Sensing Alzheimer’s Disease Utilizing Au Electrode by Controlling Nanorestructuring
Abstract
:1. Introduction
2. Materials and Experimental Methods
2.1. Materials
2.2. Apparatus
2.3. ORC Nanorestructuring of Au Substrate
2.4. Peptide Conjugation on the Gold Substrate
2.5. Cyclic Voltammetry (CV) Analysis for Aβ (1–42) Peptide Detection
3. Results and Discussion
3.1. ORC Treatment and Mechanism
3.2. Morphological and Topological Studies of the ORC Engineered Au Substrates
3.3. Electroactive Surface Area of the ORC Nanorestructured Au Substrate
3.4. Electrochemical Detection of Aβ (1–42) Peptide Using ORC Nanorestructured Au Substrate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Michelle, M.; Prashanthi, V.; Walter, R. Clinical epidemiology of Alzheimer’s disease: Assessing sex and gender differences. Clin. Epidemiol. 2014, 6, 37–48. [Google Scholar]
- Kaushik, A.; Jayant, R.D.; Tiwari, S.; Vashist, A.; Nair, M. Nano-biosensors to detect beta-amyloid for Alzheimer’s disease management. Biosens. Bioelectron. 2016, 80, 273–287. [Google Scholar] [CrossRef] [Green Version]
- Kaushik, A.; Shah, P.; Vabbina, P.K.; Jayant, R.D.; Tiwari, S.; Vashist, A.; Yndart, A.; Nair, M. A label-free electrochemical immunosensor for beta-amyloid detection. Anal. Methods 2016, 8, 6115–6120. [Google Scholar] [CrossRef]
- Reitz, C.; Mayeux, R. Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem. Pharmacol. 2014, 88, 640–651. [Google Scholar] [CrossRef] [Green Version]
- Htike, T.T.; Mishra, S.; Kumar, S.; Padmanabhan, P.; Gulyás, B. Peripheral Biomarkers for Early Detection of Alzheimer’s and Parkinson’s Diseases. Mol. Neurobiol. 2019, 56, 2256–2277. [Google Scholar] [CrossRef]
- Wang, W.F.; Chiu, P.Y.; Lin, Y.-T.; Hu, C.J.; Fuh, J.L.; Yang, Y.H. Registration of Alzheimer’s disease in Taiwan: Patient and informant. Am. J. Alzheimer’s Dis. Other Dement. 2014, 29, 18–22. [Google Scholar] [CrossRef]
- Fuh, J.-L.; Wang, S.-J. Dementia in Taiwan: Past, present, and future. Acta Neurol. Taiwan 2008, 17, 153–161. [Google Scholar]
- Liu, C.K.; Lai, C.L.; Tai, C.T.; Lin, R.T.; Yen, Y.Y.; Howng, S.L. Incidence and subtypes of dementia in southern Taiwan. Impact of socio- demographic factors. Neurology 1998, 50, 1572–1579. [Google Scholar] [CrossRef]
- Dragomir, A.; Vrahatis, A.G.; Bezerianos, A. A network-based perspective in Alzheimer’s disease: Current state and an integrative framework. IEEE J. Biomed. Health Inform. 2019, 23, 14–25. [Google Scholar] [CrossRef]
- Teleanu, D.M.; Negut, I.; Grumezescu, V.; Grumezescu, A.M.; Teleanu, R.I. Nanomaterials for drug delivery to the central nervous system. Nanomaterials 2019, 9, 371. [Google Scholar] [CrossRef] [Green Version]
- Panzarini, E.; Mariano, S.; Tacconi, S.; Carata, E.; Tata, A.M.; Dini, L. Novel therapeutic delivery of nanocurcumin in central nervous system related disorders. Nanomaterials 2021, 11, 2. [Google Scholar] [CrossRef]
- Nortley, R.; Korte, N.; Izquierdo, P.; Hirunpattarasilp, C.; Mishra, A.; Jaunmuktane, Z.; Kyrargyri, V.; Pfeiffer, T.; Khennouf, L.; Madry, C.; et al. Amyloid β oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes. Science 2019, 365, eaav9518. [Google Scholar] [CrossRef]
- Esparza, T.J.; Wildburger, N.C.; Jiang, H.; Gangolli, M.; Cairns, N.J.; Bateman, R.J.; Brody, D.L. Soluble amyloid-beta aggregates from human Alzheimer’s disease brains. Sci. Rep. 2016, 6, 38187. [Google Scholar] [CrossRef]
- Carneiro, P.; Morais, S.; Pereira, M.C. Nanomaterials towards biosensing of Alzheimer’s disease biomarkers. Nanomaterials 2019, 9, 1663. [Google Scholar] [CrossRef] [Green Version]
- Desai, U.; Kirson, N.Y.; Mehta, N.; Wen, J.; Sheng, Y.; Ye, W.; Andrews, J.S. Trends in Health Service Use and Potentially Avoidable Hospitalizations Prior to Alzheimer’s Disease Diagnosis: A Matched, Retrospective Study of U.S. Medicare Beneficiaries. Alzheimer’s Dement. 2019, 11, 125–135. [Google Scholar] [CrossRef]
- Vemuri, P.; Jack, C.R. Role of structural MRI in Alzheimer’s disease. Alzheimer’s Res. Ther. 2010, 2, 23. [Google Scholar] [CrossRef] [Green Version]
- Ossenkoppele, R.; Schonhaut, D.R.; Schöll, M.; Lockhart, S.N.; Ayakta, N.; Baker, S.L.; O’Neil, J.P.; Janabi, M.; Lazaris, A.; Cantwell, A.; et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain 2016, 139, 1551–1567. [Google Scholar] [CrossRef] [Green Version]
- Bilgel, M.; Jedynak, B.M. Predicting time to dementia using a quantitative template of disease progression. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2019, 11, 205–215. [Google Scholar] [CrossRef]
- Wise, E.A.; Rosenberg, P.B.; Lyketsos, C.G.; Leoutsakos, J.M. Time course of neuropsychiatric symptoms and cognitive diagnosis in National Alzheimer's Coordinating Centers volunteers. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2019, 11, 333–339. [Google Scholar] [CrossRef]
- Doane, T.L.; Burda, C. The unique role of nanoparticles in nanomedicine: Imaging, drug delivery and therapy. Chem. Soc. Rev. 2012, 41, 2885–2911. [Google Scholar] [CrossRef]
- Zhang, B.; Tang, X.; Zhang, B.; Xiao, C.; Zhou, H.; Wang, X.; He, D. Carbon nanotube template synthesis of hierarchical NiCoO2 composite for non-enzyme glucose detection Sensors and Actuators B: Chemical Carbon nanotube template synthesis of hierarchical NiCoO2 composite for non-enzyme glucose detection. Sens. Actuators B Chem. 2016, 222, 232–239. [Google Scholar]
- El Mel, A.A.; Boukli-Hacene, F.; Molina-Luna, L.; Bouts, N.; Chauvin, A.; Thiry, D.; Gautron, E.; Gautier, N.; Tessier, P.Y. Unusual dealloying effect in gold/copper alloy thin films: The role of defects and column boundaries in the formation of nanoporous gold. ACS Appl. Mater. Interfaces 2015, 7, 2310–2321. [Google Scholar] [CrossRef]
- Tajabadi, M.T.; Sookhakian, M.; Zalnezhad, E.; Yoon, G.H.; Hamouda, A.M.S.; Azarang, M.; Basirun, W.J.; Alias, Y. Electrodeposition of flower-like platinum on electrophoretically grown nitrogen-doped graphene as a highly sensitive electrochemical non-enzymatic biosensor for hydrogen peroxide detection. Appl. Surf. Sci. 2016, 386, 418–426. [Google Scholar] [CrossRef]
- Deng, Y.; Huang, W.; Chen, X.; Li, Z. Facile fabrication of nanoporous gold film electrodes. Electrochem. Commun. 2008, 10, 810–813. [Google Scholar] [CrossRef]
- Zhong, G.; Lan, R.; Zhang, W.; Fu, F.; Sun, Y.; Peng, H.; Chen, T.; Cai, Y.; Liu, A.; Lin, J.; et al. Sensitive electrochemical immunosensor based on three-dimensional nanostructure gold electrode. Int. J. Nanomed. 2015, 10, 2219–2228. [Google Scholar] [CrossRef] [Green Version]
- Asnavandi, M.; Zhao, C. Autologous growth of nickel oxyhydroxides with: In situ electrochemical iron doping for efficient oxygen evolution reactions. Mater. Chem. Front. 2017, 1, 2541–2546. [Google Scholar] [CrossRef]
- Zhu, G.; He, Z.; Chen, J.; Zhao, J.; Feng, X.; Ma, Y.; Fan, Q.; Wang, L.; Huang, W. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode. Nanoscale 2014, 6, 1079–1085. [Google Scholar] [CrossRef]
- Sheng, Q.; Mei, H.; Wu, H.; Zhang, X.; Wang, S. A non-enzymatic amperometric glucose sensor based on three dimensional nanostructure gold electrode. Sens. Actuators B. Chem. 2015, 212, 7277. [Google Scholar]
- Wang, W.; Huang, Y.F.; Liu, D.Y.; Wang, F.F.; Tian, Z.Q.; Zhan, D. Electrochemically roughened gold microelectrode for surface-enhanced Raman spectroscopy. J. Electroanal. Chem. 2016, 779, 126–130. [Google Scholar] [CrossRef]
- Liu, Y.C.; Hwang, B.J.; Jian, W.J. Effect of preparation conditions for roughening gold substrate by oxidation-reduction cycle on the surface-enhanced Raman spectroscopy of polypyrrole. Mater. Chem. Phys. 2002, 73, 129–134. [Google Scholar] [CrossRef]
- Bailey, M.R.; Pentecost, A.M.; Selimovic, A.; Martin, R.S.; Schultz, Z.D. Sheath-flow microfluidic approach for combined surface enhanced Raman scattering and electrochemical detection. Anal. Chem. 2015, 87, 4347–4355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanovskaya, A.N.; Belle, A.M.; Yorita, A.M.; Qian, F.; Chen, S.; Tooker, A.; Lozada, R.G.; Dahlquist, D.; Tolosa, V. Electrochemical Roughening of Thin-Film Platinum for Neural Probe Arrays and Biosensing Applications. J. Electrochem. Soc. 2018, 165, G3125–G3132. [Google Scholar] [CrossRef]
- Liu, Y.C.; Wang, C.C.; Tsai, C.E. Effects of electrolytes used in roughening gold substrates by oxidation-reduction cycles on surface-enhanced Raman scattering. Electrochem. Commun. 2005, 7, 1345–1350. [Google Scholar] [CrossRef]
- Lim, T.; Kim, J. Effect of electrochemical oxidation-reduction cycles on surface structures and electrocatalytic oxygen reduction activity of Au electrodes. J. Korean Chem. Soc. 2016, 60, 310–316. [Google Scholar] [CrossRef] [Green Version]
- Kai, T.; Chen, S.; Monterroso, E.; Zhou, F. Continuous nanoflow-scanning electrochemical microscopy: Voltammetric characterization and application for accurate and reproducible imaging of enzyme-labeled protein microarrays. Anal. Chem. 2015, 87, 4523–4529. [Google Scholar] [CrossRef]
- Xu, Y.; Ke, X.; Yu, C.; Liu, S.; Zhao, J.; Cui, G.; Higgins, D.; Chen, Z.; Li, Q.; Wu, G. A strategy for fabricating nanoporous gold films through chemical dealloying of electrochemically deposited Au-Sn alloys. Nanotechnology 2014, 25, 445602. [Google Scholar] [CrossRef]
- Purwidyantri, A.; Chen, C.-H.; Chen, L.-Y.; Chen, C.-C.; Luo, J.-D.; Chiou, C.-C.; Tian, Y.-C.; Lin, C.-Y.; Yang, C.-M.; Lai, H.-C.; et al. Speckled ZnO Nanograss Electrochemical Sensor for Staphylococcus epidermidis Detection. J. Electrochem. Soc. 2017, 164, B205–B211. [Google Scholar] [CrossRef]
- Purwidyantri, A.; Lai, H.-C.; Tsai, S.-H.; Luo, J.-D.; Chiou, C.-C.; Tian, Y.-C.; Cheng, C.-H.; Lin, Y.-T.; Lai, C.-S.; Chengh, C.-H.; et al. Sensing performance of fibronectin-functionalized Au-EGFET on the detection of S. epidermidis biofilm and 16S rRNA of infection-related bacteria in peritoneal dialysis. Sens. Actuators B Chem. 2015, 217, 92–99. [Google Scholar] [CrossRef]
- Pandey, R.R.; Alshahrani, H.S.; Krylyuk, S.; Williams, E.H.; Davydov, A.V.; Chusuei, C.C. Electrochemical Detection of Acetaminophen with Silicon Nanowires. Electroanalysis 2018, 30, 886–891. [Google Scholar] [CrossRef]
- Rizk, M.; Sultan, M.A.; Taha, E.A.; Attia, A.K.; Abdallah, Y.M. Sensitive validated voltammetric determination of apixaban using a multi-walled carbon nanotube-modified carbon paste electrode application to a drug product and biological sample. Anal. Methods 2017, 9, 2523–2534. [Google Scholar] [CrossRef]
- Lu, Y.J.; Purwidyantri, A.; Liu, H.L.; Wang, L.W.; Shih, C.Y.; Pijanowska, D.G.; Yang, C.M. Photoelectrochemical Detection of β-amyloid Peptides by a TiO2 Nanobrush Biosensor. IEEE Sens. J. 2020, 20, 6248–6255. [Google Scholar] [CrossRef]
- Tanzi, R.E.; George-Hyslop, P.H.S.; Haines, J.L.; Polinsky, R.J.; Nee, L.; Foncin, J.F.; Neve, R.L.; McClatchey, A.I.; Conneally, P.M.; Gusella, J.F. The genetic defect in familial Alzheimer’s disease is not tightly linked to the amyloid β-protein gene. Nature 1987, 329, 156–157. [Google Scholar] [CrossRef]
- Hamley, I.W. PEG—Peptide Conjugates. Biomacromolecules 2014, 15, 1543–1559. [Google Scholar] [CrossRef] [PubMed]
- Mills, S.C.; Starr, N.E.; Bohannon, N.J.; Andrew, J.S. Chelating Agent Functionalized Substrates for the Formation of Thick Films via Electrophoretic Deposition. Front. Chem. 2021, 9, 703528. [Google Scholar] [CrossRef] [PubMed]
- Jarrell, D.K.; Vanderslice, E.J.; Lennon, M.L.; Lyons, A.C.; VeDepo, M.C.; Jacot, J.G. Increasing salinity of fibrinogen solvent generates stable fibrin hydrogels for cell delivery or tissue engineering. PLoS ONE 2021, 16, e0239242. [Google Scholar] [CrossRef] [PubMed]
- Fallah, M.A.; Hauser, K. Immobilization approaches can affect protein dynamics: A surface-enhanced infrared spectroscopic study on lipid-protein interactions. Biomater. Sci. 2019, 7, 3204–3212. [Google Scholar] [CrossRef] [Green Version]
- Moreira, F.T.C.; Sales, M.G.F. Smart naturally plastic antibody based on poly(α-cyclodextrin) polymer for β-amyloid-42 soluble oligomer detection. Sens. Actuators B Chem. 2017, 240, 229–238. [Google Scholar] [CrossRef]
- Bateman, R.J.; Fagan, A.M.; Holtzman, D.M.; Santacruz, A.; Buckles, V.; Oliver, A.; Moulder, K.; Morris, J.C.; Xiong, C.; Xie, X.; et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med. 2012, 367, 795–804. [Google Scholar] [CrossRef] [Green Version]
- De Lima, F.; Maia, G. Oxidized/reduced graphene nanoribbons facilitate charge transfer to the Fe(CN)63−/Fe(CN)64− redox couple and towards oxygen reduction. Nanoscale 2015, 7, 6193–6207. [Google Scholar] [CrossRef] [Green Version]
- Radhi, M.M.; Alosfur, F.K.M.; Ridha, N.J. Voltammetric Characterization of Grafted Polymer Modified with ZnO Nanoparticles on Glassy Carbon Electrode. Russ. J. Electrochem. 2018, 54, 27–32. [Google Scholar] [CrossRef]
- Mai, T.D.; Ferraro, D.; Aboud, N.; Renault, R.; Serra, M.; Tran, N.T.; Viovy, J.L.; Smadja, C.; Descroix, S.; Taverna, M. Single-step immunoassays and microfluidic droplet operation: Towards a versatile approach for detection of amyloid-β peptide-based biomarkers of Alzheimer’s disease. Sens. Actuators B Chem. 2018, 255, 2126–2135. [Google Scholar] [CrossRef]
- Negahdary, M.; Heli, H. An ultrasensitive electrochemical aptasensor for early diagnosis of Alzheimer’s disease, using a fern leaves-like gold nanostructure. Talanta 2019, 198, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Deng, P.; Que, L. Rapid multiplexed detection of beta-amyloid and total-tau as biomarkers for Alzheimer’s disease in cerebrospinal fluid. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 1845–1852. [Google Scholar] [CrossRef]
- Carneiro, P.; Loureiro, J.; Delerue-Matos, C.; Morais, S.; do Carmo Pereira, M. Alzheimer’s disease: Development of a sensitive label-free electrochemical immunosensor for detection of amyloid beta peptide. Sens. Actuators B Chem. 2017, 239, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Xia, N.; Wang, X.; Yu, J.; Wu, Y.; Cheng, S.; Xing, Y.; Liu, L. Design of electrochemical biosensors with peptide probes as the receptors of targets and the inducers of gold nanoparticles assembly on electrode surface. Sens. Actuators B Chem. 2017, 239, 834–840. [Google Scholar] [CrossRef]
- Xing, Y.; Feng, X.Z.; Zhang, L.; Hou, J.; Han, G.C.; Chen, Z. a sensitive and selective electrochemical biosensor for the determination of beta-amyloid oligomer by inhibiting the peptide-triggered in situ assembly of silver nanoparticles. Int. J. Nanomed. 2017, 12, 3171–3179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diba, F.S.; Kim, S.; Lee, H.J. Electrochemical immunoassay for amyloid-β 1–42 peptide in biological fluids interfacing with a gold nanoparticle modified carbon surface. Catal. Today 2017, 295, 41–47. [Google Scholar] [CrossRef]
- Qin, J.; Park, J.S.; Jo, D.G.; Cho, M.; Lee, Y. Curcumin-based electrochemical sensor of amyloid-β oligomer for the early detection of Alzheimer’s disease. Sens. Actuators B Chem. 2018, 273, 1593–1599. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, C.; Li, X.; Zhu, X.; Ye, B.; Xu, M. A sensitive aptasensor for the detection of β-amyloid oligomers based on metal-organic frameworks as electrochemical signal probes. Anal. Methods 2018, 10, 4430–4437. [Google Scholar] [CrossRef]
- Jia, Y.; Yang, L.; Feng, R.; Ma, H.; Fan, D.; Yan, T.; Feng, R.; Du, B.; Wei, Q. MnCO3 as a new electrochemiluminescence emitter for ultrasensitive bioanalysis of β-Amyloid1–42 oligomers based on site-directed immobilization of antibody. ACS Appl. Mater. Interfaces 2019, 11, 7157–7163. [Google Scholar] [CrossRef]
- Hideshima, S.; Wustoni, S.; Kobayashi, M.; Hayashi, H.; Kuroiwa, S.; Nakanishi, T.; Osaka, T. Effect of human serum on the electrical detection of amyloid-β fibrils in biological environments using azo-dye immobilized field effect transistor (FET) biosensor. Sens. Bio-Sens. Res. 2018, 17, 25–29. [Google Scholar] [CrossRef]
Detection Route | Final Structure | Nanopatterning Approach | Detection Range | LoD | Ref |
---|---|---|---|---|---|
Fluorescent signals | Microfluidic + Magnetic beads | PDMS and magnetic beads | 0.5–1 nM | N/A | [51] |
Electrochemical sensor | Fern leaves-like gold nanostructure | Electrochemical | 0.002–1.28 ng/mL | 0.4 pg/mL | [52] |
Optical Sensor | Microfluidic | E-beam evaporation and lithography | 3.9 pg–500 pg/mL | N/A | [53] |
Square Wave Voltammetry (SWV) | AuNPs/MPA/Au/Synthesis and Electro deposition | Chemical synthesis and electro deposition | 10–1000 pg mL−1 | 5.2 pg mL−1 | [54] |
Electrochemical Impedance Spectroscopy (EIS) | Gold/AuNPs | Chemical synthesis | 0.1 nM–5 uM | 45 pM | [55] |
Linear Sweep Voltammetry (LSV) | Gold/AuNPs | Chemical synthesis | 0.01–200 nM | 6 pM | [56] |
EIS, SWV | PANI/Au | Screen printing | 0.25–0.2 ng/mL | 4.4 × 10−11 M | [47] |
Dual Pulsed Voltammetry (DPV), CV | Carbon/AuNPs | Chemical synthesis | 100 fM–25 pM | N/A | [57] |
EIS, CV | Poly(curcumin-Ni) | Electrochemical | 0.001–5 nM | 0.001 nM | [58] |
DPV, CV | Glassy carbon/AuNPs + Cu-MOF | Chemical synthesis and electro deposition | 0.001–5 nM | 0.45 nmol L−1 | [59] |
Electro-chemiluminescence | Glassy carbon/AuNPs | Chemical synthesis and deposition | 0.1 pg/mL–10 ng/mL | 19.95 fg/mL | [60] |
Field Effect Transistor (FET) | SiO2 FET substrate | n/a | 100 pM–10 μM. | N/A | [61] |
CV system | Au roughened substrate | Electrochemical ORC | 10−2–106 pg/mL | 10.4 fg/mL | This Work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, C.-H.; Gupta, A.K.; Purwidyantri, A.; Prabowo, B.A.; Chen, C.-H.; Chuang, C.-C.; Tian, Y.-C.; Lu, Y.-J.; Lai, C.-S. Sensing Alzheimer’s Disease Utilizing Au Electrode by Controlling Nanorestructuring. Chemosensors 2022, 10, 94. https://doi.org/10.3390/chemosensors10030094
Hsu C-H, Gupta AK, Purwidyantri A, Prabowo BA, Chen C-H, Chuang C-C, Tian Y-C, Lu Y-J, Lai C-S. Sensing Alzheimer’s Disease Utilizing Au Electrode by Controlling Nanorestructuring. Chemosensors. 2022; 10(3):94. https://doi.org/10.3390/chemosensors10030094
Chicago/Turabian StyleHsu, Chih-Hsien, Akhilesh Kumar Gupta, Agnes Purwidyantri, Briliant Adhi Prabowo, Ching-Hsiang Chen, Chi-Cheng Chuang, Ya-Chung Tian, Yu-Jen Lu, and Chao-Sung Lai. 2022. "Sensing Alzheimer’s Disease Utilizing Au Electrode by Controlling Nanorestructuring" Chemosensors 10, no. 3: 94. https://doi.org/10.3390/chemosensors10030094
APA StyleHsu, C.-H., Gupta, A. K., Purwidyantri, A., Prabowo, B. A., Chen, C.-H., Chuang, C.-C., Tian, Y.-C., Lu, Y.-J., & Lai, C.-S. (2022). Sensing Alzheimer’s Disease Utilizing Au Electrode by Controlling Nanorestructuring. Chemosensors, 10(3), 94. https://doi.org/10.3390/chemosensors10030094