Source Softw. 2018, 3, 978. [Google Scholar] [CrossRef]
- Pintrich, P.R.; Smith, D.A.F.; Garcia, T.; McKeachie, W.J. A Manual for the Use of the Motivated Strategies for Learning Questionnaire (MSLQ); University of Michigan: Ann Arbor, MI, USA, 1991. [Google Scholar]
- Gardner, B.; Abraham, C.; Lally, P.; De Bruijn, G.-J. Towards Parsimony in Habit Measurement: Testing the Convergent and Predictive Validity of an Automaticity Subscale of the Self-Report Habit Index. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 102. [Google Scholar] [CrossRef]
- Cabras, C.; Konyukhova, T.; Lukianova, N.; Mondo, M.; Sechi, C. Gender and Country Differences in Academic Motivation, Coping Strategies, and Academic Burnout in a Sample of Italian and Russian First-Year University Students. Heliyon 2023, 9, e16617. [Google Scholar] [CrossRef]
- Pajares, F. Gender and Perceived Self-Efficacy in Self-Regulated Learning. Theory Pract. 2002, 41, 116–125. [Google Scholar] [CrossRef]
- Hakan, K.; Münire, E. Academic Motivation: Gender, Domain and Grade Differences. Procedia-Soc. Behav. Sci. 2014, 143, 708–715. [Google Scholar] [CrossRef]
- Cleary, T.J.; Zimmerman, B.J. Self-Regulation Empowerment Program: A School-Based Program to Enhance Self-Regulated and Self-Motivated Cycles of Student Learning. Psychol. Sch. 2004, 41, 537–550. [Google Scholar] [CrossRef]
- Theobald, M. Self-Regulated Learning Training Programs Enhance University Students’ Academic Performance, Self-Regulated Learning Strategies, and Motivation: A Meta-Analysis. Contemp. Educ. Psychol. 2021, 66, 101976. [Google Scholar] [CrossRef]
- Wolters, C.A. Self-Regulated Learning and College Students’ Regulation of Motivation. J. Educ. Psychol. 1998, 90, 224–235. [Google Scholar] [CrossRef]
- Bernardo, A.B.; Galve-González, C.; Núñez, J.C.; Almeida, L.S. A Path Model of University Dropout Predictors: The Role of Satisfaction, the Use of Self-Regulation Learning Strategies and Students’ Engagement. Sustainability 2022, 14, 1057. [Google Scholar] [CrossRef]
- Ryoo, J.H.; Wang, C.; Swearer, S.M.; Hull, M.; Shi, D. Longitudinal Model Building Using Latent Transition Analysis: An Example Using School Bullying Data. Front. Psychol. 2018, 9, 675. [Google Scholar] [CrossRef]
Variable | N (%) | Mean (SD) |
---|---|---|
Sex | ||
Women | 341 (71.6) | |
Men | 127 (26.7) | |
Prefer not to report | 8 (1.7) | |
Age | 26.5 (9.6) | |
Occupational situation | ||
Full-time student | 266 (55.9) | |
Part-time job | 121 (25.4) | |
Full-time job | 89 (18.7) | |
Study course | ||
Undergraduate | 411 (86.3) | |
Postgraduate | 65 (13.7) | |
Grade point average a | 26.3 (2.6) |
Total Sample (N = 476) | AUT-Learn (n = 288) (1) | EXT-Bal (n = 156) (2) | EXT-Task (n = 32) (3) | ||||
---|---|---|---|---|---|---|---|
Variable | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | F | η2 | Sig. Post-Hoc |
SRKS-U Extraction (3–15) | 11.8 (2.8) | 12.3 (2.7) | 10.9 (2.8) | 11.7 (2.9) | 13.2 *** | 0.05 | 1:2 |
SRKS-U Networking (3–15) | 11.3 (2.6) | 12.7 (1.7) | 9.10 (2.2) | 8.9 (2.6) | 206.7 *** | 0.47 | 1:2; 1:3 |
SRKS-U Practice (3–15) | 12.2 (2.2) | 12.9 (1.9) | 11.4 (2.1) | 10.5 (2.6) | 39.7 *** | 0.14 | 1:2; 1:3 |
SRKS-U Critique (3–15) | 10.6 (2.8) | 12.1 (1.9) | 8.3 (2.0) | 8.1 (2.9) | 215.5 *** | 0.48 | 1:2; 1:3 |
SRKS-U Monitoring (3–15) | 12.7 (1.9) | 13.6 (1.3) | 11.7 (1.7) | 10.1 (2.3) | 124.8 *** | 0.35 | 1:2; 1:3; 2:3 |
AMS External (0–40) | 4.0 (7.1) | 2.6 (5.6) | 4.3 (6.3) | 15.3 (11.8) | 56.9 *** | 0.19 | 1:2; 1:3; 2:3 |
AMS Introjected (0–40) | 19.0 (10.5) | 18.2 (10.3) | 20.5 (10.7) | 17.7 (11.1) | 2.7 | 0.01 | – |
AMS Identified (0–40) | 31.8 (9.5) | 32.9 (9.2) | 31.8 (9.0) | 22.3 (9.0) | 19.4 *** | 0.08 | 1:3; 2:3 |
AMS Intrinsic (0–40) | 34.5 (6.2) | 37.0 (3.6) | 33.2 (4.6) | 19.1 (6.8) | 269.2 *** | 0.53 | 1:2; 1:3; 2:3 |
GPA a | 26.3 (2.6) | 26.6 (2.5) | 26.0 (2.6) | 25.1 (3.0) | 6.0 ** | 0.03 | 1:3 |
Self-efficacy (1–5) | 3.3 (0.7) | 3.6 (0.6) | 3.1 (0.5) | 2.8 (0.8) | 49.6 *** | 0.17 | 1:2; 1:3 |
Dropout (1–5) | 2.1 (1.0) | 1.8 (0.8) | 2.2 (0.9) | 3.3 (1.1) | 43.2 *** | 0.15 | 1:2; 1:3; 2:3 |
OQ-45 (0–180) | 58.4 (26.1) | 54.8 (25.4) | 61.5 (25.2) | 76.1 (27.9) | 11.7 *** | 0.05 | 1:2; 1:3; 2:3 |
Model | AIC | CAIC | BIC | SABIC | BLRT p-Value | Entropy | Prob min–max |
---|---|---|---|---|---|---|---|
1 profile | 12,184 | 12,277 | 12,259 | 12,202 | – | – | – |
2 profiles | 11,693 | 11,837 | 11,809 | 11,721 | 0.01 | 0.789 | 0.90–0.95 |
3 profiles | 11,530 | 11,726 | 11,688 | 11,568 | 0.01 | 0.815 | 0.87–0.94 |
4 profiles | 11,460 | 11,708 | 11,660 | 11,508 | 0.01 | 0.748 | 0.78–0.91 |
5 profiles | 11,169 | 11,468 | 11,410 | 11,226 | 0.01 | 0.804 | 0.79–0.96 |
6 profiles | 11,103 | 11,455 | 11,387 | 11,171 | 0.01 | 0.812 | 0.80–0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Vincenzo, C.; Carpi, M. Cognitive Study Strategies and Motivational Orientations among University Students: A Latent Profile Analysis. Educ. Sci. 2024, 14, 792. https://doi.org/10.3390/educsci14070792
De Vincenzo C, Carpi M. Cognitive Study Strategies and Motivational Orientations among University Students: A Latent Profile Analysis. Education Sciences. 2024; 14(7):792. https://doi.org/10.3390/educsci14070792
Chicago/Turabian StyleDe Vincenzo, Conny, and Matteo Carpi. 2024. "Cognitive Study Strategies and Motivational Orientations among University Students: A Latent Profile Analysis" Education Sciences 14, no. 7: 792. https://doi.org/10.3390/educsci14070792
APA StyleDe Vincenzo, C., & Carpi, M. (2024). Cognitive Study Strategies and Motivational Orientations among University Students: A Latent Profile Analysis. Education Sciences, 14(7), 792. https://doi.org/10.3390/educsci14070792