Label-Free ZnIn2S4/UiO-66-NH2 Modified Glassy Carbon Electrode for Electrochemically Assessing Fish Freshness by Monitoring Xanthine and Hypoxanthine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of ZnIn2S4/UiO-66-NH2 Composites
2.3. Fabrication of the Modified Electrode
2.4. Characterization and Analytical Measurements
2.5. Pretreatment of Real Fish Sample
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Chen, Z.T.; Lin, Y.; Ma, X.M.; Guo, L.H.; Qiu, B.; Chen, G.N.; Lin, Z.Y. Multicolor biosensor for fish freshness assessment with the naked eye. Sens. Actuators B Chem. 2017, 252, 201–208. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, M.; Chen, H.; Bhandari, B. Freshness monitoring technology of fish products in intelligent packaging. Crit. Rev. Food Sci. Nutr. 2020, 61, 1279–1292. [Google Scholar] [CrossRef] [PubMed]
- Kassemsarn, B.O.; Perez, B.S.; Murray, J.; Jones, N. Nucleotide degradation in the muscle of iced haddock (Gadus aeglefinus), lemon sole (Pleuronectes microcephalus), and plaice (Pleuronectes platessa). J. Food Sci. 1963, 28, 28–37. [Google Scholar] [CrossRef]
- Karube, I.; Matsuoka, H.; Suzuki, S.; Watanabe, E.; Toyama, K. Determination of fish freshness with an enzyme sensor system. J. Agric. Food Chem. 1984, 32, 314–319. [Google Scholar] [CrossRef]
- Lawal, A.T.; Adeloju, S.B. Mediated xanthine oxidase potentiometric biosensors for hypoxanthine based on ferrocene carboxylic acid modified electrode. Food Chem. 2012, 135, 2982–2987. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, F.; Othman, A.; Andreescu, S. Cerium oxide-based hypoxanthine biosensor for Fish spoilage monitoring. Sens. Actuators B Chem. 2021, 332, 129435. [Google Scholar] [CrossRef]
- Masuoka, N. Stilbene compounds are specific inhibitors of the superoxide anion generation catalyzed by xanthine oxidase. Food Chem. 2021, 12, 100146. [Google Scholar] [CrossRef]
- Kuś, P.M.; Rola, R. LC-QqQ-MS/MS methodology for determination of purine and pyrimidine derivatives in unifloral honeys and application of chemometrics for their classification. Food Chem. 2021, 348, 129076. [Google Scholar] [CrossRef]
- Pu, W.D.; Zhao, H.W.; Wu, L.P.; Zhao, X.Y. A colorimetric method for the determination of xanthine based on the aggregation of gold nanoparticles. Microchim. Acta 2015, 182, 395–400. [Google Scholar] [CrossRef]
- Shan, D.; Wang, Y.N.; Zhu, M.J.; Xue, H.G.; Cosnier, S.; Wang, C.Y. Development of a high analytical performance-xanthine biosensor based on layered double hydroxides modified-electrode and investigation of the inhibitory effect by allopurinol. Biosens. Bioelectron. 2009, 24, 1171–1176. [Google Scholar] [CrossRef]
- Lu, Z.W.; Zhong, J.; Zhang, Y.; Sun, M.M.; Zou, P.; Du, H.J.; Wang, X.X.; Rao, H.B.; Wang, Y.Y. MOF-derived Co3O4/FeCo2O4 incorporated porous biomass carbon: Simultaneous electrochemical determination of dopamine, acetaminophen and xanthine. J. Alloys Compd. 2021, 858, 157701. [Google Scholar] [CrossRef]
- Pierini, G.D.; Robledo, S.N.; Zon, M.A.; Di Nezio, M.S.; Granero, A.M.; Fernández, H. Development of an electroanalytical method to control quality in fish samples based on an edge plane pyrolytic graphite electrode. Simultaneous determination of hypoxanthine, xanthine and uric acid. Microchem. J. 2018, 138, 58–64. [Google Scholar] [CrossRef]
- Juárez-Gómez, J.; Ramírez-Silva, M.T.; Guzmán-Hernández, D.S.; Romero-Romo, M.; Palomar-Pardavé, M. Novel electrochemical method to evaluate the antioxidant capacity of infusions and beverages, based on in situ formation of free superoxide radicals. Food Chem. 2020, 332, 127409. [Google Scholar] [CrossRef] [PubMed]
- Hoyos-Arbeláez, J.; Vázquez, M.; Contreras-Calderón, J. Electrochemical methods as a tool for determining the antioxidant capacity of food and beverages: A review. Food Chem. 2017, 221, 1371–1381. [Google Scholar] [CrossRef]
- Hu, S.; Yu, Y.; Guan, Y.; Li, Y.; Wang, B.; Zhu, M. Two-dimensional TiO2 (001) nanosheets as an effective photo-assisted recyclable sensor for the electrochemical detection of bisphenol A. Chin. Chem. Lett. 2020, 31, 2839–2842. [Google Scholar] [CrossRef]
- Xi, J.J.; Wang, H.; Zhang, B.H.; Zhao, F.Q.; Zeng, B.Z. Novel molecularly imprinted photoelectrochemical sensor for rutin based on Bi2S3/ZnIn2S4 heterojunction. Sens. Actuators B Chem. 2020, 320, 128409. [Google Scholar] [CrossRef]
- Ma, H.; Liu, Y.; Xiong, R.; Wei, J. Hetero-structured ZnIn2S4-NiO@MOF photo-catalysts for efficient hydrogen evolution. Chin. Chem. Lett. 2022, 33, 1042–1046. [Google Scholar] [CrossRef]
- Pourtaheri, E.; Taher, M.A.; Ali, G.A.; Agarwal, S.; Gupta, V.K. Electrochemical detection of gliclazide and glibenclamide on ZnIn2S4 nanoparticles-modified carbon ionic liquid electrode. J. Mol. Liq. 2019, 289, 111141. [Google Scholar] [CrossRef]
- Liu, S.Y.; Lai, C.; Liu, X.G.; Li, B.S.; Zhang, C.; Qin, L.; Huang, D.L.; Yi, H.; Zhang, M.M.; Li, L. Metal-organic frameworks and their derivatives as signal amplification elements for electrochemical sensing. Coordin. Chem. Rev. 2020, 424, 213520. [Google Scholar] [CrossRef]
- Cruz-Navarro, J.A.; Hernandez-Garcia, F.; Romero, G.A.A. Novel applications of metal-organic frameworks (MOFs) as redox-active materials for elaboration of carbon-based electrodes with electroanalytical uses. Coordin. Chem. Rev. 2020, 412, 213263. [Google Scholar] [CrossRef]
- Li, C.L.; Hao, J.X.; Wu, K.B. Triethylamine-controlled Cu-BTC frameworks for electrochemical sensing fish freshness. Anal. Chim. Acta 2019, 1085, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, S.B.; Xin, J.J.; Ma, H.Y.; Pang, H.J.; Tan, L.C.; Wang, X.M. A non-enzymatic voltammetric xanthine sensor based on the use of platinum nanoparticles loaded with a metal-organic framework of type MIL-101 (Cr). Application to simultaneous detection of dopamine, uric acid, xanthine and hypoxanthine. Microchim. Acta 2019, 186, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, Y.; Qin, P.; Han, L.; Zhu, W.; Duan, S.; Lu, M.; Cai, Z. Facile preparation of nano-g-C3N4/UiO-66-NH2 composite as sorbent for high-efficient extraction and preconcentration of food colorants prior to HPLC analysis. Chin. Chem. Lett. 2022, 33, 903–906. [Google Scholar] [CrossRef]
- He, B.; Dong, X. Hierarchically porous Zr-MOFs labelled methylene blue as signal tags for electrochemical patulin aptasensor based on ZnO nano flower. Sens. Actuators B Chem. 2019, 294, 192–198. [Google Scholar] [CrossRef]
- Yang, J.; He, X.Q.; Dai, J.; Tian, R.; Yuan, D.S. Photo-assisted enhancement performance for rapid detoxification of chemical warfare agent simulants over versatile ZnIn2S4/UiO-66-NH2 nanocomposite catalysts. J. Hazard. Mater. 2021, 417, 126056. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.L.; Wang, H.; Zhang, B.H.; Zhao, F.Q.; Zeng, B.Z. Tremella-like ZnIn2S4/graphene composite based photoelectrochemical sensor for sensitive detection of dopamine. Talanta 2018, 186, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.W.; Yuan, C.; Zhai, C.Y. Label-free photoelectrochemical sensor based on 2D/2D ZnIn2S4/g-C3N4 heterojunction for the efficient and sensitive detection of bisphenol A. Chin. Chem. Lett. 2021, 33, 983–986. [Google Scholar] [CrossRef]
- Liu, B.B.; Liu, X.J.; Liu, J.Y.; Feng, C.J.; Li, Z.; Li, C.; Gong, Y.Y.; Pan, L.K.; Xu, S.Q.; Sun, C.Q. Efficient charge separation between UiO-66 and ZnIn2S4 flowerlike 3D microspheres for photoelectronchemical properties. Appl. Catal. B Environ. 2018, 226, 234–241. [Google Scholar] [CrossRef]
- Ibrahim, H.; Temerk, Y. A novel electrochemical sensor based on B doped CeO2 nanocubes modified glassy carbon microspheres paste electrode for individual and simultaneous determination of xanthine and hypoxanthine. Sens. Actuators B Chem. 2016, 232, 125–137. [Google Scholar] [CrossRef]
- Zhou, Y.Z.; Yang, L.H.; Li, S.H.; Dang, Y. A novel electrochemical sensor for highly sensitive detection of bisphenol A based on the hydrothermal synthesized Na-doped WO3 nanorods. Sens. Actuators B Chem. 2017, 245, 238–246. [Google Scholar] [CrossRef]
- Hoan, N.; Minh, N.; Trang, N.; Thuy, L.; Hoang, C.; Mau, T.; Vu, H.X.; Thu, P.; Phong, N.; Khieu, D. Simultaneous voltammetric determination of uric acid, xanthine, and hypoxanthine using CoFe2O4/reduced graphene oxide-modified electrode. J. Nanomater. 2020, 2020, 9797509. [Google Scholar] [CrossRef]
- Vishnu, N.; Gandhi, M.; Rajagopal, D.; Kumar, A.S. Pencil graphite as an elegant electrochemical sensor for separation-free and simultaneous sensing of hypoxanthine, xanthine and uric acid in fish samples. Anal. Methods 2017, 9, 2265–2274. [Google Scholar] [CrossRef]
- Lan, D.X.; Zhang, L. Electrochemical synthesis of a novel purine-based polymer and its use for the simultaneous determination of dopamine, uric acid, xanthine and hypoxanthine. J. Electroanal. Chem. 2015, 757, 107–115. [Google Scholar] [CrossRef]
- Ghanbari, K.; Nejabati, F. Ternary nanocomposite-based reduced graphene oxide/chitosan/Cr2O3 for the simultaneous determination of dopamine, uric acid, xanthine, and hypoxanthine in fish meat. Anal. Methods 2020, 12, 1650–1661. [Google Scholar] [CrossRef]
- Durai, L.; Badhulika, S. Facile synthesis of large area pebble-like β-NaFeO2 perovskite for simultaneous sensing of dopamine, uric acid, xanthine and hypoxanthine in human blood. Mat. Sci. Eng. C 2020, 109, 110631. [Google Scholar] [CrossRef]
Real Samples | Analyte | Added (μM) | Found (μM) | RSD (%) | Recovery (%) |
---|---|---|---|---|---|
Fish meat | XA | 0.00 2.00 4.00 6.00 | 1.22 3.20 5.01 6.37 | 2.86 2.03 1.35 1.21 | / 99.42 96.87 102.41 |
HXA | 0.00 5.00 10.00 15.00 | 6.60 11.58 16.21 21.76 | 2.76 2.30 1.92 1.53 | / 99.76 97.69 100.72 |
Time (Day) | HXA (μM) | Relative Error (%) | |
---|---|---|---|
ZIS-UiO-5%-GCE | HPLC | ||
1 | 15.10 | 15.23 | −0.90 |
2 | 29.25 | 28.93 | 1.19 |
3 | 31.30 | 33.45 | −6.46 |
4 | 44.65 | 43.12 | 3.55 |
5 | 71.95 | 68.23 | 5.48 |
6 | 81.00 | 86.21 | 6.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, D.; Chen, Q.; Zhai, C.; Tao, H.; Zhang, L.; Jia, T.; Lu, Z.; Sun, W.; Yuan, P.; Zhu, B. Label-Free ZnIn2S4/UiO-66-NH2 Modified Glassy Carbon Electrode for Electrochemically Assessing Fish Freshness by Monitoring Xanthine and Hypoxanthine. Chemosensors 2022, 10, 158. https://doi.org/10.3390/chemosensors10050158
Song D, Chen Q, Zhai C, Tao H, Zhang L, Jia T, Lu Z, Sun W, Yuan P, Zhu B. Label-Free ZnIn2S4/UiO-66-NH2 Modified Glassy Carbon Electrode for Electrochemically Assessing Fish Freshness by Monitoring Xanthine and Hypoxanthine. Chemosensors. 2022; 10(5):158. https://doi.org/10.3390/chemosensors10050158
Chicago/Turabian StyleSong, Debin, Qiaowei Chen, Chunyang Zhai, Hengcong Tao, Lina Zhang, Tianbo Jia, Zhiwang Lu, Wuyang Sun, Pengxiang Yuan, and Baikang Zhu. 2022. "Label-Free ZnIn2S4/UiO-66-NH2 Modified Glassy Carbon Electrode for Electrochemically Assessing Fish Freshness by Monitoring Xanthine and Hypoxanthine" Chemosensors 10, no. 5: 158. https://doi.org/10.3390/chemosensors10050158
APA StyleSong, D., Chen, Q., Zhai, C., Tao, H., Zhang, L., Jia, T., Lu, Z., Sun, W., Yuan, P., & Zhu, B. (2022). Label-Free ZnIn2S4/UiO-66-NH2 Modified Glassy Carbon Electrode for Electrochemically Assessing Fish Freshness by Monitoring Xanthine and Hypoxanthine. Chemosensors, 10(5), 158. https://doi.org/10.3390/chemosensors10050158