Recent Advances in Chemical Sensors for Soil Analysis: A Review
Abstract
:1. Introduction
1.1. Soil Definition, Sustainable Management of Soils
1.2. Sensors for Soil Analysis
1.3. Soil Sampling and Pretreatment Procedures Prior to Analysis
2. Sensors for Soil Nutrient Analysis
2.1. Soil Nutrients: Primary, Secondary, and Microelements
2.2. Carbone and Soil Organic Matter
2.3. Total and Mineral Nitrogen
2.4. Total Phosphorous and Phosphates
2.5. Potassium Detection in Soils
2.6. pH, Soil Salinity, and Other Macroelements
2.7. Soil Moisture
2.8. Other Compounds and Sensory Applications
3. Detection of Soil Microelements and Pollutants
3.1. Contamination by Heavy Metals
3.1.1. Pb(II) and Hg(II) Sensors
3.1.2. Cd(II) Sensors
3.1.3. Cu(II) Sensors
3.1.4. Detection of Other Trace Metals
3.1.5. Multi-Metal (and Multi-Analyte) Sensing
3.1.6. Metal Detection by Bacterial Sensors (Bioassays) and Bio-Probing
3.2. Organic Pollutants in Soils
3.3. Detection of Herbicides and Pesticides in Soils with (Bio)Chemical Sensors and Bioassays
4. Multisensor Systems for Soil Analysis
5. Multicomponent Soil Analysis with Gas Sensor Arrays
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Doran, J.W.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3. [Google Scholar] [CrossRef] [Green Version]
- Lvova, L.; Nadporozhskaya, M. Chemical sensors for soil analysis: Principles and applications. In New Pesticides and Soil Sensors; Grumezescu, A.M., Ed.; Series Nanotechnology in the Agri-Food Industry; Elsevier: Amsterdam, The Netherlands, 2017; Volume 10, pp. 637–678. [Google Scholar] [CrossRef]
- Targulian, V.O.; Goryachkin, S.V. (Eds.) Soil Memory: Soil as a Memory of Biosphere-Geosphere-Anthroposphere Interaction; Institute of Geography, Russian Academy of Sciences: Moscow, Russia, 2008. (In Russian) [Google Scholar]
- Schoenholtz, S.H.; Miegroet, H.V.; Burger, J.A. A review of chemical and physical properties as indicators of forest soil quality: Challenges and opportunities. For. Ecol. Manag. 2000, 138, 335. [Google Scholar] [CrossRef]
- Soil Atlas of Europe, European Soil Bureau Network European Commission, 2005, 128p. Office for Official Publications of the European Communities, L-2995 Luxembourg ©European Communities, 2005/Catalogue Number LB-37-01-744-EN-C ISBN 92-894-8120-XEUR 21676. Available online: https://esdac.jrc.ec.europa.eu/content/soil-atlas-europe (accessed on 15 January 2022).
- Doran, J.W.; Parkin, T.B. Quantitative Indicators of Soil Quality: A Minimum Data Set; Doran, J.W., Jones, A.J., Eds.; Methods for Assessing Soil Quality; Soil Science Society of America: Madison, Winsconsin, USA, 1996; pp. 25–37. [Google Scholar]
- Fraters, D. Generalized Soil Map of Europe: Aggregation of the FAO-Unesco Soil Units Based on the Characteristics Determining the Vulnerability to Soil Degradation Processes; RIVM, Report 71240300; RIVM: Biltoven, The Netherlands, 1994.
- Bouwer, E.J.; Crowe, P.B. Biological processes in drinking water treatment. J. Am. Water Works Assoc. 1988, 80, 82. [Google Scholar] [CrossRef]
- Chapman, J.; Truong, V.K.; Elbourne, A.; Gangadoo, S.; Cheeseman, S.; Rajapaksha, P.; Latham, K.; Crawford, R.J.; Cozzolino, D. Combining chemometrics and sensors: Toward new applications in monitoring and environmental analysis. Chem. Rev. 2020, 120, 6048. [Google Scholar] [CrossRef] [PubMed]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105. [Google Scholar] [CrossRef]
- Marios, S.; Georgiou, J. Precision agriculture: Challenges in sensors and electronics for real-time soil and plant monitoring. In Proceedings of the 2017 IEEE Biomedical Circuits and Systems Conference, BioCAS 2017 Proc., Turin, Italy, 19–21 October 2017; p. 135591. [Google Scholar]
- Hulanichi, A.; Geab, S.; Ingman, F. Chemical sensors definitions and classification Pure. Appl. Chem. 1991, 63, 1247. [Google Scholar] [CrossRef]
- Göpel, W.; Hesse, J.; Zemel, J.N. Sensors: A Comprehensive Survey; VCH: New York, NY, USA, 1989; Volume 4. [Google Scholar]
- Liu, C.C. Electrochemical Sensors. In The Biomedical Engineering Handbook, 2nd ed.; Bronzino, J.D., Ed.; CRC Press LLC: Boca Raton, FL, USA, 2000. [Google Scholar]
- Bakker, E.; Bühlmann, P.; Pretsch, E. Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics. Chem. Rev. 1997, 97, 3083. [Google Scholar] [CrossRef]
- Bühlmann, P.; Pretsch, E.; Bakker, E. Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors. Chem. Rev. 1998, 98, 1593. [Google Scholar] [CrossRef]
- Ali, M.A.; Dong, L.; Dhau, J.; Khosla, A.; Kaushik, A. Perspective—Electrochemical Sensors for Soil Quality Assessment. J. Electrochem. Soc. 2020, 167, 037550. [Google Scholar] [CrossRef]
- McDonagh, C.; Burke, C.S.; MacCraith, B.D. Optical chemical sensors. Chem. Rev. 2008, 108, 400. [Google Scholar] [CrossRef]
- You, L.; Zha, D.J.; Anslyn, E.V. Recent advances in supramolecular analytical chemistry using optical sensing. Chem. Rev. 2015, 115, 7840. [Google Scholar] [CrossRef] [PubMed]
- Fukuhara, G. Analytical supramolecular chemistry: Colorimetric and fluorimetric chemosensors. J. Photochem. Photobiol. C Photochem. Rev. 2020, 42, 100340. [Google Scholar] [CrossRef]
- Holland, K.H.; Lamb, D.W.; Schepers, J.S. Radiometry of Proximal Active Optical Sensors (AOS) for Agricultural Sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 8, 1793. [Google Scholar] [CrossRef]
- Li, C.; Ding, S.; Yang, L.; Zhu, Q.; Chen, M.; Tsang, D.C.W.; Cai, G.; Feng, C.; Wang, Y.; Zhang, C. Planar optode: A two-dimensional imaging technique for studying spatial-temporal dynamics of solutes in sediment and soil. Earth Sci. Rev. 2019, 197, 102916. [Google Scholar] [CrossRef]
- Borisov, S.M.; Wolfbeis, O.S. Optical biosensors. Chem. Rev. 2008, 108, 423. [Google Scholar] [CrossRef]
- Ebralidze, I.I.; Laschuk, N.O.; Poisson, J.; Zenkina, O.V. Colorimetric sensors and sensor arrays. In Micro and Nano Technologies, Nanomaterials Design for Sensing Applications; Zenkina, O.V., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–39. ISBN 9780128145050. [Google Scholar]
- Ma, Y.; Li, Y.; Ma, K.; Wang, Z. Optical colorimetric sensor arrays for chemical and biological analysis. Sci. China Chem. 2018, 61, 643. [Google Scholar] [CrossRef]
- Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 1959, 155, 206. [Google Scholar] [CrossRef]
- Kuchmenko, T.A.; Lvova, L.B. A Perspective on recent advances in piezoelectric chemical sensors for environmental monitoring and foodstuffs analysis. Chemosensors 2019, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Rogers, K.R. Recent advances in biosensor techniques for environmental monitoring. Anal. Chim. Acta 2006, 568, 222. [Google Scholar] [CrossRef]
- Magrisso, S.; Erel, Y.; Belkin, S. Microbial reporters of metal bioavailability. Microb. Biotechnol. 2008, 1, 320. [Google Scholar] [CrossRef] [Green Version]
- FAO. Guidelines for Soil Profile Description; Food and Agriculture Organization of the United Nations, Soil Resources, Management and Conservation Service, Land and Water Development Division: Rome, Italy, 1990; 70p. [Google Scholar]
- Starr, M.R. (Ed.) Report Soil Expert Panel Meeting; Helsinki, Finland, 1990; 66p. [Google Scholar]
- ISO 18400-104:2018; Soil Quality—Ampling—Part 104: Strategies. ISO: Geneva, Switzerland, 2018. Available online: https://www.iso.org/obp/ui/#iso:std:iso:18400:-104:ed-1:v1:en (accessed on 15 January 2022).
- Lozet, J.; Mathieu, K. Explanatory Dictionary of Soil Science; Mir: Moscow, Russia, 1998; 398p. (In Russian) [Google Scholar]
- Gaffney, J.S.; Marley, N.A.; Clark, S.B. Humic and Fulvic Acids and Organic Colloidal Materials in the Environment; Humic and Fulvic Acids ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1996. [Google Scholar]
- Bitutsky, N.P. Mineral Nutrition of Plants; St. Petersburg University Press: St. Petersburg, Russia, 2014; 540p. [Google Scholar]
- Troeh, F.R.; Thompson, L.M. Soils and Soil Fertility, 6th ed.; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Kashyap, B.; Kumar, R. Sensing methodologies in agriculture for soil Moisture and nutrient monitoring. IEEE Access 2021, 9, 14095. [Google Scholar] [CrossRef]
- Sinfield, J.V.; Fagerman, D.; Colic, O. Evaluation of sensing technologies for on-the-go detection of macro-nutrients in cultivated soils. Comput. Electron. Agric. 2010, 70, 1–18. [Google Scholar] [CrossRef]
- Lobsey, C.R.; Viscarra Rossel, R.A.; McBratney, A.B. Proximal soil nutrient sensing using electrochemical sensors. In Proximal Soil Sensing; Viscarra Rossel, R.A., McBratney, A.B., Minasny, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; p. 77. [Google Scholar]
- Kim, D.-Y.; Kadam, A.; Shinde, S.; Saratale, R.G.; Patra, J.; Ghodake, G. Recent developments in nanotechnology transforming the agricultural sector: A transition replete with opportunities. J. Sci. Food Agricul. 2018, 98, 849. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wu, Y.; Huang, J.; Zhang, S. Gas sensors based on membrane diffusion for environmental monitoring. Sens. Act. B 2017, 243, 566. [Google Scholar] [CrossRef] [Green Version]
- Alexandrova, L.N. Soil Organic Matter and the Processes of Its Transformation; Nauka: Leningrad, Russia, 1980; 288p. (In Russian) [Google Scholar]
- Orlov, D.S.; Sadovnikova, L.K.; Sukhanova, N.I. Soil Chemistry; Higher School: Moscow, Russia, 2005; 558p. (In Russian) [Google Scholar]
- Piccolo, A. The Supramolecular structure of humic substances. Soil Sci. 2001, 166, 810. [Google Scholar] [CrossRef] [Green Version]
- Fedotov, G.N.; Shoba, S.A. On the nature of humic substances. Eurasian Soil Sci. 2015, 48, 1292. [Google Scholar] [CrossRef]
- Hayesa, M.H.B.; Swift, R.S. Vindication of humic substances as a key component of organic matter in soil and water. Adv. Agron. 2020, 163, 1–37. [Google Scholar]
- Plata, M.R.; Hernando, J.; Zougagh, M.; Contento, A.M.; Villasenor, M.J.; Sanchez-Rojas, J.L.; Rıos, A. Characterization and analytical validation of a microcantilever-based sensor for the determination of total carbonate in soil samples. Sens. Act. B 2008, 134, 245. [Google Scholar] [CrossRef]
- Zhu, L.; Jia, H.; Chen, Y.; Wang, Q.; Li, M.; Huang, D.; Bai, Y. A Novel method for soil organic matter determination by using an artificial olfactory system. Sensors 2019, 19, 3417. [Google Scholar] [CrossRef] [Green Version]
- Delwiche, C.C. The Nitrogen cycle. Sci. Am. 1970, 223, 136. [Google Scholar] [CrossRef]
- Artigas, J.; Jimenez, C.; Lemos, S.G.; Nogueira, A.R.A.; Torre-Neto, A.; Alonso, J. Development of a screen-printed thick-film nitrate sensor based on a graphite-epoxy composite for agricultural applications. Sens. Act. B 2003, 88, 337. [Google Scholar] [CrossRef]
- Yagodina, O.V.; Nikolskaya, E.B.; Shor, N.B. Gas-gap sensors for the determination of nitrogen oxides and nitrites. Anal. Chim Acta. 2000, 409, 143. [Google Scholar] [CrossRef]
- Adamchuk, V.I.; Lund, E.D.; Sethuramasamyraja, B.; Morgan, M.T.; Dobermann, A.; Marx, D.B. Direct measurement of soil chemical properties on-the-go using ion-selective electrodes. Comput. Electron. Agric. 2005, 48, 272. [Google Scholar] [CrossRef]
- Sethuramasamyraja, B.; Adamchuk, V.I.; Dobermann, A.; Marx, D.B.; Jones, D.D.; Meyer, G.E. Agitated soil measurement method for integrated on-the-go mapping of soil pH, potassium and nitrate contents. Comput. Electron. Agric. 2008, 60, 212. [Google Scholar] [CrossRef]
- Birrell, S.J.; Hummel, J.W. Real-time multi-ISFET/FIA soil analysis system with automatic sample extraction. Comput. Electron. Agric. 2001, 32, 45. [Google Scholar] [CrossRef] [Green Version]
- Price, R.R.; Hummel, J.W.; Birrell, S.J.; Ahmad, I.S. Rapid nitrate analysis of soil cores using ISFETs. Trans. ASAE 2003, 46, 601. [Google Scholar] [CrossRef] [Green Version]
- Gieling, T.H.; van Straten, G.; Janssen, H.J.J.; Wouters, H. ISE and Chemfet sensors in greenhouse cultivation. Sens. Act. B. 2005, 105, 74. [Google Scholar] [CrossRef]
- Yenil, N.; Yemiş, F. Nitrite in nature: Determination with polymeric materials. Pak. J. Anal. Environ. Chem. 2018, 19, 104. [Google Scholar] [CrossRef]
- Jiang, H.; Yu, W.; Waimin, J.F.; Glassmaker, N.; Raghunathan, N.; Jiang, X.; Ziaie, B.; Rahimi, R. Inkjet-printed Solid-state Potentiometric Nitrate Ion Selective Electrodes for Agricultural Application. In Proceedings of the 2019 IEEE Sensors, Montreal, QC, Canada, 27–30 October 2019; p. 8956650. [Google Scholar]
- Piõk, R.M.; Piech, B. Paczosa-Bator, TTF-TCNQ solid contact layer in all-solid-state ion-selective electrodes for potassium or nitrate determination. J. Electrochem. Soc. 2018, 165, B60. [Google Scholar] [CrossRef]
- Garland, N.T.; McLamore, E.S.; Cavallaro, N.D.; Mendivelso-Perez, D.; Smith, E.A.; Jing, D.; Claussen, J.C. Flexible laser-induced graphene for nitrogen sensing in soil. ACS Appl. Mater. Interfaces 2018, 10, 39124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Zhang, M.; Wang, X.; Yang, Q.; Wang, M.; Liu, G.; Yao, L. An all-solid-state nitrate ion-selective electrode with nanohybrids composite films for in-situ soil nutrient monitoring. Sensors 2020, 20, 2270. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.A.; Wang, X.; Chen, Y.; Jiao, Y.; Mahal, N.K.; Moru, S.; Castellano, M.J.; Schnable, J.C.; Schnable, P.S.; Dong, L. Continuous monitoring of soil nitrate using a miniature sensor with poly(3-octyl-thiophene) and molybdenum disulphide nanocomposite. ACS Appl. Mater. Interfaces 2019, 11, 29195. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.A.; Jiang, H.; Mahal, N.K.; Weber, R.J.; Kumar, R.; Castellano, M.J.; Dong, L. Microfluidic impedimetric sensor for soil nitrate detection using graphene oxide and conductive nanofibers enabled sensing interface. Sens. Act. B 2017, 239, 1289. [Google Scholar] [CrossRef] [Green Version]
- Minami, T.; Sasaki, Y.; Minamiki, T.; Wakida, S.-I.; Kurita, R.; Niwa, O.; Tokito, S. Selective nitrate detection by an enzymatic sensor based on an extended-gate type organic field-effect transistor. Biosens. Bioelectron. 2016, 81, 87. [Google Scholar] [CrossRef] [Green Version]
- Massah, J.; Vakilian, K.A. An intelligent portable biosensor for fast and accurate nitrate determination using cyclic voltammetry. Biosyst. Eng. 2019, 177, 49. [Google Scholar] [CrossRef]
- Vakilian, K.A.; Massah, J. A portable nitrate biosensing device using electrochemistry and spectroscopy. IEEE Sens. J. 2018, 18, 3080. [Google Scholar] [CrossRef]
- Choosang, J.; Numnuam, A.; Thavarungkul, P.; Kanatharana, P.; Radu, T.; Ullah, S.; Radu, A. Simultaneous detection of ammonium and nitrate in environmental samples using on ion-selective electrode and comparison with portable colorimetric assays. Sensors 2018, 18, 3555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagheri, H.; Hajian, A.; Rezaei, M.; Shirzadmehr, A. Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate. J. Hazard. Mater. 2017, 324, 762. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, A.; De Neve, S.; Mouazen, A.M. Current sensor technologies for in situ and on-line measurement of soil nitrogen for variable rate fertilization: A review. Adv. Agron. 2021, 168, 1–38. [Google Scholar]
- Da Silveira Petruci, J.F.; Wilk, A.; Cardoso, A.A.; Mizaikoff, B. A Hyphenated Preconcentrator-Infrared-Hollow-Waveguide Sensor System for N2O Sensing. Sci. Rep. 2018, 8, 5909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merl, T.; Koren, K. Visualizing NH3 emission and the local O2 and pH microenvironment of soil upon manure application using optical sensors. Environ. Int. 2020, 144, 106080. [Google Scholar] [CrossRef]
- Li, T.; Zhou, M.; Qiu, Y.; Huang, J.; Wu, Y.; Zhang, S.; Zhao, H. Membrane-based conductivity probe for real-time in-situ monitoring rice field ammonia volatilization. Sens. Act. B 2019, 286, 62. [Google Scholar] [CrossRef]
- Kim, H.; Sudduth, K.A.; Hummel, J.W. Soil macronutrient sensing for precision agriculture. J. Environ. Monit. 2009, 11, 1810. [Google Scholar] [CrossRef] [PubMed]
- Lemos, S.G.; Menezes, E.A.; Chaves, F.S.; Nogueira, A.R.A.; Torre-Neto, A.; Parra, A.; Alonso, J. In situ soil phosphorus monitoring probe compared with conventional extraction procedures. Comm. Soil Sci. Plant Analysis. 2009, 40, 1282. [Google Scholar] [CrossRef]
- Abbas, M.N.; Radwan, A.L.A.; Nooredeen, N.M.; El-Ghaffar, M.A.A. Selective phosphate sensing using copper monoamino-phthalocyanine functionalized acrylate polymer-based solid-state electrode for FIA of environmental waters. J. Solid State Electrochem. 2016, 20, 1599. [Google Scholar] [CrossRef]
- Barhoumi, L.; Baraket, A.; Nooredeen, N.M.; Ali, M.B.; Abbas, M.N.; Bausells, J.; Errachid, A. Silicon nitride capacitive chemical sensor for phosphate ion detection based on copper phthalocyanine-acrylatepolymer. Electroanalysis 2017, 29, 1586. [Google Scholar] [CrossRef] [Green Version]
- Ebuele, V.O.; Congrave, D.G.; Gwenin, C.D.; Fitzsimmons-Thoss, V. Development of a cobalt electrode for the determination of phosphate in soil extracts and comparison with standard methods. Anal. Lett. 2018, 51, 834. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Kitazumi, Y.; Kano, K.; Shirai, O. Phosphate ion sensor using a cobalt phosphate coated cobalt electrode. Electrochim. Acta 2018, 282, 242. [Google Scholar] [CrossRef]
- Zou, Z.; Han, J.; Jang, A.; Bishop, P.L.; Ahn, C.H. A disposable on-chip phosphate sensor with planar cobalt microelectrodes on polymer substrate. Biosens. Bioelectron. 2007, 22, 1902. [Google Scholar] [CrossRef]
- Arvas, M.B.; Gorduk, O.; Gencten, M.; Sahin, Y. Preparation of a novel electrochemical sensor for phosphate detection based on a molybdenum blue modified poly(vinyl chloride) coated pencil graphite electrode. Anal. Methods 2019, 11, 3874. [Google Scholar] [CrossRef]
- Cinti, S.; Talarico, D.; Palleschi, G.; Moscone, D.; Arduini, F. Novel reagentless paper-based screen-printed electrochemical sensor to detect phosphate. Anal. Chim. Acta 2016, 919, 78. [Google Scholar] [CrossRef]
- Bhat, K.S.; Nakate, U.T.; Yoo, J.-Y.; Wang, Y.; Mahmoudi, T.; Hahn, Y.-B. Nozzle-jet-printed silver/graphene composite-based field effect transistor sensor for phosphate ion detection. ACS Omega 2019, 4, 8373. [Google Scholar] [CrossRef] [PubMed]
- Sedaghat, S.; Jeong, S.; Zareei, A.; Peana, S.; Glassmaker, N.; Rahimi, R. Development of a nickel oxide/oxyhydroxide-modified printed carbon electrode as an all solid-state sensor for potentiometric phosphate detection. NJC 2019, 43, 18619. [Google Scholar] [CrossRef]
- Borse, V.; Jain, P.; Sadawana, M.; Srivastava, R. Turn-on fluorescence assay for inorganic phosphate sensing. Sens. Act. B Chem. 2016, 225, 340. [Google Scholar] [CrossRef]
- Ahmad, R.; Ahn, M.-S.; Hahn, Y.-B. ZnO nanorods array based field effect transistor biosensor for phosphate detection. J. Colloid Interface Sci. 2017, 498, 292. [Google Scholar] [CrossRef]
- Gilbert, L.; Jenkins, A.T.A.; Browning, S.; Hart, J.P. Development of an amperometric, screen-printed, single-enzyme phosphate ion biosensor and its application to the analysis of biomedical and environmental samples. Sens. Act. B 2011, 160, 1322. [Google Scholar] [CrossRef]
- Kopiec, G.G.; Starzec, K.; Kochana, J.; Kinnunen-Skidmore, T.P.; Schuhmann, W.; Campbell, W.H.; Ruff, A.; Plumeré, N. Bioelectrocatalytic and electrochemical cascade for phosphate sensing with up to 6 electrons per analyte molecule. Biosens. Bioelectron. 2018, 117, 501. [Google Scholar] [CrossRef]
- Storer, C.; Coldrick, Z.; Tate, D.; Donoghue, J.; Grieve, B. Towards phosphate detection in hydroponics using molecularly imprinted polymer sensors. Sensors 2018, 18, 531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogrekci, I.; Lee, W.S. Spectral Soil Signatures and sensing Phosphorus. Biosyst. Eng. 2005, 92, 527. [Google Scholar] [CrossRef]
- Sarwar, M.; Leichner, J.; Naja, G.M.; Li, C.-Z. Smart-phone, paper based fluorescent sensor for ultra-low inorganic phosphate detection in environmental samples. Microsyst. Nanoeng. 2019, 5, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potassium for Crop Production. Available online: https://extension.umn.edu/phosphorus-andpotassium/potassium-crop-production (accessed on 4 August 2020).
- Ciesla, J.; Ryzak, M.; Bieganowski, A.; Tkaczyk, P.; Walczak, R.T. Use of ion-selective electrodes for determination of content of potassium in Egner-Rhiem soil extracts. Res. Agric. Eng. 2007, 53, 29. [Google Scholar] [CrossRef]
- Lemos, S.G.; Nogueira, A.R.; Torre-Neto, A.; Parra, A.; Artigas, J.; Alonso, J. In-Soil Potassium Sensor System. J. Agric. Food Chem. 2004, 52, 5810. [Google Scholar] [CrossRef]
- Kim, H.J.; Hummel, J.W.; Sudduth, K.A.; Motavalli, P.P. Simultaneous analysis of soil macronutrients using ion-selective electrodes. Soil Sci. Soc. Am. J. 2007, 71, 1867. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Sudduth, K.A.; Hummel, J.W.; Drummond, S.T. Validation testing of a soil macronutrient sensing system. Trans. ASABE 2013, 56, 23. [Google Scholar] [CrossRef]
- Yoon, J.H.; Park, H.J.; Park, S.H.; Lee, K.G.; Choi, B.G. Electrochemical characterization of reduced graphene oxide as an ion-to-electron transducer and application of screen-printed all-solid-state potassium ion sensors. Carbon Lett. 2020, 30, 73. [Google Scholar] [CrossRef]
- Rosenberg, R.; Bono, M.S.; Braganza, S.; Vaishnav, C.; Karnik, R.; Hart, A.J. In-field determination of soil ion content using a handheld device and screen-printed solid-state ion-selective electrodes. PLoS ONE 2018, 13, e0203862. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; He, N.; Kumar, N.; Wang, N.; Bobacka, J.; Ivaska, A. Electrosynthesized polypyrrole/zeolite composites as solid contact in potassium ion-selective electrode. Electrochim. Acta 2017, 228, 66. [Google Scholar] [CrossRef]
- Fakih, I.; Centeno, A.; Zurutuza, A.; Ghaddab, B.; Siaj, M.; Szkopek, T. High resolution potassium sensing with large-area graphene field-effect transistors. Sens. Act. B 2019, 291, 8. [Google Scholar] [CrossRef]
- Naderi, M.; Hosseini, M.; Ganjali, M.R. Naked-eye detection of potassium ions in a novel gold nanoparticle aggregation-based aptasensor. Spectrochim. Acta A 2018, 195, 75. [Google Scholar] [CrossRef] [PubMed]
- Ning, J.; Lin, X.; Su, F.; Sun, A.; Liu, H.; Luo, J.; Wang, L.; Tian, Y. Development of a molecular K+ probe for colorimetric/fluorescent/photoacoustic detection of K+. Anal. Bioanal. Chem. 2020, 412, 6947. [Google Scholar] [CrossRef] [PubMed]
- Buss, W.; Shepherd, J.G.; Heal, K.V.; Mašek, O. Spatial and temporal microscale pH change at the soil-biochar interface. Geoderma 2018, 331, 5. [Google Scholar] [CrossRef]
- Staggenborg, S.A.; Carignano, M.; Haag, L. Predicting soil pH and buffer pH in situ with a real-time sensor. Agron. J. 2007, 99, 85. [Google Scholar] [CrossRef]
- Silva, F.C.S.; Molin, J.P. Real time soil sensing for determination of tropical soils pH. In Precision Agriculture ’13; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013; p. 41. [Google Scholar]
- Schirrmann, M.; Gebbers, R.; Kramer, E.; Seidel, J. Soil pH mapping with an on-the-go sensor. Sensors 2011, 11, 573. [Google Scholar] [CrossRef] [PubMed]
- Korostynska, O.; Arshak, K.; Gill, E.; Arshak, A. Review on state-of-the-art in polymer based pH sensors. Sensors 2007, 7, 3027. [Google Scholar] [CrossRef] [PubMed]
- Bratov, A.; Abramova, N.; Munoz, J.; Dominguez, C.; Alegret, S.; Bartroli, J. Photocurable Polymer Matrices for Potassium-Sensitive Ion-Selective Electrode Membranes. Anal. Chem. 1995, 67, 3589. [Google Scholar] [CrossRef]
- Lemos, S.G.; Nogueira, A.R.A.; Torre-Neto, A.; Parra, A.; Alonso, J. Soil calcium and pH monitoring sensor system. J. Agric. Food Chem. 2007, 55, 4658. [Google Scholar] [CrossRef] [PubMed]
- Motellier, S.; Noir, M.H.; Pitsch, H.; Durdault, B. pH determination of clay interstitial water using a fiber-optic sensor. Sens. Act. B 1995, 29, 345. [Google Scholar] [CrossRef]
- Hoefer, C.; Santner, J.; Borisov, S.M.; Wenzel, W.W.; Puschenreiter, M. Integrating chemical imaging of cationic trace metal solutes and pH into a single hydrogel layer. Anal. Chem. Acta 2017, 950, 88. [Google Scholar] [CrossRef]
- Patil, S.; Ghadi, H.; Ramgir, N.; Adhikari, A.; Rao, V.R. Monitoring soil pH variation using Polyaniline/SU-8 composite film based conductometric microsensor. Sens. Act. B 2019, 286, 583. [Google Scholar] [CrossRef]
- Chang, Y.H.; Iyama, Y.; Tadenuma, K.; Kawaguchi, S.; Takarada, T.; Falina, S.; Syamsul, M.; Kawarada, H. Over 59 mV/pH sensitivity with fluorocarbon thin film via fluorine termination for pH sensing using boron-doped diamond solution-gate field-effect transistors. PSSA 2020, 218, 2000278. [Google Scholar] [CrossRef]
- Wilczek, A.; Szypłowska, A.; Skierucha, W.; Cieśla, J.; Pichler, V.; Janik, G. Determination of soil pore water salinity using an FDR sensor working at various frequencies up to 500 MHz. Sensors 2012, 12, 10890. [Google Scholar] [CrossRef]
- Visconti, F.; Martínez, D.; Molina, M.J.; Ingelmo, J.F. A combined equation to estimate the soil pore-water electrical conductivity: Calibration with the WET and 5TE sensors. Soil Res. 2014, 52, 419. [Google Scholar] [CrossRef] [Green Version]
- Aljoumani, B.; Sanchez-Espigares, J.A.; Wessolek, G. Estimating pore water electrical conductivity of sandy soil from time domain reflectometry records using a time-varying dynamic linear model. Sensors 2018, 18, 4403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artigas, J.; Beltran, A.; Jiménez, C.; Bartroli, J.; Alonso, J. Development of a photopolymerisable membrane for calcium ion sensors. Appl. Soil Drain. Waters. Anal. Chim. Acta. 2001, 426, 3. [Google Scholar] [CrossRef]
- Lvova, L.; Guanais Goncalves, C.; Prodi, L.; Sgarzi, M.; Zaccheroni, N.; Lombardo, M.; Legin, A.; Di Natale, C.; Paolesse, R. Systematic approach in Mg2+ ions analysis with a combination of tailored fluorophore design. Anal. Chim. Acta 2017, 988, 96. [Google Scholar] [CrossRef] [PubMed]
- Tulliani, J.M.; Inserra, B.; Ziegler, D. Carbon-Based Materials for Humidity Sensing: A Short Review. Micromachines 2019, 10, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Liu, F.; Han, X. Influence of soil physical and chemical properties on performance of soil profile moisture sensor. Trans. Chin. Soc. Agric. Machin. 2012, 43, 97. [Google Scholar]
- Da Costa, E.F.; de Oliveira, N.E.; Morais, F.J.O.; Carvalhaes-Dias, P.; Duarte, L.F.C.; Cabot, A.; Dias, J.A.S. A self-powered and autonomous fringing field capacitive sensor integrated into a micro sprinkler spinner to measure soil water content. Sensors 2017, 17, 575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalita, H.; Palaparthy, V.S.; Baghini, M.S.; Aslam, M. Electrochemical synthesis of graphene quantum dots from graphene oxide at room temperature and its soil moisture sensing properties. Carbon 2020, 165, 9. [Google Scholar] [CrossRef]
- Patil, S.; Ramgir, N.; Mukherji, S.; Rao, V.R. PVA modified ZnO nanowire based microsensors platform for relative humidity and soil moisture measurement. Sens. Act. B 2017, 253, 1071. [Google Scholar] [CrossRef]
- Sophocleous, M.; Atkinson, J.K.; Smethurst, J.A.; Espindola-Garcia, G.; Ingenito, A. The use of novel thick-film sensors in the estimation of soil structural changes through the correlation of soil electrical conductivity and soil water content. Sens. Act. A 2020, 301, 111773. [Google Scholar] [CrossRef]
- Rivera, D.; Granda, S.; Arumí, J.L.; Sandoval, M.; Billib, M. A methodology to identify representative configurations of sensors for monitoring soil moisture. Environ. Monitor. Assessm. 2012, 184, 6563. [Google Scholar] [CrossRef]
- Neumann, P.P.; Bartholmai, M.; Lazik, D. Leak detection with linear soil gas sensors under field conditions—First experiences running a new measurement technique. Proc. IEEE Sens. J. 2017, 7808658. [Google Scholar]
- Lazik, D.; Ebert, S.; Leuthold, M.; Hagenau, J.; Geistlinger, H. Membrane based measurement technology for in situ monitoring of gases in soil. Sensors 2009, 9, 756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strömberg, N.; Hulth, S. Assessing an imaging ammonium sensor using time correlated pixel-by-pixel calibration. Anal. Chim. Acta 2005, 550, 61. [Google Scholar] [CrossRef]
- Delin, S.; Strömberg, N. Imaging-optode measurements of ammonium distribution in soil after different manure amendments. Eur. J. Soil Sci. 2011, 62, 295. [Google Scholar] [CrossRef]
- Christel, W.; Zhu, K.; Hoefer, C.; Kreuzeder, A.; Santner, J.; Bruun, S.; Magid, J.; Jensen, L.S. Spatiotemporal dynamics of phosphorus release, oxygen consumption and greenhouse gas emissions after localized soil amendment with organic fertilizers. Sci. Total Environ. 2016, 119, 554–555. [Google Scholar]
- Van Nguyen, Q.; Jensen, L.S.; Bol, R.; Wu, D.; Triolo, J.M.; Vazifehkhoran, A.H.; Bruun, S. Biogas digester hydraulic retention time affects oxygen consumption patterns and greenhouse gas emissions after application of digestate to soil. J. Environ. Qual. 2017, 46, 1114. [Google Scholar] [CrossRef] [Green Version]
- Rabus, D.; Friedt, J.-M.; Arapan, L.; Lamare, S.; Baqué, M.; Audouin, G.; Chérioux, F. Subsurface H2S Detection by a surface acoustic wave passive wireless sensor Interrogated with a ground penetrating radar. ACS Sens. 2020, 5, 1075. [Google Scholar] [CrossRef] [PubMed]
- Ur Rahim, H.; Qaswar, M.; Uddin, M.; Giannini, C.; Herrera, M.L.; Rea, G. Nano-Enable Materials Promoting Sustainability and Resilience in Modern Agriculture. Nanomaterials 2021, 11, 2068. [Google Scholar] [CrossRef] [PubMed]
- Ganie, A.S.; Bano, S.; Khan, N.; Sultana, S.; Rehman, Z.; Rahman, M.M.; Sabir, S.; Coulon, F.; Khan, M.Z. Nanoremediation technologies for sustainable remediation of contaminated environments: Recent advances and challenges. Chemosphere 2021, 275, 130065. [Google Scholar] [CrossRef]
- Tajik, S.; Beitollahi, H.; Nejad, F.G.; Dourandish, Z.; Khalilzadeh, M.A.; Jang, H.W.; Venditti, R.A.; Varma, R.S.; Shokouhimehr, M. Recent developments in polymer nanocomposite-based electrochemical sensors for detecting environmental pollutants. Ind. Eng. Chem. Res. 2021, 60, 1112. [Google Scholar] [CrossRef]
- Kong, X.; Ho, S.C.M.; Song, G.; Cai, C.S. Scour monitoring system using Fiber Bragg Grating sensors and water-swellable polymers. J. Bridge Eng. 2017, 22, 04017029. [Google Scholar] [CrossRef]
- Bhaskar, S.; Pradeep Kumar, M.; Avinash, M.N.; Harshini, S.B. Real time farmer assistive flower harvesting agricultural robot. I2CT 2021, 2021, 9417817. [Google Scholar]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2017; Available online: https://www.who.int/publications/i/item/9789241549950 (accessed on 15 January 2022).
- Kumar, M.; Puri, A. A review of permissible limits of drinking water. Indian J. Occup. Environ. Med. 2012, 16, 40. [Google Scholar] [PubMed] [Green Version]
- Md Noh, M.F.; Tothill, I.E. Development and characterisation of disposable gold electrodes, and their use for lead(II) analysis. Anal. Bioanal. Chem. 2006, 386, 2095. [Google Scholar]
- Abbaspour, A.; Mirahmadi, E.; Khalafi-nejad, A.; Babamohammadi, S. A highly selective and sensitive disposable carbon composite PVC-based membrane for determination of lead ion in environmental samples. J. Haz. Mater. 2010, 174, 656. [Google Scholar] [CrossRef]
- McGraw, C.M.; Radu, T.; Radu, A.; Diamond, D. Evaluation of liquid- and solid-contact. Pb2+-selective polymer-membrane electrodes for soil analysis. Electroanalysis 2008, 20, 340. [Google Scholar] [CrossRef]
- Wilson, D.; de los Ángeles Arada, M.; Alegret, S.; del Valle, M. Lead(II) ion selective electrodes with PVC membranes based on two bis-thioureas as ionophores: 1,3-bis(N-benzoylthioureido) benzene and 1,3-bis(N-furoylthioureido)benzene. J. Haz. Mater. 2010, 181, 140. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Hseih, C.-Y.; Sarangadharan, I.; Sukesan, R.; Lee, G.-Y.; Chyi, J.-I.; Wang, Y.-L. Beyond the limit of ideal nernst sensitivity: Ultra-high sensitivity of heavy metal ion detection with ion-selective high electron mobility transistors. ECS J. Solid State Sci. Technol. 2018, 7, Q176. [Google Scholar] [CrossRef]
- Sakhraoui, H.E.E.Y.; Madani, A.; Nessark, B.; Mazouz, Z.; Attia, G.; Fourati, N.; Zerrouki, C.; Maouche, N.; Othmane, A.; Yaakoubi, N.; et al. Design of L-cysteine and acrylic acid imprinted polypyrrole sensors for picomolar detection of lead Ions in simple and real media. IEEE Senors 2020, 20, 4147. [Google Scholar] [CrossRef]
- Dali, M.; Zinoubi, K.; Chrouda, A.; Abderrahmane, S.; Cherrad, S.; Jaffrezic-Renault, N. A biosensor based on fungal soil biomass for electrochemical detection of lead (II) and cadmium (II) by differential pulse anodic stripping voltammetry. J. Electroanal. Chem. 2018, 813, 9. [Google Scholar] [CrossRef]
- Liu, C.-W.; Huang, C.-C.; Chang, H.-T. Highly selective DNA-based sensor for lead(II) and mercury(II) ions. Anal. Chem. 2009, 81, 2383. [Google Scholar] [CrossRef] [PubMed]
- Li, C.L.; Liu, K.T.; Lin, Y.W.; Chang, H.T. Fluorescence detection of lead(II) ions through their induced catalytic activity of DNAzymes. Anal. Chem. 2010, 83, 225. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.W.; Liu, C.W.; Chang, H.T. Fluorescence detection of mercury (II) and lead (II) ions using aptamer/reporter conjugates. Talanta 2011, 84, 324. [Google Scholar] [CrossRef]
- Xiao, Y.; Rowe, A.A.; Plaxco, K.W. Electrochemical detection of parts-per-billion lead via an electrode-bound DNAzyme assembly. J. Am. Chem. Soc. 2007, 129, 262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, G.; Man, Y.; Li, A.; Jin, X.; Liu, X.; Pan, L. DNAzyme-based biosensor for detection of lead ion: A review. Microchem. J. 2017, 131, 145. [Google Scholar] [CrossRef]
- Dolati, S.; Ramezani, M.; Abnous, K.; Taghdisi, S.M. Recent nucleic acid based biosensors for Pb2+ detection. Sens. Act. B 2017, 246, 864. [Google Scholar] [CrossRef]
- Khoshbin, Z.; Housaindokht, M.R.; Verdian, A.; Bozorgmehr, M.R. Simultaneous detection and determination of mercury (II) and lead (II) ions through the achievement of novel functional nucleic acid-based biosensors. Biosens. Bioelectron. 2018, 116, 130. [Google Scholar] [CrossRef]
- Singh, H.; Bamrah, A.; Bhardwaj, S.K.; Deep, A.; Khatri, M.; Kim, K.-H.; Bhardwaj, N. Nanomaterial-based fluorescent sensors for the detection of lead. J. Hazard. Mater. 2021, 407, 124379. [Google Scholar] [CrossRef] [PubMed]
- Md Noh, M.F.; Kadara, R.O.; Tothill, I.E. Development of cysteine-modified screen-printed electrode for the chronopotentiometric stripping analysis of cadmium(II) in wastewater and soil extracts. Anal. Bioanal. Chem. 2005, 382, 1175. [Google Scholar]
- Radovanović, M.; Vasiljević, D.; Krstić, D.; Antić, I.; Korzhyk, O.; Stojanović, G.; Škrbić, B.D. Flexible sensors platform for determination of cadmium concentration in soil samples. Comput. Electron. Agric. 2019, 166, 105001. [Google Scholar] [CrossRef]
- Das, T.R.; Sharma, P.K. Sensitive and selective electrochemical detection of Cd2+ by using bimetal oxide decorated Graphene oxide (Bi2O3/Fe2O3@GO) electrode. Microchem. J. 2019, 147, 1203. [Google Scholar] [CrossRef]
- Garau, A.; Lvova, L.; Macedi, E.; Ambrosi, G.; Aragoni, M.C.; Arca, M.; Caltagirone, C.; Coles, S.J.; Formica, M.; Fusi, V.; et al. N2S2 Pyridinophane-based fluorescent chemosensors for selective optical detection of Cd2+ in soils. NJC 2020, 44, 20834. [Google Scholar] [CrossRef]
- Linder, M.C.; Hazegh-Azam, M. Copper biochemistry and molecular biology. Am. J. Clin. Nutr. 1996, 63, 797s. [Google Scholar] [PubMed]
- Elmizadeh, H.; Soleimani, M.; Faridbod, F.; Bardajee, G.R. Ligand-Capped CdTe quantum dots as a fluorescent nanosensor for detection of copper ions in environmental water sample. J. Fluoresc. 2017, 27, 2323. [Google Scholar] [CrossRef]
- Huang, X.; Xia, P.; Liu, B.; Huang, H. An azamacrocycle functionalized GaAs (100) optical sensor for copper ion (II) detection in phosphate buffered saline solution. Sens. Act. B 2018, 257, 853. [Google Scholar] [CrossRef]
- Chen, D.; Chen, P.; Zong, L.; Sun, Y.; Liu, G.; Yu, X.; Qin, J. Colorimetric and fluorescent probes for real-time naked eye sensing of copper ion in solution and on paper substrate. R. Soc. Open Sci. 2018, 4, 171161. [Google Scholar]
- Rahman, F.U.; Yu, S.B.; Khalil, S.K.; Wu, Y.P.; Koppireddi, S.; Li, Z.T.; Wang, H.; Zhang, D.W. Chromone and benzyldithiocarbazate based probe: A highly selectiveand sensitive platform for colorimetric sensing of Cu2+, single crystal of the complex and DFT calculations. Sens. Act. B 2018, 263, 594. [Google Scholar] [CrossRef]
- Sengupta, P.; Ganguly, A.; Bose, A. A phenolic acid based colourimetric ‘naked-eye’ chemosensor for the rapid detection of Cu(II) ions. Spectrochim. Acta A 2018, 198, 204. [Google Scholar] [CrossRef]
- Kim, S.Y.; Lee, S.Y.; Jung, J.M.; Kim, M.S.; Kim, C. Selective detection of Cu2+ and S2-by a colorimetric chemosensor: Experimental and theoretical calculations. Inorg. Chim. Acta 2018, 471, 709. [Google Scholar] [CrossRef]
- Chandra, S.; Dhawangale, A.; Mukherji, S. Hand-held optical sensor using denatured antibody coated electro-active polymer for ultra-trace detection of copper in blood serum and environmental samples. Biosens. Bioelectr. 2018, 110, 38. [Google Scholar] [CrossRef] [PubMed]
- Sutariya, P.G.; Soni, H.; Gandhi, S.A.; Pandya, A. Novel tritopic calix[4]arene CHEF-PET fluorescence paper based probe for La3+. Cu2+, and Br−: Its computational investigation and application to real samples. J. Luminesc 2019, 212, 17. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, H.; Zhang, J.; Ding, W.; Xu, J.; Wen, Y. Highly selective fluorescent sensor based on electrosynthesized oligo(1-pyreneboronic acid) enables ultra-trace analysis of Cu2+ in environment and agro-product samples. Sens. Act. B 2017, 253, 224. [Google Scholar] [CrossRef]
- Lvova, L.; Acciari, E.; Mandoj, F.; Pomarico, G.; Paolesse, R. Fast optical sensing of metals: A case study of Cu2+ assessment in soils. ECS J. Solid State Sci. Technol. 2020, 9, 061004. [Google Scholar] [CrossRef]
- Kopylovich, M.N.; Mahmudov, K.T.; Pombeiro, A.J.L. Poly(vinyl) chloride membrane copper-selective electrode based on 1-phenyl-2-(2-hydroxyphenylhydrazo)butane-1,3-dione. J. Haz. Mater. 2011, 186, 1154. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Sahani, M.K.; Bandi, K.R.; Jain, A.K. Electroanalytical studies on Cu (II) ion-selective sensor of coated pyrolytic graphite electrodes based on N2S2O2 and N2S2O3 heterocyclic benzothiazol ligands. Mater. Sci. Eng. C 2014, 41, 206. [Google Scholar] [CrossRef]
- Bandi, K.R.; Singh, A.K.; Upadhyay, A. Electroanalytical and naked eye determination of Cu2+ ion in various environmental samples using 5-amino-1,3,4-thiadiazole-2-thiol based Schiff bases. Mater. Sci. Eng. C 2014, 34, 149. [Google Scholar] [CrossRef]
- Ekrami, E.; Pouresmaieli, M.; Shariati, P.; Mahmoudifard, M. A review on designing biosensors for the detection of trace metals. Appl. Geochem. 2021, 127, 104902. [Google Scholar] [CrossRef]
- Wu, X.; Huang, Q.; Mao, Y.; Wang, X.; Wang, Y.; Hu, Q.; Wang, H.; Wang, X. Sensors for determination of uranium: A review. Tr. Anal. Chem. 2019, 118, 89. [Google Scholar] [CrossRef]
- Van der Horst, C.; Silwana, B.; Iwuoha, E.; Somerset, V. Bismuth–silver bimetallic nanosensor application for the voltammetric analysis of dust and soil samples. J. Electroanal. Chem. 2015, 752, 1–11. [Google Scholar] [CrossRef]
- Li, H.; Fan, J.; Hu, M.; Cheng, G.; Zhou, D.; Wu, T.; Song, F.; Sun, S.; Duan, C.; Peng, X. Highly sensitive and fast-responsive fluorescent chemosensor for palladium: Reversible sensing and visible recovery. Chem. Eur. J. 2012, 18, 12242. [Google Scholar] [CrossRef]
- Liang, G.G.; Cai, Q.; Zhu, W.; Xu, Y.; Qian, X. A highly selective heterogeneous fluorescent sensor for palladium ions. Anal. Methods 2015, 7, 4877. [Google Scholar] [CrossRef]
- Ayranci, R.; Ak, M. An Electrochemical sensor platform for sensitive detection of iron (III) ions based on pyrene-substituted poly(2,5-dithienylpyrrole). J. Electrochem. Soc. 2019, 166, B291. [Google Scholar] [CrossRef]
- Brodersen, K.E.; Koren, K.; Moßhammer, M.; Ralph, P.J.; Kuhl, M.; Santner, J. Seagrass-mediated phosphorus and iron solubilization in tropical sediments. Environ. Sci. Technol. 2017, 51, 14155. [Google Scholar] [CrossRef]
- Parnsubsakul, A.; Oaew, S.; Surareungchai, W. Zwitterionic peptide-capped gold nanoparticles for colorimetric detection of Ni. Nanoscale 2018, 10, 5466. [Google Scholar] [CrossRef] [Green Version]
- Mondal, S.; Subramaniam, C. Point-of-care. cable-type electrochemical Zn2+ sensor with ultrahigh sensitivity and wide detection range for soil and sweat analysis. ACS Sustain. Chem. Eng. 2019, 7, 14569. [Google Scholar] [CrossRef]
- Cooper, J.; Bolbot, J.A.; Saini, S.; Setford, S.J. Electrochemical method for the rapid on site screening of cadmium and lead in soil and water samples. Water Air Soil Pollut. 2007, 179, 183. [Google Scholar] [CrossRef]
- Nedeltcheva, T.; Atanassova, M.; Dimitrov, J.; Stanislavova, L. Determination of mobile form contents of Zn. Cd, Pb and Cu in soil extracts by combined stripping voltammetry. Anal. Chim. Acta. 2005, 528, 143. [Google Scholar] [CrossRef]
- Palchetti, I.; Laschi, S.; Mascini, M. Miniaturised stripping-based carbon modified sensor for in field analysis of heavy metals. Anal. Chim. Acta 2005, 530, 61. [Google Scholar] [CrossRef]
- Silva, P.R.M.; El Khakani, M.A.; Chaker, M.; Dufresne, A.; Courchesne, F. Simultaneous determination of Cd. Pb and Cu metal trace concentrations in water certified samples and soil extracts by means of Hg-electroplated –Ir microelectrode array based sensors. Sens. Act. B. 2001, 76, 250. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, X.; Li, C.; He, X.; Liu, G. On-site detection of heavy metals in agriculture land by a disposable sensor based virtual instrument, Comput. Electron. Agric. 2016, 123, 176. [Google Scholar] [CrossRef]
- Mc Eleney, C.; Alves, S.; Mc Crudden, D. Novel determination of Cd and Zn in soil extract by sequential application of bismuth and gallium thin films at a modified screen-printed carbon electrode. Anal. Chim. Acta 2020, 1137, 94. [Google Scholar] [CrossRef]
- Hung, Y.-L.; Hsiung, T.-M.; Chen, Y.-Y.; Huang, Y.-F.; Huang, C.-C. Colorimetric detection of heavy metal ions using label-free gold nanoparticles and alkanethiols. J. Phys. Chem. C 2010, 114, 16329. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Fouad, Y.; Walter, C. Using a digital camera to measure soil organic carbon and iron contents. Biosyst. Eng. 2008, 100, 149. [Google Scholar] [CrossRef]
- Yokota, M.; Okada, T.; Yamaguchi, I. An optical sensor for analysis of soil nutrients by using LED light sources. Meas. Sci.Technol. 2007, 18, 2197. [Google Scholar] [CrossRef]
- Muravyov, S.V.; Gavrilenko, N.A.; Saranchina, N.V.; Baranov, P.F. Polymethacrylate sensors for rapid digital colorimetric analysis of toxicants in natural and anthropogenic objects. IEEE Sens. J. 2019, 19, 4765. [Google Scholar] [CrossRef]
- Ivask, A.; Francois, M.; Kahru, A.; Dubourguier, H.-C.; Virta, M.; Douay, F. Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters. Chemosphere 2004, 55, 147. [Google Scholar] [CrossRef]
- Kahru, A.; Ivask, A.; Kasemets, K.; Pollumaa, L.; Kurvet, I.; Francois, M.; Dubourguier, H.-C. Biotests and biosensors in ecotoxicological risk assessment of field soils polluted with zinc, lead, and cadmium, Environ. Toxicol. Chem. 2005, 24, 2973. [Google Scholar] [CrossRef]
- Petänen, T.; Virta, M.; Karp, M.; Romantschuk, M. Construction and use of broad host range mercury and arsenite sensor plasmids in the soil bacterium Pseudomonas fluorescens OS8. Microbial Ecol. 2001, 41, 360. [Google Scholar] [CrossRef]
- Petänen, T.; Romantschuk, M. Use of bioluminescent bacterial sensors as an alternative method for measuring heavy metals in soil extracts. Anal. Chim. Acta. 2002, 456, 55. [Google Scholar] [CrossRef]
- Brandt, K.K.; Holm, P.E.; Nybroe, O. Evidence for bioavailable copper-dissolved organic matter complexes and transiently increased copper bioavailability in manure-amended soils as determined by bioluminescent bacterial biosensors. Environ. Sci. Technol. 2008, 42, 3102. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.-H.; Ma, A.-Z.; Lv, D.; Bai, Z.-H.; Zhuang, X.-L.; Zhuang, G.-Q. The impacts of different long-term fertilization regimes on the bioavailability of arsenic in soil: Integrating chemical approach with Escherichia coli arsRp::luc-based biosensor. Appl. Microbiol. Biotechnol. 2014, 98, 6137. [Google Scholar] [CrossRef]
- Wei, H.; Cheng, H.; Mao, T.; Zhong, W.-H.; Lin, X.-G. A chromosomally based luminescent bioassay for mercury detection in red soil of China. Appl. Microbiol. Biotechnol. 2010, 87, 981. [Google Scholar] [CrossRef]
- Liu, P.; Huang, Q.; Chen, W. Construction and application of a zinc-specific biosensor for assessing the immobilization and bioavailability of zinc in different soils. Environ. Pollut. 2012, 164, 66. [Google Scholar] [CrossRef]
- Peltola, P.; Ivask, A.; Aström, M.; Virta, M. Lead and Cu in contaminated urban soils: Extraction with chemical reagents and bioluminescent bacteria and yeast. Sci. Total Environ. 2005, 350, 194. [Google Scholar] [CrossRef] [PubMed]
- Maletić, S.P.; Watson, M.A.; Dehlawi, S.; Diplock, E.E.; Mardlin, D.; Paton, G.I. Deployment of microbial biosensors to assess the performance of ameliorants in metal-contaminated soils. Water Air Soil Pollut. 2015, 226, 85. [Google Scholar] [CrossRef]
- Coelho, C.; Branco, R.; Natal-da-Luz, T.; Sousa, J.P.; Morais, P.V. Evaluation of bacterial biosensors to determine chromate bioavailability and to assess ecotoxicity of soils. Chemosphere 2015, 128, 62. [Google Scholar] [CrossRef] [PubMed]
- Bouguerra, S.; Gavina, A.; Rasteiro, M.D.G.; Rocha-Santos, T.; Ksibi, M.; Pereira, R. Deriviation of terrestrial predicted no-effect concentration (Pnec) for cobalt oxide nanomaterial. In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions; Kallel, A., Ksibi, M., Ben Dhia, H., Khélifi, N., Eds.; EMCEI 2017, Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development); Springer: Cham, Switzerland, 2018; pp. 405–407. [Google Scholar]
- Kaur, J.; Adamchuk, V.I.; Whalen, J.K.; Ismail, A.A. Development of an NDIR CO2 sensor-based system for assessing soil toxicity using substrate-induced respiration. Sensors 2015, 15, 4734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnapandi, A.; Muthukutty, B.; Chen, S.-M.; Arul, K.T.; Shiuan, H.J.; Selvaganapathy, M. Bismuth molybdate incorporated functionalized carbon nanofiber as an electrocatalytic tool for the pinpoint detection of organic pollutant in life samples. Ecotoxicol. Environ. Saf. 2021, 209, 111828. [Google Scholar] [CrossRef]
- Saad, A.S.; Edrees, F.H.; Elsaady, M.T.; Amin, N.H.; Abdelwahab, N.S. Experimentally designed sensor for direct determination of the environmentally hazardous compound and occupational exposure biomarker (p-aminophenol) in different sampling matrices. J. Electrochem. Soc. 2020, 167, 147504. [Google Scholar] [CrossRef]
- Prusti, B.; Chakravarty, M. An electron-rich small AIEgen as a solid platform for the selective and ultrasensitive on-site visual detection of TNT in the solid. solution and vapor states. Analyst 2020, 145, 1687. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, Y.; Dong, F.; Bian, L.; Li, H.; Wang, J.; Du, J.; Qi, X.; He, Y. Chemically modified mesoporous wood: A versatile sensor for visual colorimetric detection of trinitrotoluene in water, air, and soil by smartphone camera. Anal. Bioanal. Chem. 2019, 411, 8063. [Google Scholar] [CrossRef]
- Shafiee, M.; Larki, A.; Faal, A.Y. Fabrication of an optochemical sensor based on triacetylcellulose polymer for colorimetric determination of trinitrotoluene. Propellants Explos. Pyrotech. 2020, 45, 438. [Google Scholar]
- Komikawa, T.; Tanaka, M.; Tamang, A.; Evans, S.D.; Critchley, K.; Okochi, M. Peptide-Functionalized Quantum Dots for Rapid Label-Free Sensing of 2,4,6-Trinitrotoluene. Bioconjugate Chem. 2020, 31, 1400. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Ding, P.; Shi, Y.; Jin, T.; Su, Y.; Wang, H.; He, Y. Portable and reliable surface-enhanced raman scattering silicon chip for signal-on detection of trace trinitrotoluene explosive in real systems. Anal. Chem. 2017, 89, 5072. [Google Scholar] [CrossRef] [PubMed]
- Taefi, Z.; Ghasemi, F.; Hormozi-Nezhad, M.R. Selective colorimetric detection of pentaerythritol tetranitrate (PETN) using arginine-mediated aggregation of gold nanoparticles. Spectrochim. Acta A 2020, 228, 117803. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Yang, Y.-S.; Wang, W.; Jiao, Q.-C.; Zhu, H.-L. Fluorescent sensors for the detection of hydrazine in environmental and biological systems: Recent advances and future prospects. Coord. Chem. Rev. 2020, 417, 213367. [Google Scholar] [CrossRef]
- Tang, M.; Wu, Y.; Deng, D.; Wei, J.; Zhang, J.; Yang, D.; Li, G. Development of an optical fiber immunosensor for the rapid and sensitive detection of phthalate esters. Sens. Act. B 2018, 258, 304. [Google Scholar] [CrossRef]
- Li, Z.; Ren, M.; Wang, L.; Lin, W. An ethyl cyanoacetate based turn-on fluorescent probe for hydrazine and its bio-imaging and environmental applications. Anal. Methods 2018, 10, 4016. [Google Scholar] [CrossRef]
- Jung, Y.; Ju, I.G.; Choe, Y.H.; Kim, Y.; Park, S.; Hyun, Y.-M.; Oh, M.S.; Kim, D. Hydrazine exposé: The next-generation fluorescent probe. ACS Sens. 2019, 4, 441. [Google Scholar] [CrossRef]
- Lakshmi, P.R.; Nanjan, P.; Kannan, S.; Shanmugaraju, S. Recent advances in luminescent metal–organic frameworks (LMOFs) based fluorescent sensors for antibiotics. Coord. Chem. Rev. 2021, 435, 213793. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, J.; Liang, L. Recent development of antibiotic detection in food and environment: The combination of sensors and nanomaterials. Microchim. Acta 2021, 188, 21. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, J.; Li, H.; Zhang, W.; Williams, M.A.; Gao, Y.Z.; Gudda, F.O.; Lu, C.; Yang, B.; Waigi, M.G. A fast and easily parallelizable biosensor method for measuring extractable tetracyclines in soils. Environ. Sci. Technol. 2020, 54, 758. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Zeng, G.M.; Shen, G.L.; Li, Y.P.; Hang, Y.Z.; Huang, D.L. Rapid detection of picloram in agricultural field samples using a disposable immunomembrane-based electrochemical sensor. Environ. Sci. Technol. 2008, 43, 1207. [Google Scholar] [CrossRef] [PubMed]
- Prasad, B.B.; Jauhari, D.; Tiwari, M.P. Doubly imprinted polymer nanofilm-modified electrochemical sensor for ultra-trace simultaneous analysis of glyphosate and glufosinate. Biosens. Bioelectron. 2014, 59, 81. [Google Scholar] [CrossRef] [PubMed]
- Gianetto, M.; Umiltà, E.; Careri, M. New competitive dendrimer-based and highly selective immunosensor for determination of atrazine in environmental, feed and food samples: The importance of antibody selectivity fordiscrimination among related triazinic metabolites. Anal. Chim. Acta. 2014, 806, 197. [Google Scholar] [CrossRef]
- Gonzalez-Martınez, M.A.; Brun, E.M.; Puchades, R.; Maquieira, Ä.; Ramsey, K.; Rubio, F. Glyphosate Immunosensor. Application for Water and Soil Analysis. Anal. Chem. 2005, 77, 4219. [Google Scholar] [CrossRef]
- Gholivand, M.B.; Akbari, A.; Norouzi, L. Development of a novel hollow fiber-pencil graphite modified electrochemical sensor for the ultra-trace analysis of glyphosate. Sens. Act. B 2018, 272, 415. [Google Scholar] [CrossRef]
- Shrivastava, S.; Kumar, A.; Verma, N.; Chen, B.-Y.; Chang, C.-T. Voltammetric detection of aqueous glyphosate on a copper and poly(pyrrole)-electromodified activated carbon fiber. Electroanalysis 2021, 33, 916. [Google Scholar] [CrossRef]
- Sacks, V.; Eshkenazi, I.; Neufeld, N.; Dosoretz, K.; Rishpon, J. Immobilized parathion hydrolase: An amperometric sensor for parathion. Anal. Chem. 2000, 72, 2055. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Wang, X.; Qiao, F.; Liu, P.; Ai, S. Highly sensitive electrochemical stripping analysis of methyl parathion at MWCNTs–CeO2–Au nanocomposite modified electrode. Sens. Acta B 2013, 186, 774. [Google Scholar] [CrossRef]
- Baskeyfield, D.E.H.; Davis, F.; Magan, N.; Tothill, I.E. A membrane-based immunosensor for the analysis of the herbicide isoproturon. Anal. Chim. Acta 2011, 699, 223. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hou, T.; Dong, S.; Liu, X.; Li, F. Fluorescence biosensing strategy based on mercury ion-mediated DNA conformational switch and nicking enzyme-assisted cycling amplification for highly sensitive detection of carbamate pesticide. Biosens. Bioelectron. 2016, 77, 644. [Google Scholar] [CrossRef] [PubMed]
- Tahirbegi, I.B.; Ehgartner, J.; Sulzer, P.; Zieger, S.; Kasjanow, A.; Paradiso, M.; Strobl, M.; Bouwes, D.; Mayr, T. Fast pesticide detection inside microfluidic device with integrated optical pH. oxygen sensors and algal fluorescence. Biosens. Bioelectron. 2017, 88, 188. [Google Scholar] [CrossRef]
- Segal, E.; Haleva, E.; Salomon, A. Ultrasensitive plasmonic sensor for detecting sub-ppb Llevels of alachlor. ACS Appl. Nano Mater. 2019, 2, 1285. [Google Scholar] [CrossRef]
- Kumar, T.H.V.; Raman Pillai, S.K.; Chan-Park, M.B.; Sundramoorthy, A.K. Highly selective detection of an organophosphorus pesticide, methyl parathion, using Ag-ZnO-SWCNT based field-effect transistors. J. Mater. Chem. C 2020, 8, 8864. [Google Scholar] [CrossRef]
- Nehru, R.; Chen, S.-M. A La3+ -doped TiO2nanoparticle decorated functionalized-MWCNT catalyst: Novel electrochemical non-enzymatic sensing of paraoxon-ethyl. Nanoscale Adv. 2020, 2, 3033. [Google Scholar] [CrossRef]
- Ilager, D.; Seo, H.; Shetti, N.P.; Kalanur, S.S. CTAB modified Fe-WO3 as an electrochemical detector of amitrole by catalytic oxidation. J. Environ. Chem. Eng. 2020, 8, 104580. [Google Scholar] [CrossRef]
- Kamel, A.H.; Amr, A.E.-G.E.; Abdalla, N.S.; El-Naggar, M.; Al-Omar, M.A.; Alkahtani, H.M.; Sayed, A.Y.A. Novel solid-state potentiometric sensors using Polyaniline (PANI) as a solid-contact transducer for flucarbazone herbicide assessment. Polymers 2019, 11, 1796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Y.; Wang, T.; Hu, X.; Liu, S.; Zhang, M.; Wang, C. Highly sensitive microcantilever-based immunosensor for the detection of carbofuran in soil and vegetable samples. Food Chem. 2017, 229, 432. [Google Scholar] [CrossRef]
- Strachan, G.; Capel, S.; Maciel, H.; Porter, A.J.R.; Paton, G.I. Application of cellular and immunological biosensor techniques to assess herbicide toxicity in soils. Eur. J. Soil Sci. 2002, 53, 37. [Google Scholar] [CrossRef]
- Chen, J.; Sun, S.; Li, C.-Z.; Zhu, Y.-G.; Rosen, B.P. Biosensor for organoarsenical herbicides and growth promoters. Environ. Sci. Technol. 2014, 48, 1141. [Google Scholar] [CrossRef]
- Multisensor Systems for Chemical Analysis—Materials and Sensors; Lvova, L.; Kirsanov, D.; Legin, A.; Di Natale, C. (Eds.) Pan Stanford Publishing: Singapore, 2014; pp. 69–138. ISBN 9789814411158. [Google Scholar]
- Esbensen, K. Multivariate Data Analysis in Practice, 5th ed.; Camo Press: Trondheim, Norway, 2004; 590p. [Google Scholar]
- SÍiwinśka, M.; Wisńiewska, P.; Dymerski, T.; Namiesńik, J.; Wardencki, W. Food Analysis Using Artificial Senses. J. Agric. Food Chem. 2014, 62, 1423. [Google Scholar] [CrossRef]
- Mimendia, A.; Gutierrez, J.M.; Alcaniz, J.P.; del Valle, M. Discrimination of soils and assessment of soil fertility using information from an Ion Selective Electrodes array and Artificial Neural Networks. Clean Soil Air Water. 2014, 42, 1808. [Google Scholar] [CrossRef] [Green Version]
- McGrath, D.; Skotnikov, A. Automated work-station for soil analysis. Comm. Soil Sci. Plant Anal. 1996, 27, 1795. [Google Scholar] [CrossRef]
- Gutierrez, M.; Alegret, S.; Caceres, R.; Casadesus, J.; Marfa, O.; del Valle, M. Nutrient solution monitoring in greenhouse cultivation employing a potentiometric electronic tongue. J. Agric. Food Chem. 2008, 56, 1810. [Google Scholar] [CrossRef]
- Chikae, M.; Kerman, K.; Nagatani, N.; Takamura, Y.; Tamiya, E. An electrochemical on-field sensor system for the detection of compost maturity. Anal. Chim. Acta. 2007, 581, 364. [Google Scholar] [CrossRef] [PubMed]
- Artigas, J.; Beltran, A.; Jimenez, C.; Baldi, A.; Mas, R.; Domınguez, C.; Alonso, J. Application of ion sensitive field effect transistor based sensors to soil analysis. Comp. Electron. Agric. 2001, 31, 281. [Google Scholar] [CrossRef]
- Wilson, D.; Gutierrez, J.M.; Alegret, S.; del Valle, M. Simultaneous Determination of Zn(II), Cu(II), Cd(II) and Pb(II) in Soil Samples Employing an Array of Potentiometric Sensors and an Artificial Neural Network Model. Electroanalysis 2012, 24, 2249. [Google Scholar] [CrossRef]
- Beni, V.; Ogurtsov, V.I.; Bakunin, N.V.; Arrigan, D.W.M.; Hill, M. Development of a portable electroanalytical system for the stripping voltammetry of metals: Determination of copper in acetic acid soil extracts. Anal. Chim. Acta 2005, 552, 190. [Google Scholar] [CrossRef]
- Venancio, E.C.; Consolin Filho, N.; Constantino, C.J.L.; Martin-Neto, L.; Mattoso, L.H.C. Studies on the interaction between humic substances and conducting polymers for sensor application. J. Braz. Chem. Soc. 2005, 16, 24. [Google Scholar] [CrossRef]
- Lvova, L.; D’Amico, A.; Pede, A.; Di Natale, C.; Paolesse, R. Metallic Sensors in Multisensory Analysis. In Multisensor Systems for Chemical Analysis—Materials and Sensors; Lvova, L., Kirsanov, D., Legin, A., Di Natale, C., Eds.; Pan Stanford Publishing: Singapore, 2014; pp. 69–138. ISBN 9789814411158. [Google Scholar] [CrossRef]
- Da Silva, T.A.; Braunger, M.L.; Neris Coutinho, M.A.; Rios do Amaral, L.; Rodrigues, V.; Riul, A., Jr. 3D-Printed graphene electrodes applied in an impedimetric electronic tongue for soil analysis. Chemosensors 2019, 7, 50. [Google Scholar] [CrossRef] [Green Version]
- Sophocleous, M.; Karkotis, A.; Georgiou, J. A versatile, stand-alone system for a screen-printed, soil-sensing array for Precision Agriculture. IEEE J. Emerg. Sel. Top. Circuits Syst. 2021, 11, 449–457. [Google Scholar] [CrossRef]
- Sophocleous, M.; Karkotis, A.; Georgiou, J. A versatile, stand-alone system for a screen-printed, soil-sensing array for Precision Agriculture. In Proceedings of the 2020 IEEE Sensors, Rotterdam, The Netherlands, 25–28 October 2020; p. 9278890. [Google Scholar]
- Khaydukova, M.; Kirsanov, D.; Sarkar, S.; Mukherjee, S.; Ashina, J.; Bhattacharyya, N.; Chanda, S.; Bandyopadhyay, R.; Legin, A. One shot evaluation of NPK in soils by “electronic tongue”. Comput. Electron. Agric. 2021, 186, 106208. [Google Scholar] [CrossRef]
- Patkar, R.S.; Ashwin, M.; Rao, V.R. Piezoresistive microcantilever based lab-on-a-chip system for detection of macronutrients in the soil. Solid-State Electron. 2017, 138, 94. [Google Scholar] [CrossRef]
- Kurup, P.; Sullivan, C.; Hannagan, R.; Yu, S.; Azimi, H.; Robertson, S.; Ryan, D.; Nagarajan, R.; Ponrathnam, T.; Howe, G. A Review of Technologies for Characterization of Heavy Metal Contaminants. Indian Geotech J. 2017, 47, 421–436. [Google Scholar] [CrossRef]
- Bao, C.; Seol, S.K.; Kim, W.S. A 3D integrated neuromorphic chemical sensing system. Sens. Act. B 2021, 332, 129527. [Google Scholar] [CrossRef]
- Taylor, G.A.; Parra, C.; Carrillo, H.; Mouazen, A. A decision framework reference for ISFET sensor-based electronic systems design for agriculture industry applications. In Proceedings of the 2020 IEEE 17th India Council International Conference, INDICON 2020, New Delhi, India, 10–13 December 2020; p. 9342231. [Google Scholar]
- Rock, F.; Barsan, N.; Weimar, U. Electronic Nose: Current Status and Future Trends. Chem. Rev. 2008, 108, 705. [Google Scholar] [CrossRef]
- Yang, J.-W.; Cho, H.-J.; Lee, S.-H.; Lee, J.-Y. Characterization of SnO2 ceramic gas sensor for exhaust gas monitoring of SVE process. Environ. Monit. Assessm. 2004, 92, 153. [Google Scholar] [CrossRef]
- Gurbuz, Y.; Kang, W.P.; Davidson, J.L.; Kerns, D.V. Diamond microelectronic gas sensor for detection of benzene and toluene. Sens. Act. B. 2004, 99, 207. [Google Scholar] [CrossRef]
- De Cesare, F.; Pantalei, S.; Zampetti, E.; Macagnano, A. Electronic nose and SPME techniques to monitor phenanthrene biodegradation in soil. Sens. Act. B. 2008, 131, 63. [Google Scholar] [CrossRef] [Green Version]
- Pineda, D.M.; Pérez, J.C. SENose: An under U$50 electronic nose for the monitoring of soil gas emissions. Comput. Electron. Agric. 2017, 133, 15. [Google Scholar] [CrossRef]
- Badura, M.; Szczurek, A.; Banaszkiewicz, K. BTEX compounds identification by means of gas sensors array. E3S Web Conf. 2018, 44, 00007. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, B.; Valt, M.; Parretta, C.; Gherardi, S.; Gaiardo, A.; Malagù, C.; Mantovani, F.; Strati, V.; Guidi, V. Correlation of gaseous emissions to water stress in tomato and maize crops: From field to laboratory and back. Sens. Act. B. 2020, 303, 127227. [Google Scholar] [CrossRef]
- Visconti, P.; de Fazio, R.; Velázquez, R.; Del-Valle-soto, C.; Giannoccaro, N.I. Development of sensors-based agri-food traceability system remotely managed by a software platform for optimized farm management. Sensors 2020, 20, 3632. [Google Scholar] [CrossRef]
- Khairunnniza-Bejo, S.; Ramli, N.; Muharam, F.M. Wireless sensor network (WSN) applications in plantation canopy areas: A review. Asian J. Sci. Res. 2018, 11, 151. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadporozhskaya, M.; Kovsh, N.; Paolesse, R.; Lvova, L. Recent Advances in Chemical Sensors for Soil Analysis: A Review. Chemosensors 2022, 10, 35. https://doi.org/10.3390/chemosensors10010035
Nadporozhskaya M, Kovsh N, Paolesse R, Lvova L. Recent Advances in Chemical Sensors for Soil Analysis: A Review. Chemosensors. 2022; 10(1):35. https://doi.org/10.3390/chemosensors10010035
Chicago/Turabian StyleNadporozhskaya, Marina, Ninel Kovsh, Roberto Paolesse, and Larisa Lvova. 2022. "Recent Advances in Chemical Sensors for Soil Analysis: A Review" Chemosensors 10, no. 1: 35. https://doi.org/10.3390/chemosensors10010035
APA StyleNadporozhskaya, M., Kovsh, N., Paolesse, R., & Lvova, L. (2022). Recent Advances in Chemical Sensors for Soil Analysis: A Review. Chemosensors, 10(1), 35. https://doi.org/10.3390/chemosensors10010035