Preparation and Photoluminescent Properties of Tb3+-Doped Lu2W3O12 and Lu2Mo3O12 Green Phosphors
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation and Characterization
3. Results
3.1. Characterization of XRD and Crystal Structure
3.2. Composition and Morphology Characterization
3.3. PL Properties
3.4. DRS
3.5. Measuring Temperature Dependent Spectra, Activation Energy, and Decay Curves
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, S.K.; Li, K.Y.; Wang, S.P.; Zong, R.L.; Zhang, G.L. Structural characterization and enhanced luminescence of Eu-doped 2CeO2–0.5La2O3 composite phosphor powders by a facile solution combustion synthesis. J. Mater. Chem. C 2017, 5, 4302–4309. [Google Scholar] [CrossRef]
- Lu, J.F.; Mu, Z.F.; Zhu, D.Y.; Wang, Q.; Wu, F.G. Luminescence properties of Eu3+ doped La3Ga5GeO14 and effect of Bi3+ co-doping. J. Lumin. 2018, 196, 50–56. [Google Scholar] [CrossRef]
- Li, W.F.; Qiu, M.F.; Li, Y.X.; Zhang, S.A.; Li, Q.F.; Lin, W.X.; Mu, Z.F.; Wu, F.G. Energy Transfer and Multicolor-Tunable Emissions of Sr3La6(SiO4)6: Ce3+, Tb3+, Eu3+. J. Electron. Mater. 2020, 49, 1404–1411. [Google Scholar] [CrossRef]
- Mu, Z.F.; Hu, Y.H.; Chen, L.; Wang, X.J.; Ju, G.F.; Yang, Z.F.; Jin, Y.H. A single-phase, color-tunable, broadband-excited white light-emitting phosphor Y2WO6: Sm3+. J. Lumin. 2014, 146, 33–36. [Google Scholar] [CrossRef]
- Nair, G.B.; Swart, H.C.; Dhoble, S.J. A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): Phosphor synthesis, device fabrication and characterization. Prog. Mater. Sci. 2020, 109, 100622. [Google Scholar] [CrossRef]
- Liu, X.; Li, L.; Noh, H.M.; Moon, B.K.; Choi, B.C.; Jeong, J.H. Chemical bond properties and charge transfer bands of O2−-Eu3+, O2−-Mo6+ and O2−-W6+ in Eu3+-doped garnet hosts Ln3M5O12 and ABO4 molybdate and tungstate phosphors. Dalton Trans. 2014, 43, 8814–8825. [Google Scholar] [CrossRef]
- Li, H.Y.; Yang, H.K.; Moon, B.K.; Choi, B.C.; Jeon, J.H.; Jang, K.W.; Lee, H.S.; Yi, S.S. Crystal Structure, Electronic Structure, and Optical and Photoluminescence Properties of Eu(III) Ion-Doped Lu6Mo(W)O12. Inorg. Chem. 2011, 50, 12522–12530. [Google Scholar] [CrossRef]
- Lee, G.H.; Kim, T.H.; Yoon, C.; Kang, S. Effect of local environment and Sm3+-codoping on the luminescence properties in the Eu3+-doped potassium tungstate phosphor for white LEDS. J. Lumin. 2008, 128, 1922–1926. [Google Scholar] [CrossRef]
- Baur, F.; Jüstel, T. (INVITED) Eu3+ activated molybdates—Structure property relations. Opt. Mater. X 2019, 1, 100015. [Google Scholar] [CrossRef]
- Cao, C.Y.; Zhang, Z.J.; Wei, S.J.; Xie, A.; Noh, H.M.; Jeong, J.H. Synthesis, optical properties, energy transfer, thermal behavior, and LED package of Eu3+ doped lutetium tungsten oxide phosphors. Opt. Mater. 2020, 101, 109753. [Google Scholar] [CrossRef]
- Cao, C.Y.; Wei, S.J.; Zhu, Y.X.; Liu, T.; Xie, A.; Noh, H.M.; Jeong, J.H. Synthesis, optical properties, and packaging of Dy3+ doped Y2WO6, Y2W3O12, and Y6WO12 phosphors. Mater. Res. Bull. 2020, 126, 110846. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, J.; Zhang, X.; Lu, S.; Ren, X.; Nie, Z.; Wang, X. Enhanced red emission in CaMoO4:Bi3+, Eu3+. J. Phys. Chem. C 2007, 111, 13256–13260. [Google Scholar] [CrossRef]
- Zhou, Y.; Yan, B. RE2(MO4)3: Ln3+(RE = Y, La, Gd, Lu; M = W, Mo; Ln = Eu, Sm, Dy) microcrystals: Controlled synthesis, microstructure and tunable luminescence. CrystEngComm 2013, 15, 5694–5702. [Google Scholar] [CrossRef]
- Li, L.; Shen, J.; Zhou, X.J.; Pan, Y.; Chang, W.X.; He, Q.W.; Wei, X.T. Luminescent properties of Lu2MoO6:Eu3+ red phosphor for solid state lighting. Trans. Nonferr. Met. Soc. China 2016, 26, 1670–1675. [Google Scholar] [CrossRef]
- Guan, L.; Wei, W.; Guo, S.Q.; Su, H.X.; Li, X.; Shang, Y.X.; Yang, Z.P.; Guo, Q.L.; Fu, G.S. Fabrication and Luminescent Properties of Tb3+ Doped Double Molybdate Phosphors. J. Electrochem. Soc. 2012, 159, D200–D203. [Google Scholar] [CrossRef]
- Mahlik, S.; Diaz, F.; Boutinaud, P. Luminescence quenching in KYb(WO4)2-Tb3+: An example of temperature-pressure equivalence. J. Lumin. 2017, 191, 18–21. [Google Scholar] [CrossRef]
- Chen, X.Y.; Zhang, Z.J.; Feng, A.; Xu, M.; Zhao, J.T.; Xu, F.F. Electronic structure, optical and thermal/concentration quenching properties of Lu2−2xEu2xWO6 (0 ≤ x ≤ 0.2). Mater. Res. Bull. 2015, 70, 26–31. [Google Scholar] [CrossRef]
- Dang, P.P.; Li, G.G.; Yun, X.H.; Zhang, Q.Q.; Liu, D.J.; Lian, H.Z.; Shang, M.M.; Lin, J. Thermally stable and highly efficient red-emitting Eu3+-doped Cs3GdGe3O9 phosphors for WLEDs: Non-concentration quenching and negative thermal expansion. Light Sci. Appl. 2021, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.; Xie, Y.; Chen, S.S.; Luo, J.M.; Li, S.C.; Wang, T.; Zhao, S.C.; Wang, H.; Deng, B.; Yu, R.J.; et al. Enhanced local symmetry achieved zero-thermal-quenching luminescence characteristic in the Ca2InSbO6:Sm3+ phosphors for w-LEDs. Chem. Eng. J. 2021, 410, 128396. [Google Scholar] [CrossRef]
- Zou, H.; Yang, X.Q.; Chen, B.; Du, Y.Y.; Ren, B.Y.; Sun, X.Q.; Qiao, X.S.; Zhang, Q.W.; Wang, F. Thermal Enhancement of Upconversion by Negative Lattice Expansion in Orthorhombic Yb2W3O12. Angew. Chem. Int. Ed. 2019, 58, 17255–17259. [Google Scholar] [CrossRef]
- Zou, H.; Chen, B.; Hu, Y.F.; Zhang, Q.W.; Wang, X.S.; Wang, F. Simultaneous Enhancement and Modulation of Upconversion by Thermal Stimulation in Sc2Mo3O12 Crystals. J. Phys. Chem. Lett. 2020, 11, 3020–3024. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.Y.; Xie, A.L.; Zhou, T.L.; Zhong, H.C.; Lu, X.J.; Xie, A.; Noh, H.M.; Jeong, J.H. Eu3+ doped lutetium molybdenum oxides: Synthesis, optical properties, thermal behavior, and LED packaging. J. Lumin. 2020, 217, 116759. [Google Scholar] [CrossRef]
- Chen, Z.J.; Cao, C.Y.; Zhang, M.; Huang, N.H.; Bai, B.H.; Yang, L.; Li, Y.C.; Xie, A. Thermal enhancing photoluminescence intensities of Eu3+ doped Lu2(MoO4)3. Opt. Mater. 2022, 127, 112301. [Google Scholar] [CrossRef]
- Sumithra, S.; Umarji, A.M. Negative thermal expansion in rare earth molybdates. Solid State Sci. 2006, 8, 1453–1458. [Google Scholar] [CrossRef]
- Nugent, L.J.; Baybarz, R.D.; Burnett, J.L.; Ryan, J.L. Electron-transfer and f-d absorption bands of some lanthanide and actinide complexes and the standard (II–III) oxidation potential for each member of the lanthanide and actinide series. J. Phys. Chem. C 1973, 77, 1528–1539. [Google Scholar] [CrossRef]
- Baur, F.; Glocker, F.; Jüstel, T. Photoluminescence and energy transfer rates and efficiencies in Eu3+ activated Tb2Mo3O12. J. Mater. Chem. C 2015, 3, 2054–2064. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.X.; Yue, X.J.; Cai, K.; Deng, H.D.; Zhang, M. Microwave-assist hydrothermal synthesis and luminescence of NaGd(WO4):Tb3+ phosphors: A case study for the energy saving in the synthesis of phosphors. Energy 2015, 93, 1413–1417. [Google Scholar] [CrossRef]
- Zeng, W.; Wang, Y.H.; Han, S.C.; Chen, W.B.; Li, G.; Wang, Y.Z.; Wen, Y. Design, synthesis and characterization of a novel yellow long-persistent phosphor: Ca2BO3Cl:Eu2+, Dy3+. J. Mater. Chem. C 2013, 17, 3004–3011. [Google Scholar] [CrossRef]
- Cao, G.; Rabenberg, L.; Nunn, C.M.; Mallouk, T.E. Formation of quantum-size semiconductor particles in a layered metal phosphonate host lattice. Chem. Mater. 1991, 3, 149–156. [Google Scholar] [CrossRef]
- Materials Project. Available online: https://materialsproject.org/materials/mp-768455?chemsys=Lu-W-O (accessed on 10 November 2021).
- Wang, B.; Li, X.S.; Zeng, Q.G.; Yang, G.T.; Luo, J.Y.; He, X.; Chen, Y.Q. Efficiently enhanced photoluminescence in Eu3+-doped Lu2(MoO4)3 by Gd3+ substituting. Mater. Res. Bull. 2018, 100, 97–101. [Google Scholar] [CrossRef]
- Zhang, M.; Cao, C.Y.; Zhang, C.L.; Chen, Z.J.; Bai, B.H.; Huang, N.H.; Xie, A. Synthesis and Luminescent Properties of Gd2[1-x(y)]Eu2x(y)WzMo(1-z)O6 Red Phosphors. Chin. J. Lumin. 2022, 43, 1086–1094. [Google Scholar] [CrossRef]
- Ueda, J.; Dorenbos, P.; Bos, A.J.J.; Meijerink, A.; Tanabe, S. Insight into the Thermal Quenching Mechanism for Y3Al5O12:Ce3+ through Thermoluminescence Excitation Spectroscopy. J. Phys. Chem. C 2015, 119, 25003–25008. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.H.; Arunkumar, P.; Kim, B.Y.; Unithrattil, S.; Kim, E.; Moon, S.H.; Hyun, J.Y.; Kim, K.H.; Lee, D.; Lee, J.S.; et al. A Zero-thermal-quenching Phosphor. Nat. Mater. 2017, 16, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.C.; Wang, Z.J.; Li, P.L.; Li, T.; Bai, Q.Y.; Sun, J.; Yang, Z.P. Single-phase white-emitting phosphors Ba3Ce(1-x-y)(PO4)3:xTb3+,yMn2+ and Ba3Ce(1-x-z)(PO4)3:xTb3+,zSm3+: Structure, luminescence, energy transfer and thermal stability. RSC Adv. 2017, 7, 19584–19592. [Google Scholar] [CrossRef] [Green Version]
- Tian, M.M.; Li, P.L.; Wang, Z.J.; Teng, X.Y.; Li, Z.L.; Cheng, J.G.; Sun, Y.S.; Wang, C.; Yang, Z.P. Synthesis, color-tunable emission, thermal stability, luminescence and energy transfer of Sm3+ and Eu3+ single-doped M3Tb(BO3)3 (M = Sr and Ba) phosphors. CrystEngComm 2016, 18, 6934–6947. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, B.; Ke, Y.; Shu, S.; Liu, R.X.; Yu, R.J. Spectroscopic investigation of La7Ta3W4O30:Sm3+ orange-red phosphor for white LEDs. Arab. J. Chem. 2020, 13, 5581–5592. [Google Scholar] [CrossRef]
- Bhushan, S.; Chukichev, M.V. Temperature dependent studies of cathodoluminescence of green band of ZnO crystals. J. Mater. Sci. Lett. 1988, 7, 319–321. [Google Scholar] [CrossRef]
- Qiao, J.; Zhang, Z.C.; Zhao, J.; Xia, Z.G. Tuning of the Compositions and Multiple Activator Sites toward Single-Phased White Emission in (Ca9–xSrx)MgK(PO4)7:Eu2+ Phosphors for Solid-State Lighting. Inorg. Chem. 2019, 58, 5006–5012. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, N.; Lu, G.; Bai, B.; Chen, Z.; Zhang, M.; Li, Y.; Cao, C.; Xie, A. Preparation and Photoluminescent Properties of Tb3+-Doped Lu2W3O12 and Lu2Mo3O12 Green Phosphors. Chemosensors 2022, 10, 533. https://doi.org/10.3390/chemosensors10120533
Huang N, Lu G, Bai B, Chen Z, Zhang M, Li Y, Cao C, Xie A. Preparation and Photoluminescent Properties of Tb3+-Doped Lu2W3O12 and Lu2Mo3O12 Green Phosphors. Chemosensors. 2022; 10(12):533. https://doi.org/10.3390/chemosensors10120533
Chicago/Turabian StyleHuang, Nihui, Guojun Lu, Bihai Bai, Zijun Chen, Min Zhang, Yuechan Li, Chunyan Cao, and An Xie. 2022. "Preparation and Photoluminescent Properties of Tb3+-Doped Lu2W3O12 and Lu2Mo3O12 Green Phosphors" Chemosensors 10, no. 12: 533. https://doi.org/10.3390/chemosensors10120533
APA StyleHuang, N., Lu, G., Bai, B., Chen, Z., Zhang, M., Li, Y., Cao, C., & Xie, A. (2022). Preparation and Photoluminescent Properties of Tb3+-Doped Lu2W3O12 and Lu2Mo3O12 Green Phosphors. Chemosensors, 10(12), 533. https://doi.org/10.3390/chemosensors10120533