Comparison of Colorimetric and Fluorometric Chemosensors for Protein Concentration Determination and Approaches for Estimation of Their Limits of Detection
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Olson, B.J.S.C. Assays for Determination of Protein Concentration. Curr. Protoc. Pharmacol. 2016, 73. [Google Scholar] [CrossRef] [PubMed]
- Kielkopf, C.L.; Bauer, W.; Urbatsch, I.L. Methods for Measuring the Concentrations of Proteins. Cold Spring Harb. Protoc. 2020, 2020, pdb.top102277. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Kielkopf, C.L.; Bauer, W.; Urbatsch, I.L. Bradford Assay for Determining Protein Concentration. Cold Spring Harb. Protoc. 2020, 2020, pdb.prot102269. [Google Scholar] [CrossRef] [PubMed]
- Noble, J.E. Chapter Two—Quantification of Protein Concentration Using UV Absorbance and Coomassie Dyes. In Methods in Enzymology; Lorsch, J., Ed.; Laboratory Methods in Enzymology: Protein Part A; Academic Press: Cambridge, MA, USA, 2014; Volume 536, pp. 17–26. [Google Scholar] [CrossRef]
- Wiśniewski, J.R.; Gaugaz, F.Z. Fast and Sensitive Total Protein and Peptide Assays for Proteomic Analysis. Anal. Chem. 2015, 87, 4110–4116. [Google Scholar] [CrossRef] [PubMed]
- Noble, J.E.; Knight, A.E.; Reason, A.J.; Di Matola, A.; Bailey, M.J.A. A Comparison of Protein Quantitation Assays for Biopharmaceutical Applications. Mol. Biotechnol. 2007, 37, 99–111. [Google Scholar] [CrossRef] [PubMed]
- You, W.W.; Haugland, R.P.; Ryan, D.K.; Haugland, R.P. 3-(4-Carboxybenzoyl)Quinoline-2-Carboxaldehyde, a Reagent with Broad Dynamic Range for the Assay of Proteins and Lipoproteins in Solution. Anal. Biochem. 1997, 244, 277–282. [Google Scholar] [CrossRef]
- Steinberg, T.H.; Jones, L.J.; Haugland, R.P.; Singer, V.L. SYPRO Orange and SYPRO Red Protein Gel Stains: One-Step Fluorescent Staining of Denaturing Gels for Detection of Nanogram Levels of Protein. Anal. Biochem. 1996, 239, 223–237. [Google Scholar] [CrossRef]
- Mora, A.K.; Nath, S. SYPRO Orange—A New Gold Standard Amyloid Probe. J. Mater. Chem. B 2020, 8, 7894–7898. [Google Scholar] [CrossRef]
- Wu, D.; Sedgwick, A.C.; Gunnlaugsson, T.; Akkaya, E.U.; Yoon, J.; James, T.D. Fluorescent Chemosensors: The Past, Present and Future. Chem. Soc. Rev. 2017, 46, 7105–7123. [Google Scholar] [CrossRef] [Green Version]
- Kwon, N.; Hu, Y.; Yoon, J. Fluorescent Chemosensors for Various Analytes Including Reactive Oxygen Species, Biothiol, Metal Ions, and Toxic Gases. ACS Omega 2018, 3, 13731–13751. [Google Scholar] [CrossRef] [PubMed]
- Dongare, P.R.; Gore, A.H. Recent Advances in Colorimetric and Fluorescent Chemosensors for Ionic Species: Design, Principle and Optical Signalling Mechanism. ChemistrySelect 2021, 6, 5657–5669. [Google Scholar] [CrossRef]
- Martynov, V.I.; Pakhomov, A.A. BODIPY Derivatives as Fluorescent Reporters of Molecular Activities in Living Cells. Russ. Chem. Rev. 2021, 90, 1213–1262. [Google Scholar] [CrossRef]
- Li, Y.; Yao, S.; Fang, H.; He, W.; Chen, Y.; Guo, Z. Rational Design of Ratiometric Fluorescent Probe for Zn2+ Imaging under Oxidative Stress in Cells. Chemosensors 2022, 10, 477. [Google Scholar] [CrossRef]
- Nootem, J.; Sattayanon, C.; Daengngern, R.; Kamkaew, A.; Wattanathana, W.; Wannapaiboon, S.; Rashatasakhon, P.; Chansaenpak, K. BODIPY-Pyridylhydrazone Probe for Fluorescence Turn-On Detection of Fe3+ and Its Bioimaging Application. Chemosensors 2021, 9, 165. [Google Scholar] [CrossRef]
- Desimoni, E.; Brunetti, B. About Estimating the Limit of Detection by the Signal to Noise Approach. Pharm. Anal. Acta 2015, 6, 4. [Google Scholar] [CrossRef]
- Shrivastava, A.; Gupta, V. Methods for the Determination of Limit of Detection and Limit of Quantitation of the Analytical Methods. Chron. Young Sci. 2011, 2, 21. [Google Scholar] [CrossRef]
- Cole, R. Optimum Optical Density in Spectrophotometry. J. Opt. Soc. Am. 1951, 41, 38. [Google Scholar] [CrossRef]
- Currie, L.A. Nomenclature in Evaluation of Analytical Methods Including Detection and Quantification Capabilities (IUPAC Recommendations 1995). Pure Appl. Chem. 1995, 67, 1699–1723. [Google Scholar] [CrossRef]
- Armbruster, D.A.; Pry, T. Limit of Blank, Limit of Detection and Limit of Quantitation. Clin. Biochem. Rev. 2008, 29 (Suppl. 1), S49–S52. [Google Scholar]
- Belter, M.; Sajnóg, A.; Barałkiewicz, D. Over a Century of Detection and Quantification Capabilities in Analytical Chemistry—Historical Overview and Trends. Talanta 2014, 129, 606–616. [Google Scholar] [CrossRef] [PubMed]
Dye | Volume of Sample Added, μL | Volume of Working Solution, μL |
---|---|---|
Coomassie G-250 | 10 | 200 |
ProteOrange | 2.5 | 97.5 |
QuDye | 5 | 95 |
Dye | B 1 | SEslope 1 | I0 1 | S 1 | Iblank 2 | Sblank 2 | LoD (1) | LoD (2) | LoD (3) | m (ng) |
---|---|---|---|---|---|---|---|---|---|---|
Coomassie G-250 | 0.00117 | 8.6 × 10−6 | 0.277 | 0.0108 | 0.275 | 0.00328 | 30.5 | 9.24 | 7.20 | 72 |
ProteOrange | 2.22 | 0.046 | 59.6 | 23.27 | 67.1 | 16.4 | 34.6 | 24.3 | 27.7 | 69.3 |
QuDye | 9.9 | 0.43 | −305 | 546 | 25.5 | 2.43 | 182 | 0.81 | 34 | 170 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamaeva, A.A.; Martynov, V.I.; Deyev, S.M.; Pakhomov, A.A. Comparison of Colorimetric and Fluorometric Chemosensors for Protein Concentration Determination and Approaches for Estimation of Their Limits of Detection. Chemosensors 2022, 10, 542. https://doi.org/10.3390/chemosensors10120542
Mamaeva AA, Martynov VI, Deyev SM, Pakhomov AA. Comparison of Colorimetric and Fluorometric Chemosensors for Protein Concentration Determination and Approaches for Estimation of Their Limits of Detection. Chemosensors. 2022; 10(12):542. https://doi.org/10.3390/chemosensors10120542
Chicago/Turabian StyleMamaeva, Anastasiya A., Vladimir I. Martynov, Sergey M. Deyev, and Alexey A. Pakhomov. 2022. "Comparison of Colorimetric and Fluorometric Chemosensors for Protein Concentration Determination and Approaches for Estimation of Their Limits of Detection" Chemosensors 10, no. 12: 542. https://doi.org/10.3390/chemosensors10120542
APA StyleMamaeva, A. A., Martynov, V. I., Deyev, S. M., & Pakhomov, A. A. (2022). Comparison of Colorimetric and Fluorometric Chemosensors for Protein Concentration Determination and Approaches for Estimation of Their Limits of Detection. Chemosensors, 10(12), 542. https://doi.org/10.3390/chemosensors10120542