Recent Trends in the Development of Carbon-Based Electrodes Modified with Molecularly Imprinted Polymers for Antibiotic Electroanalysis
Abstract
:1. Introduction
2. Molecularly Imprinted Polymers
3. MIP-Based Electrochemical Sensors
3.1. Types of Carbon-Based Electrodes Used as Transducers
3.2. Modification of the Original Carbon-Based Electrode
3.3. Polymerization Procedures
3.4. Polymerization Reagents
3.5. Template Removal
4. Voltammetric Techniques and Sensor Performances
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2-DOS | 2-deoxystreptamine |
2,2′-Bth | 2,2′-bithiophene |
3D CNTs | 3D carbon nanotubes |
3-Me-Th | 3-methyl-thiophene |
3-TBA | 3-thienyl boronic acid |
4,4′-Br-3,3′-Bth | 4,4′-dibromo-3,3′-bithiophene |
4-ABA | 4-aminobenzoic acid |
4BA6FPh | tetrabutylammonium hexafluoro-phosphate |
AAM | acrylamide |
AgDs | silver dendrites |
AGs | aminoglycosides |
AIBN | 2,2-azo-bis-isobutyronitrile |
AMOX | amoxicillin |
AMPS | 2-acrylamido-2-methyl-1propanesulfonic acid |
AMR | antimicrobial resistance |
AP | acetaminophen |
APS | ammonium persulfate |
APT/Fc/β-CD-SH | aptamer/ferrocene/β-cyclodextrin |
ASDPV | anodic stripping differential pulse voltammetry |
AWaRe | Access, Watch and Reserve |
AZY | azithromycin |
BCE | bare carbon electrode |
BPPGE | basal plane pyrolytic graphite electrode |
BRB | Britton Robinson buffer |
CA | chronoamperometry |
CAP | chloramphenicol |
CAVImBr | 1-carboxymethyl-3-vinylimidazolium bromide |
CE | carbon electrode |
CFE | cefixime |
CFLX | cefalexin |
CFX | ceftizoxime |
CFZ | ceftazidime |
Ch | chitosan |
CIP | ciproflaxin |
CKM-3/P-r-GO | mesoporous carbon/three-dimensional porous graphene |
CLO | cloxacillin |
cMWCNTs | carboxyl functionalized MWCNTs |
CNTs | carbon nanotubes |
COF | covalent organic framework |
CPE | carbon paste electrode |
CTC | chlortetracycline |
CV | cyclic voltammetry |
DAP | daptomycin |
DMF | Dimethylformamide |
DMZ | dimetridazole |
DPV | differential pulse voltammetry |
ECL | electrochemiluminescence |
EDOT | 3,4-ethylenedioxythiophene |
EIS | electrochemical impedance spectroscopy |
EGDMA | ethyleneglycol dimethacrylate |
ELISA | enzyme-linked immunosorbent assay |
Fe3O4@SiO2-MPS | 3-methylpropyltrimethoxysilane functionalized Fe3O4@SiO2 nanoparticles |
fMWCNTs | functionalized MWCNTs |
FZD | furazolidone |
GCE | glassy carbon electrode |
GNU | gold nanourchins |
GO | graphene oxide |
GQDs | graphene quantum dots |
ILs | ionic liquids |
INZ | ioniazid |
KANA | kanamycin |
KPS | potassium persulfate |
LOD | limit of detection |
LOQ | limit of quantification |
LSV | linear sweep voltammetry |
MAA | methacrylic acid |
Mag/MIP | magnetic nanoparticles coated with MIP |
MBAA | N,N′-methylenebisacrylamide |
MIOPPy | molecularly imprinted overoxidized polypyrrole |
MIPDA | molecularly imprinted polydopamine |
MIPs | molecularly imprinted polymers |
MMZ | methimazole |
MNZ | metronidazole |
MOF/MC | metal-organic framework/mesoporous carbon |
MRLs | maximum residue limits |
MTX | mitoxantrone |
MWCNTs | multiwalled carbon nanotubes |
N-CNTs | nitrogen-doped CNTs |
NFX | norfloxacin |
NPs | nanoparticles |
NWs | nanowires |
OPPy | overoxidized polpyrrole |
OTC | over the counter |
OXC | oxacillin |
oxMWCNTs/UPPyMIP | oxidized MWCNTs/ultrathin molecularly imprinted PPy |
P-Arg | poly-arginine |
PBS | phosphate buffer solution |
PEDOT | poly(3,4-ethylenedioxythiophene) |
PGE | pencil graphite electrode |
Ph-3-TBA | benzothiophene-3-boronic acid |
PMMA | poly(methacrylic acid) |
PPy | polypyrrole |
QDs | quantum dots |
RIF | rifampicin |
SDZ | sulfadiazine |
SM2 | sulfadimidine |
SMIP | surface molecularly imprinted polymer |
SMX | sulfamethoxazole |
SPCE | screen-printed carbon electrode |
SWCNTs | single-walled carbon nanotubes |
SWV | square wave voltammetry |
TBAP | tetra-n-butylammonium perchlorate |
TC | tetracycline |
THF | tetrahydrofuran |
TS | tylosin |
UV-Vis | ultraviolet-visible |
VAN | vancomycin |
References
- Etebu, E.; Arikekpar, I. Antibiotics: Classification and Mechanisms of Action with Emphasis on Molecular Perspectives. Int. J. Appl. Microbiol. Biotechnol. Res. 2016, 4, 90–101. [Google Scholar]
- Foti, C.; Piperno, A.; Scala, A. Oxazolidinone Antibiotics: Chemical, Biological and Analytical Aspects. Molecules 2021, 26, 4280. [Google Scholar] [CrossRef]
- Abera, B.D.; Ortiz-gómez, I.; Shkodra, B.; Romero, F.J.; Cantarella, G.; Petti, L.; Salinas-castillo, A.; Lugli, P.; Rivadeneyra, A. Laser-induced Graphene Electrodes Modified with a Molecularly Imprinted Polymer for Detection of Tetracycline in Milk and Meat. Sensors 2022, 22, 269. [Google Scholar] [CrossRef]
- Long, F.; Zhang, Z.; Yang, Z.; Zeng, J.; Jiang, Y. Imprinted Electrochemical Sensor Based on Magnetic Multi-Walled Carbon Nanotube for Sensitive Determination of Kanamycin. J. Electroanal. Chem. 2015, 755, 7–14. [Google Scholar] [CrossRef]
- Haghdoust, S.; Arshad, U.; Mujahid, A.; Schranzhofer, L.; Lieberzeit, P.A. Development of a MIP-Based QCM Sensor for Selective Detection of Penicillins in Aqueous Media. Chemosensors 2021, 9, 362. [Google Scholar] [CrossRef]
- López, R.; Khan, S.; Wong, A.; del Pilar Taboada Sotomayor, M.; Picasso, G. Development of a New Electrochemical Sensor Based on Mag-MIP Selective Toward Amoxicillin in Different Samples. Front. Chem. 2021, 9, 615602. [Google Scholar] [CrossRef] [PubMed]
- Rawool, C.R.; Srivastava, A.K. A Dual Template Imprinted Polymer Modified Electrochemical Sensor Based on Cu Metal Organic Framework/Mesoporous Carbon for Highly Sensitive and Selective Recognition of Rifampicin and Isoniazid. Sens. Actuators B Chem. 2019, 288, 493–506. [Google Scholar] [CrossRef]
- Jafari, S.; Dehghani, M.; Nasirizadeh, N.; Azimzadeh, M. An Azithromycin Electrochemical Sensor Based on an Aniline MIP Film Electropolymerized on a Gold Nano Urchins/Graphene Oxide Modified Glassy Carbon Electrode. J. Electroanal. Chem. 2018, 829, 27–34. [Google Scholar] [CrossRef]
- CDC Antibiotic Resistance & Patient Safety Portal. Available online: https://arpsp.cdc.gov/ (accessed on 15 May 2022).
- Calhoun, C.; Wermuth, H.R.; Hall, G.A. Antibiotics; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Ayankojo, A.G.; Reut, J.; Ciocan, V.; Öpik, A.; Syritski, V. Molecularly Imprinted Polymer-Based Sensor for Electrochemical Detection of Erythromycin. Talanta 2020, 209, 120502. [Google Scholar] [CrossRef]
- Torkashvand, M.; Gholivand, M.B.; Malekzadeh, G. Construction of a New Electrochemical Sensor Based on Molecular Imprinting Recognition Sites on Multiwall Carbon Nanotube Surface for Analysis of Ceftazidime in Real Samples. Sens. Actuators B Chem. 2016, 231, 759–767. [Google Scholar] [CrossRef]
- Schneider, F.; Gessner, A.; El-Najjar, N. Efficacy of Vancomycin and Meropenem in Central Nervous System Infections in Children and Adults: Current Update. Antibiotics 2022, 11, 173. [Google Scholar] [CrossRef]
- Da Silva, W.; Queiroz, A.C.; Brett, C.M.A. Poly(Methylene Green)–Ethaline Deep Eutectic Solvent/Fe2O3 Nanoparticle Modified Electrode Electrochemical Sensor for the Antibiotic Dapsone. Sens. Actuators B Chem. 2020, 325, 128747. [Google Scholar] [CrossRef]
- Ding, R.; Chen, Y.; Wang, Q.; Wu, Z.; Zhang, X.; Li, B.; Lin, L. Recent Advances in Quantum Dots-Based Biosensors for Antibiotic Detection. J. Pharm. Anal. 2021. [Google Scholar] [CrossRef]
- Surya, S.G.; Khatoon, S.; Lahcen, A.A.; Nguyen, A.T.H.; Dzantiev, B.B.; Tarannum, N.; Salama, K.N. A Chitosan Gold Nanoparticles Molecularly Imprinted Polymer Based Ciprofloxacin Sensor. RSC Adv. 2020, 10, 12823–12832. [Google Scholar] [CrossRef]
- Stoian, I.A.; Iacob, B.C.; Dudaș, C.L.; Barbu-Tudoran, L.; Bogdan, D.; Marian, I.O.; Bodoki, E.; Oprean, R. Biomimetic Electrochemical Sensor for the Highly Selective Detection of Azithromycin in Biological Samples. Biosens. Bioelectron. 2020, 155, 112098. [Google Scholar] [CrossRef]
- Rebelo, P.; Pacheco, J.G.; Voroshylova, I.V.; Melo, A.; Cordeiro, M.N.D.S.; Delerue-Matos, C. Rational Development of Molecular Imprinted Carbon Paste Electrode for Furazolidone Detection: Theoretical and Experimental Approach. Sens. Actuators B Chem. 2021, 329, 129112. [Google Scholar] [CrossRef]
- Bellucci, M.C.; Volonterio, A. Aminoglycosides: From Antibiotics to Building Blocks for the Synthesis and Development of Gene Delivery Vehicles. Antibiotics 2020, 9, 504. [Google Scholar] [CrossRef]
- Cai, D.; Zhu, J.; Li, Y.; Li, L.; Zhang, M.; Wang, Z.; Yang, H.; Li, J.; Yang, Z.; Chen, S. Systematic Engineering of Branch Chain Amino Acid Supply Modules for the Enhanced Production of Bacitracin from Bacillus Licheniformis. Metab. Eng. Commun. 2020, 11, e00136. [Google Scholar] [CrossRef]
- Măciucă, A.M.; Munteanu, A.C.; Uivarosi, V. Quinolone Complexes with Lanthanide Ions: An Insight into Their Analytical Applications and Biological Activity. Molecules 2020, 25, 1347. [Google Scholar] [CrossRef] [Green Version]
- Turco, A.; Corvaglia, S.; Pompa, P.P.; Malitesta, C. An Innovative and Simple All Electrochemical Approach to Functionalize Electrodes with a Carbon Nanotubes/Polypyrrole Molecularly Imprinted Nanocomposite and Its Application for Sulfamethoxazole Analysis. J. Colloid Interface Sci. 2021, 599, 676–685. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, F.; Zeng, B. Fabrication of Surface Molecularly Imprinted Electrochemical Sensor for the Sensitive Quantification of Chlortetracycline with Ionic Liquid and MWCNT Improving Performance. Talanta 2022, 239, 123130. [Google Scholar] [CrossRef] [PubMed]
- Rebelo, P.; Pacheco, J.G.; Cordeiro, M.N.D.S.; Melo, A.; Delerue-Matos, C. Azithromycin Electrochemical Detection Using a Molecularly Imprinted Polymer Prepared on a Disposable Screen-Printed Electrode. Anal. Methods 2020, 12, 1486–1494. [Google Scholar] [CrossRef]
- Sta Ana, K.M.; Madriaga, J.; Espino, M.P. β-Lactam Antibiotics and Antibiotic Resistance in Asian Lakes and Rivers: An Overview of Contamination, Sources and Detection Methods. Environ. Pollut. 2021, 275, 116624. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, A.R.; Tavares, A.P.M.; Sales, M.G.F. In-Situ Generated Molecularly Imprinted Material for Chloramphenicol Electrochemical Sensing in Waters down to the Nanomolar Level. Sens. Actuators B Chem. 2018, 256, 420–428. [Google Scholar] [CrossRef]
- Hu, L.; Zhou, T.; Feng, J.; Jin, H.; Tao, Y.; Luo, D.; Mei, S.; Lee, Y.I. A Rapid and Sensitive Molecularly Imprinted Electrochemiluminescence Sensor for Azithromycin Determination in Biological Samples. J. Electroanal. Chem. 2018, 813, 1–8. [Google Scholar] [CrossRef]
- Sachi, S.; Ferdous, J.; Sikder, M.H.; Azizul Karim Hussani, S.M. Antibiotic Residues in Milk: Past, Present, and Future. J. Adv. Vet. Anim. Res. 2019, 6, 315–332. [Google Scholar] [CrossRef]
- Dillard, L.K.; Wu, C.Z.; Saunders, J.E.; McMahon, C.M. A Scoping Review of Global Aminoglycoside Antibiotic Overuse: A Potential Opportunity for Primary Ototoxicity Prevention. Res. Soc. Adm. Pharm. 2021, 18, 3220–3229. [Google Scholar] [CrossRef]
- Tarannum, N.; Hendrickson, O.D.; Khatoon, S.; Zherdev, A.V.; Dzantiev, B.B. Molecularly Imprinted Polymers as Receptors for Assays of Antibiotics. Crit. Rev. Anal. Chem. 2020, 50, 291–310. [Google Scholar] [CrossRef]
- Devkota, L.; Nguyen, L.T.; Vu, T.T.; Piro, B. Electrochemical Determination of Tetracycline Using AuNP-Coated Molecularly Imprinted Overoxidized Polypyrrole Sensing Interface. Electrochim. Acta 2018, 270, 535–542. [Google Scholar] [CrossRef]
- Zeb, S.; Wong, A.; Khan, S.; Hussain, S.; Sotomayor, M.D.P.T. Using Magnetic Nanoparticles/MIP-Based Electrochemical Sensor for Quantification of Tetracycline in Milk Samples. J. Electroanal. Chem. 2021, 900, 115713. [Google Scholar] [CrossRef]
- World Health Organisation. New Report Calls for Urgent Action to Avert Antimicrobial Resistance Crisis. Available online: https://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis#:$~$:text= (accessed on 15 May 2022).
- Li, B.; Webster, T.J. Bacteria Antibiotic Resistance: New Challenges and Opportunities for Implant-Associated Orthopedic Infections. J. Orthop. Res. 2018, 36, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef] [Green Version]
- 2021 AWaRe Classification. Available online: https://www.who.int/publications/i/item/2021-aware-classification (accessed on 27 May 2022).
- De Faria, L.V.; Lisboa, T.P.; da Silva Campos, N.; Alves, G.F.; Matos, M.A.C.; Matos, R.C.; Munoz, R.A.A. Electrochemical Methods for the Determination of Antibiotic Residues in Milk: A Critical Review. Anal. Chim. Acta 2021, 1173, 338569. [Google Scholar] [CrossRef]
- Rohani Moghadam, M.; Salehi, L.; Jafari, S.; Nasirizadeh, N.; Ghasemi, J. Voltammetric Sensing of Oxacillin by Using a Screen-Printed Electrode Modified with Molecularly Imprinted Polyaniline, Gold Nanourchins and Graphene Oxide. Microchim. Acta 2019, 186, 798. [Google Scholar] [CrossRef]
- Zhang, L.; He, L.; Wang, Q.; Tang, Q.; Liu, F. Theoretical and Experimental Studies of a Novel Electrochemical Sensor Based on Molecularly Imprinted Polymer and GQDs-PtNPs Nanocomposite. Microchem. J. 2020, 158, 105196. [Google Scholar] [CrossRef]
- David, I.G.; Buleandra, M.; Popa, D.E.; Cheregi, M.C.; Iorgulescu, E.E. Past and Present of Electrochemical Sensors and Methods for Amphenicol Antibiotic Analysis. Micromachines 2022, 13, 667. [Google Scholar] [CrossRef]
- Peris-Vicente, J.; Peris-García, E.; Albiol-Chiva, J.; Durgbanshi, A.; Ochoa-Aranda, E.; Carda-Broch, S.; Bose, D.; Esteve-Romero, J. Liquid Chromatography, a Valuable Tool in the Determination of Antibiotics in Biological, Food and Environmental Samples. Microchem. J. 2022, 177, 107309. [Google Scholar] [CrossRef]
- Paoletti, F.; Sdogati, S.; Barola, C.; Giusepponi, D.; Moretti, S.; Galarini, R. Two-Procedure Approach for Multiclass Determination of 64 Antibiotics in Honey Using Liquid Chromatography Coupled to Time-of-Flight Mass Spectrometry. Food Control 2022, 136, 108893. [Google Scholar] [CrossRef]
- Li, L.; Yin, Y.; Zheng, G.; Liu, S.; Zhao, C.; Ma, L.; Shan, Q.; Dai, X.; Wei, L.; Lin, J.; et al. Determining β-Lactam Antibiotics in Aquaculture Products by Modified QuECHERS Combined with Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-MS/MS). Arab. J. Chem. 2022, 15, 103912. [Google Scholar] [CrossRef]
- Tan, L.; Deng, F.; Luo, X.; Pan, X.; Zhang, L.; Marina, M.L.; Jiang, Z. Glycosyl Imprinted Mesoporous Microspheres for the Determination of Glycopeptide Antibiotics Using Ultra-High Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry. J. Chromatogr. A 2021, 1659, 462630. [Google Scholar] [CrossRef]
- Oyedeji, A.O.; Msagati, T.A.M.M.; Williams, A.B.; Benson, N.U. Detection and Quantification of Multiclass Antibiotic Residues in Poultry Products Using Solid-Phase Extraction and High-Performance Liquid Chromatography with Diode Array Detection. Heliyon 2021, 7, e08469. [Google Scholar] [CrossRef]
- Drabińska, N.; Hewett, K.; White, P.; Avison, M.B.; Persad, R.; Ratcliffe, N.M.; de Lacy Costello, B. Application of a Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry/Metal Oxide Sensor System for Detection of Antibiotic Susceptibility in Urinary Tract Infection-Causing Escherichia Coli–A Proof of Principle Study. Adv. Med. Sci. 2022, 67, 1–9. [Google Scholar] [CrossRef]
- Kim, Y.R.; Kang, H.S. Multi-Residue Determination of Twenty Aminoglycoside Antibiotics in Various Food Matrices by Dispersive Solid Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry. Food Control 2021, 130, 108374. [Google Scholar] [CrossRef]
- Pauter, K.; Szultka-Młýnska, M.; Buszewski, B. Determination and Identification of Antibiotic Drugs and Bacterial Strains in Biological Samples. Molecules 2020, 25, 2556. [Google Scholar] [CrossRef] [PubMed]
- Long Ma, Z.; Chen Wang, M.; Tian, L.; Cheng, L. A Multi-Responsive Luminescent Indicator Based on a Zn(II) Metal-Organic Framework with “Turn on” Sensing of Pyridine and “Turn off” Sensing of Fe3+, Cr2O72− and Antibiotics in Aqueous Media. Inorg. Chim. Acta 2021, 526, 120513. [Google Scholar] [CrossRef]
- Li, C.; Zeng, C.; Chen, Z.; Jiang, Y.; Yao, H.; Yang, Y.; Wong, W.T. Luminescent Lanthanide Metal-Organic Framework Test Strip for Immediate Detection of Tetracycline Antibiotics in Water. J. Hazard. Mater. 2020, 384, 121498. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Wu, D.; Jin, J.; Yang, G.; Wang, Y.Y. Fabrication of a Series of Isostructural Water-Stable Lanthanide Metal-Organic Frameworks: Tunable Luminescence, Sensing for Antibiotics and Magnetic Properties. J. Solid State Chem. 2022, 309, 123003. [Google Scholar] [CrossRef]
- Li, L.; Zou, J.Y.; Zhang, L.; You, S.Y.; Xie, X.; Chen, G.H. Sensitive Detection of the Antibiotic Pollutants by a Solvent-Stable Luminescent Sensor Based on a Europium(III) Metal-Organic Framework. J. Solid State Chem. 2022, 305, 122668. [Google Scholar] [CrossRef]
- Zhang, G.; Cui, J.; Zhang, H.H.; Yang, J.; Zhang, H.H.; Han, H.; Wang, G. A Series of Carbonate-Brisdged Ln (Ln = Eu, Tb, Gd) Frameworks: Colour Tunability for Barcode Applications and Selective Luminescence Sensing towards Nitroimidazole Antibiotics. Inorg. Chem. Commun. 2022, 137, 109173. [Google Scholar] [CrossRef]
- Zhou, C.; Zou, H.; Sun, C.; Li, Y. Recent Advances in Biosensors for Antibiotic Detection: Selectivity and Signal Amplification with Nanomaterials. Food Chem. 2021, 361, 130109. [Google Scholar] [CrossRef] [PubMed]
- Sabzehmeidani, M.M.; Kazemzad, M. Quantum Dots Based Sensitive Nanosensors for Detection of Antibiotics in Natural Products: A Review. Sci. Total Environ. 2022, 810, 151997. [Google Scholar] [CrossRef]
- Veloso, W.B.; Ribeiro, G.A.C.; da Rocha, C.Q.; Tanaka, A.A.; da Silva, I.S.; Dantas, L.M.F. Flow-through Amperometric Determination of Ampicillin Using a Copper Electrode in a Batch Injection Analysis System. Meas. J. Int. Meas. Confed. 2020, 155, 107516. [Google Scholar] [CrossRef]
- David, I.G.; Buleandră, M.; Popa, D.E.; Bercea, A.M.; Ciucu, A.A. Simple Electrochemical Chloramphenicol Assay at a Disposable Pencil Graphite Electrode by Square Wave Voltammetry and Linear Sweep Voltammetry. Anal. Lett. 2022, 55, 1531–1548. [Google Scholar] [CrossRef]
- David, I.G.; Buleandra, M.; Popa, D.E.; Cheregi, M.C.; David, V.; Iorgulescu, E.E.; Tartareanu, G.O. Recent Developments in Voltammetric Analysis of Pharmaceuticals Using Disposable Pencil Graphite Electrodes. Processes 2022, 10, 472. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, B.; Li, T.; Zhu, X.; Guo, W. Electrochemical Detection of Aminoglycoside Antibiotics Residuals in Milk Based on Magnetic Molecularly Imprinted Particles and Metal Ions. Food Chem. 2022, 389, 133120. [Google Scholar] [CrossRef]
- Yue, F.; Li, H.; Kong, Q.; Liu, J.; Wang, G.; Li, F.; Yang, Q.; Chen, W.; Guo, Y.; Sun, X. Selection of Broad-Spectrum Aptamer and Its Application in Fabrication of Aptasensor for Detection of Aminoglycoside Antibiotics Residues in Milk. Sens. Actuators B Chem. 2022, 351, 130959. [Google Scholar] [CrossRef]
- Mahmoudpour, M.; Kholafazad-kordasht, H.; Nazhad Dolatabadi, J.E.; Hasanzadeh, M.; Rad, A.H.; Torbati, M. Sensitive Aptasensing of Ciprofloxacin Residues in Raw Milk Samples Using Reduced Graphene Oxide and Nanogold-Functionalized Poly(Amidoamine) Dendrimer: An Innovative Apta-Platform towards Electroanalysis of Antibiotics. Anal. Chim. Acta 2021, 1174, 338736. [Google Scholar] [CrossRef]
- Báez, D.F.; Brito, T.P.; Espinoza, L.C.; Méndez-Torres, A.M.; Sierpe, R.; Sierra-Rosales, P.; Venegas, C.J.; Yáñez, C.; Bollo, S. Graphene-Based Sensors for Small Molecule Determination in Real Samples. Microchem. J. 2021, 167, 106303. [Google Scholar] [CrossRef]
- Tran, T.T.T.; Do, M.N.; Dang, T.N.H.; Tran, Q.H.; Le, V.T.; Dao, A.Q.; Vasseghian, Y. A State-of-the-Art Review on Graphene-Based Nanomaterials to Determine Antibiotics by Electrochemical Techniques. Environ. Res. 2022, 208, 112744. [Google Scholar] [CrossRef]
- Fu, L.; Mao, S.; Chen, F.; Zhao, S.; Su, W.; Lai, G.; Yu, A.; Lin, C.-T. Graphene-Based Electrochemical Sensors for Antibiotic Detection in Water, Food and Soil: A Scientometric Analysis in CiteSpace (2011–2021). Chemosphere 2022, 297, 134127. [Google Scholar] [CrossRef]
- Joshi, A.; Kim, K.H. Recent Advances in Nanomaterial-Based Electrochemical Detection of Antibiotics: Challenges and Future Perspectives. Biosens. Bioelectron. 2020, 153, 112046. [Google Scholar] [CrossRef]
- Qian, L.; Durairaj, S.; Prins, S.; Chen, A. Nanomaterial-Based Electrochemical Sensors and Biosensors for the Detection of Pharmaceutical Compounds. Biosens. Bioelectron. 2021, 175, 112836. [Google Scholar] [CrossRef]
- Wang, Q.; Xue, Q.; Chen, T.; Li, J.; Liu, Y.; Shan, X.; Liu, F.; Jia, J. Recent Advances in Electrochemical Sensors for Antibiotics and Their Applications. Chin. Chem. Lett. 2021, 32, 609–619. [Google Scholar] [CrossRef]
- Kadhem, A.J.; Gentile, G.J.; de Cortalezzi, M.M.F.; Fidalgo De Cortalezzi, M.M. Molecularly Imprinted Polymers (Mips) in Sensors for Environmental and Biomedical Applications: A Review. Molecules 2021, 26, 6233. [Google Scholar] [CrossRef]
- Xie, L.; Xiao, N.; Li, L.; Xie, X.; Li, Y. Theoretical Insight into the Interaction between Chloramphenicol and Functional Monomer (Methacrylic Acid) in Molecularly Imprinted Polymers. Int. J. Mol. Sci. 2020, 21, 4139. [Google Scholar] [CrossRef]
- Hasanah, A.N.; Safitri, N.; Zulfa, A.; Neli, N.; Rahayu, D. Factors Affecting Preparation of Molecularly Imprinted Polymer and Methods on Finding Template-Monomer Interaction as the Key of Selective Properties of the Materials. Molecules 2021, 26, 5612. [Google Scholar] [CrossRef]
- Rebelo, P.; Costa-Rama, E.; Seguro, I.; Pacheco, J.G.; Nouws, H.P.A.; Cordeiro, M.N.D.S.; Delerue-Matos, C. Molecularly Imprinted Polymer-Based Electrochemical Sensors for Environmental Analysis. Biosens. Bioelectron. 2021, 172, 112719. [Google Scholar] [CrossRef]
- Crapnell, R.D.; Hudson, A.; Foster, C.W.; Eersels, K.; van Grinsven, B.; Cleij, T.J.; Banks, C.E.; Peeters, M. Recent Advances in Electrosynthesized Molecularly Imprinted Polymer Sensing Platforms for Bioanalyte Detection. Sensors 2019, 19, 1204. [Google Scholar] [CrossRef] [Green Version]
- Aaryashree; Takeda, Y.; Kanai, M.; Hatano, A.; Yoshimi, Y.; Kida, M. A “Single-Use” Ceramic-Based Electrochemical Sensor Chip Using Molecularly Imprinted Carbon Paste Electrode. Sensors 2020, 20, 5847. [Google Scholar] [CrossRef]
- Liu, R.; Poma, A.; Sacchetti, A. Advances in Molecularly Imprinted Polymers as Drug Delivery Systems. Molecules 2021, 26, 3589. [Google Scholar] [CrossRef]
- Muratsugu, S.; Shirai, S.; Tada, M. Recent Progress in Molecularly Imprinted Approach for Catalysis. Tetrahedron Lett. 2020, 61, 151603. [Google Scholar] [CrossRef]
- Derz, W.; Fleischmann, M.; Elsinghorst, P.W. Guiding Molecularly Imprinted Polymer Design by Pharmacophore Modeling. Molecules 2021, 26, 5101. [Google Scholar] [CrossRef] [PubMed]
- Boysen, R.I.; Schwarz, L.J.; Nicolau, D.V.; Hearn, M.T.W. Molecularly Imprinted Polymer Membranes and Thin Films for the Separation and Sensing of Biomacromolecules. J. Sep. Sci. 2017, 40, 314–335. [Google Scholar] [CrossRef] [PubMed]
- Leibl, N.; Haupt, K.; Gonzato, C.; Duma, L. Molecularly Imprinted Polymers for Chemical Sensing: A Tutorial Review. Chemosensors 2021, 9, 123. [Google Scholar] [CrossRef]
- Jamieson, O.; Soares, T.C.C.C.; de Faria, B.A.; Hudson, A.; Mecozzi, F.; Rowley-Neale, S.J.; Banks, C.E.; Gruber, J.; Novakovic, K.; Peeters, M.; et al. Screen Printed Electrode Based Detection Systems for the Antibiotic Amoxicillin in Aqueous Samples Utilising Molecularly Imprinted Polymers as Synthetic Receptors. Chemosensors 2020, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Bräuer, B.; Unger, C.; Werner, M.; Lieberzeit, P.A. Biomimetic Sensors to Detect Bioanalytes in Real-Life Samples Using Molecularly Imprinted Polymers: A Review. Sensors 2021, 21, 5550. [Google Scholar] [CrossRef]
- Villa, C.C.; Sánchez, L.T.; Valencia, G.A.; Ahmed, S.; Gutiérrez, T.J. Molecularly Imprinted Polymers for Food Applications: A Review. Trends Food Sci. Technol. 2021, 111, 642–669. [Google Scholar] [CrossRef]
- Elfadil, D.; Lamaoui, A.; della Pelle, F.; Amine, A.; Compagnone, D.; della Pelle, F.; Amine, A.; Compagnone, D.; Ghica, E.; Pauliukaite, R. Molecularly Imprinted Polymers Combined with Electrochemical Sensors for Food Contaminants Analysis. Molecules 2021, 26, 4607. [Google Scholar] [CrossRef]
- Liu, Y.; Lian, Z.; Li, F.; Majid, A.; Wang, J. Review on Molecular Imprinting Technology and Its Application in Pre-Treatment and Detection of Marine Organic Pollutants. Mar. Pollut. Bull. 2021, 169, 112541. [Google Scholar] [CrossRef]
- Metwally, M.G.; Benhawy, A.H.; Khalifa, R.M.; el Nashar, R.M.; Trojanowicz, M. Application of Molecularly Imprinted Polymers in the Analysis of Waters and Wastewaters. Molecules 2021, 26, 6515. [Google Scholar] [CrossRef]
- Gavrilă, A.-M.; Stoica, E.-B.; Iordache, T.-V.; Sârbu, A. Modern and Dedicated Methods for Producing Molecularly Imprinted Polymer Layers in Sensing Applications. Appl. Sci. 2022, 12, 3080. [Google Scholar] [CrossRef]
- Cui, B.; Liu, P.; Liu, X.; Liu, S.; Zhang, Z. Molecularly Imprinted Polymers for Electrochemical Detection and Analysis: Progress and Perspectives. J. Mater. Res. Technol. 2020, 9, 12568–12584. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, C.; Lin, J.; Zhu, Z.; Hu, B.; Wu, L. Towards Development of Molecularly Imprinted Electrochemical Sensors for Food and Drug Safety: Progress and Trends. Biosensors 2022, 12, 369. [Google Scholar] [CrossRef]
- Ramanavicius, S.; Samukaite-Bubniene, U.; Ratautaite, V.; Bechelany, M.; Ramanavicius, A. Electrochemical Molecularly Imprinted Polymer Based Sensors for Pharmaceutical and Biomedical Applications (Review). J. Pharm. Biomed. Anal. 2022, 215, 114739. [Google Scholar] [CrossRef]
- Mostafiz, B.; Bigdeli, S.A.; Banan, K.; Afsharara, H.; Hatamabadi, D.; Mousavi, P.; Hussain, C.M.; Keçili, R.; Ghorbani-Bidkorbeh, F. Molecularly Imprinted Polymer-Carbon Paste Electrode (MIP-CPE)-Based Sensors for the Sensitive Detection of Organic and Inorganic Environmental Pollutants: A Review. Trends Environ. Anal. Chem. 2021, 32, e00144. [Google Scholar] [CrossRef]
- Wang, J.; Liang, R.; Qin, W. Molecularly Imprinted Polymer-Based Potentiometric Sensors. TrAC Trends Anal. Chem. 2020, 130, 115980. [Google Scholar] [CrossRef]
- Dehghani, M.; Nasirizadeh, N.; Yazdanshenas, M.E. Determination of Cefixime Using a Novel Electrochemical Sensor Produced with Gold Nanowires/Graphene Oxide/Electropolymerized Molecular Imprinted Polymer. Mater. Sci. Eng. C 2019, 96, 654–660. [Google Scholar] [CrossRef]
- Feier, B.; Blidar, A.; Pusta, A.; Carciuc, P.; Cristea, C. Electrochemical Sensor Based on Molecularly Imprinted Polymer for the Detection of Cefalexin. Biosensors 2019, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; He, J.; Waterhouse, G.I.N.; Xu, L.; Zhang, H.; Qiao, X.; Xu, Z. A Selective Molecularly Imprinted Electrochemical Sensor with GO@COF Signal Amplification for the Simultaneous Determination of Sulfadiazine and Acetaminophen. Sens. Actuators B Chem. 2019, 300, 126993. [Google Scholar] [CrossRef]
- Karimian, N.; Gholivand, M.B.; Malekzadeh, G. Cefixime Detection by a Novel Electrochemical Sensor Based on Glassy Carbon Electrode Modified with Surface Imprinted Polymer/Multiwall Carbon Nanotubes. J. Electroanal. Chem. 2016, 771, 64–72. [Google Scholar] [CrossRef]
- Tan, F.; Zhai, M.; Meng, X.; Wang, Y.; Zhao, H.; Wang, X. Hybrid Peptide-Molecularly Imprinted Polymer Interface for Electrochemical Detection of Vancomycin in Complex Matrices. Biosens. Bioelectron. 2021, 184, 113220. [Google Scholar] [CrossRef]
- Lian, W.; Liu, S.; Wang, L.; Liu, H. A Novel Strategy to Improve the Sensitivity of Antibiotics Determination Based on Bioelectrocatalysis at Molecularly Imprinted Polymer Film Electrodes. Biosens. Bioelectron. 2015, 73, 214–220. [Google Scholar] [CrossRef]
- Jafari, S.; Dehghani, M.; Nasirizadeh, N.; Baghersad, M.H.; Azimzadeh, M. Label-Free Electrochemical Detection of Cloxacillin Antibiotic in Milk Samples Based on Molecularly Imprinted Polymer and Graphene Oxide-Gold Nanocomposite. Meas. J. Int. Meas. Confed. 2019, 145, 22–29. [Google Scholar] [CrossRef]
- Tasić, Ž.Z.; Petrović Mihajlović, M.B.; Simonović, A.T.; Radovanović, M.B.; Antonijević, M.M. Review of Applied Surface Modifications of Pencil Graphite Electrodes for Paracetamol Sensing. Results Phys. 2021, 22, 103911. [Google Scholar] [CrossRef]
- Nezhadali, A.; Mehri, L.; Shadmehri, R. Determination of Methimazole Based on Electropolymerized-Molecularly Imprinted Polypyrrole Modified Pencil Graphite Sensor. Mater. Sci. Eng. C 2018, 85, 225–232. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.J.; Tang, H.; Liu, J.J.; Xu, B.; Yu, F.; Li, Y. Fabrication of Highly Sensitive and Selective Electrochemical Sensor by Using Optimized Molecularly Imprinted Polymers on Multi-Walled Carbon Nanotubes for Metronidazole Measurement. Sens. Actuators B Chem. 2015, 206, 647–652. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, F. Electrochemical Sensor for Chloramphenicol Based on Novel Multiwalled Carbon Nanotubes@molecularly Imprinted Polymer. Biosens. Bioelectron. 2015, 64, 416–422. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, F. Molecularly Imprinted Polymer Grown on Multiwalled Carbon Nanotube Surface for the Sensitive Electrochemical Determination of Amoxicillin. Electrochim. Acta 2015, 174, 33–40. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, W.; Wang, Y.; Zhu, L.; Yang, L.; Sha, Z.; Zhang, J. Decoration of Graphene with 2-Aminoethanethiol Functionalized Gold Nanoparticles for Molecular Imprinted Sensing of Erythrosine. Carbon N. Y. 2018, 127, 618–626. [Google Scholar] [CrossRef]
- Zhao, X.; Pachfule, P.; Thomas, A. Covalent Organic Frameworks (COFs) for Electrochemical Applications. Chem. Soc. Rev. 2021, 50, 6871–6913. [Google Scholar] [CrossRef]
- Pan, Y.; Shan, D.; Ding, L.; Yang, X.; Xu, K.; Huang, H.; Wang, J.; Ren, H. Developing a Generally Applicable Electrochemical Sensor for Detecting Macrolides in Water with Thiophene-Based Molecularly Imprinted Polymers. Water Res. 2021, 205, 117670. [Google Scholar] [CrossRef] [PubMed]
- Munawar, A.; Tahir, M.A.; Shaheen, A.; Lieberzeit, P.A.; Khan, W.S.; Bajwa, S.Z. Investigating Nanohybrid Material Based on 3D CNTs@Cu Nanoparticle Composite and Imprinted Polymer for Highly Selective Detection of Chloramphenicol. J. Hazard. Mater. 2018, 342, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Beytur, M.; Kardaş, F.; Akyıldırım, O.; Özkan, A.; Bankoğlu, B.; Yüksek, H.; Yola, M.L.; Atar, N. A Highly Selective and Sensitive Voltammetric Sensor with Molecularly Imprinted Polymer Based Silver@gold Nanoparticles/Ionic Liquid Modified Glassy Carbon Electrode for Determination of Ceftizoxime. J. Mol. Liq. 2018, 251, 212–217. [Google Scholar] [CrossRef]
- Ozcelikay, G.; Kurbanoglu, S.; Yarman, A.; Scheller, F.W.; Ozkan, S.A. Au-Pt Nanoparticles Based Molecularly Imprinted Nanosensor for Electrochemical Detection of the Lipopeptide Antibiotic Drug Daptomycin. Sens. Actuators B Chem. 2020, 320, 128285. [Google Scholar] [CrossRef]
- Ali, M.R.; Bacchu, M.S.; Daizy, M.; Tarafder, C.; Hossain, M.S.; Rahman, M.M.; Khan, M.Z.H. A Highly Sensitive Poly-Arginine Based MIP as an Electrochemical Sensor for Selective Detection of Dimetridazole. Anal. Chim. Acta 2020, 1121, 11–16. [Google Scholar] [CrossRef]
- Bi, H.; Wu, Y.; Wang, Y.; Liu, G.; Ning, G.; Xu, Z. A Molecularly Imprinted Polymer Combined with Dual Functional Au@Fe3O4 Nanocomposites for Sensitive Detection of Kanamycin. J. Electroanal. Chem. 2020, 870, 114216. [Google Scholar] [CrossRef]
- Liu, J.; Tang, H.; Zhang, B.; Deng, X.; Zhao, F.; Zuo, P.; Ye, B.C.; Li, Y. Electrochemical Sensor Based on Molecularly Imprinted Polymer for Sensitive and Selective Determination of Metronidazole via Two Different Approaches. Anal. Bioanal. Chem. 2016, 408, 4287–4295. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, L.; Liu, X.; Cheng, J.; Liu, W.; Liu, T.; Sun, M.; Zhao, L.; Ding, F.; Lu, Z.; et al. CuCo2O4/N-Doped CNTs Loaded with Molecularly Imprinted Polymer for Electrochemical Sensor: Preparation, Characterization and Detection of Metronidazole. Biosens. Bioelectron. 2019, 142, 111483. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, M.; Hu, Y.; Zhu, L.; Du, J. An Electrochemical Sensor Based on a Molecularly Imprinted Polymer for Determination of Anticancer Drug Mitoxantrone. Sens. Actuators B Chem. 2018, 255, 544–551. [Google Scholar] [CrossRef]
- Liu, Z.; Jin, M.; Lu, H.; Yao, J.; Wang, X.; Zhou, G.; Shui, L. Molecularly Imprinted Polymer Decorated 3D-Framework of Functionalized Multi-Walled Carbon Nanotubes for Ultrasensitive Electrochemical Sensing of Norfloxacin in Pharmaceutical Formulations and Rat Plasma. Sens. Actuators B Chem. 2019, 288, 363–372. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Wang, Y.; Kuang, X.; Ma, H.; Wei, Q. Directly Assembled Electrochemical Sensor by Combining Self-Supported CoN Nanoarray Platform Grown on Carbon Cloth with Molecularly Imprinted Polymers for the Detection of Tylosin. J. Hazard. Mater. 2020, 398, 122778. [Google Scholar] [CrossRef]
- Elugoke, S.E.; Adekunle, A.S.; Fayemi, O.E.; Akpan, E.D.; Mamba, B.B.; Sherif, E.M.; Ebenso, E.E. Molecularly Imprinted Polymers (MIPs) Based Electrochemical Sensors for the Determination of Catecholamine Neurotransmitters–Review. Electrochem. Sci. Adv. 2021, 1, e2000026. [Google Scholar] [CrossRef]
- Motaharian, A.; Hosseini, M.R.M.; Naseri, K. Determination of Psychotropic Drug Chlorpromazine Using Screen Printed Carbon Electrodes Modified with Novel MIP-MWCNTs Nano-Composite Prepared by Suspension Polymerization Method. Sens. Actuators B Chem. 2019, 288, 356–362. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.; Yan, R.; Fu, X.; Wang, G.; Wang, Y.; Li, Z.; Zhang, X.; Hou, J. Facile Fabrication of Snowman-like Magnetic Molecularly Imprinted Polymer Microspheres for Bisphenol A via One-Step Pickering Emulsion Polymerization. React. Funct. Polym. 2021, 164, 104911–140918. [Google Scholar] [CrossRef]
- Sambe, H.; Hoshina, K.; Haginaka, J. Molecularly Imprinted Polymers for Triazine Herbicides Prepared by Multi-Step Swelling and Polymerization Method. Their Application to the Determination of Methylthiotriazine Herbicides in River Water. J. Chromatogr. A 2007, 1152, 130–137. [Google Scholar] [CrossRef]
- Moein, M.M.; Abdel-Rehim, A.; Abdel-Rehim, M. Recent Applications of Molecularly Imprinted Sol-Gel Methodology in Sample Preparation. Molecules 2019, 24, 2889. [Google Scholar] [CrossRef] [Green Version]
- Pajewska-Szmyt, M.; Biniewska, E.; Buszewski, B.; Gadzała-Kopciuch, R. Synthesis of Magnetic Molecularly Imprinted Polymer Sorbents for Isolation of Parabens from Breast Milk. Materials 2020, 13, 4328. [Google Scholar] [CrossRef]
- Chen, H.; Son, S.; Zhang, F.; Yan, J.; Li, Y.; Ding, H.; Ding, L. Rapid Preparation of Molecularly Imprinted Polymers by Microwave-Assisted Emulsion Polymerization for the Extraction of Florfenicol in Milk. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 983, 32–38. [Google Scholar] [CrossRef]
- Dong, C.; Shi, H.; Han, Y.; Yang, Y.; Wang, R.; Men, J. Molecularly Imprinted Polymers by the Surface Imprinting Technique. Eur. Polym. J. 2021, 145, 110231–110256. [Google Scholar] [CrossRef]
- Ramanavičius, S.; Morkvėnaitė-Vilkončienė, I.; Samukaitė-Bubnienė, U.; Ratautaitė, V.; Plikusienė, I.; Viter, R.; Ramanavičius, A. Electrochemically Deposited Molecularly Imprinted Polymer-Based Sensors. Sensors 2022, 22, 1282. [Google Scholar] [CrossRef]
- Suo, D.; Wang, R.; Wang, P.; Fan, X.; Su, X. Pseudo Template Molecularly Imprinted Polymer for Determination of 14 Kind of β-Agonists in Animal Urine by Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2017, 1526, 23–30. [Google Scholar] [CrossRef]
- Sobiech, M.; Giebułtowicz, J.; Luliński, P.L. Application of Magnetic Core−Shell Imprinted Nanoconjugates for the Analysis of Hordenine in Human Plasma-Preliminary Data on Pharmacokinetic Study after Oral Administration. J. Agric. Food Chem. 2020, 68, 14502–14512. [Google Scholar] [CrossRef]
- Isarankura-Na-Ayudhya, C.; Nantasenamat, C.; Buraparuangsang, P.; Piacham, T.; Ye, L.; Bülow, L.; Prachayasittikul, V. Computational Insights on Sulfonamide Imprinted Polymers. Molecules 2008, 13, 3077–3091. [Google Scholar] [CrossRef] [Green Version]
- Rosengren, A.M.; Karlsson, B.C.G.; Nicholls, I.A. Consequences of Morphology on Molecularly Imprinted Polymer-Ligand Recognition. Int. J. Mol. Sci. 2013, 14, 1207–1217. [Google Scholar] [CrossRef] [Green Version]
- Iturralde, I.; Paulis, M.; Leiza, J.R. The Effect of the Crosslinking Agent on the Performance of Propranolol Imprinted Polymers. Eur. Polym. J. 2014, 53, 282–291. [Google Scholar] [CrossRef]
- Baralla, E.; Demontis, M.P.; Dessì, F.; Varoni, M.V.; Carvalho, P.; Ebani, V.V.; von Keyserlingk, M. An Overview of Antibiotics as Emerging Contaminants: Occurrence in Bivalves as Biomonitoring Organisms. Animals 2021, 11, 3239. [Google Scholar] [CrossRef]
- Commission Implementing Decision (EU). 2020/1161 of 4 August 2020 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council (Notified under Document Number C(2020) 5205). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2020.257.01.0032.01.ENG&toc=OJ:L:2020:257:TOC (accessed on 28 May 2022).
- Commission Regulation (EU). No. 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin. Available online: https://eur-lex.europa.eu/eli/reg/2010/37(1)/oj (accessed on 28 May 2022).
Antibiotic | MIP-Based Modifier | Polymerization Type | Polymerization Reagents | Template Removal | Ref. |
---|---|---|---|---|---|
AMOX |
MWCNTs/MIP/SWCNTs; MWCNTs/MIP/dendritic Pt-Pd bimetallicNPs-SWCNTs | Bulk | AMOX, MWCNTs suspension, EGDMA, AIBN, methanol:H2O (4:1, v/v) | Immersion in methanol:acetic acid (9:1, v/v) | [102] |
AMOX | Mag/MIP | Bulk | AMOX, AAM, Fe3O4@SiO2-MPS, MBAA, KPS, ultra pure water | Soxhlet extraction with methanol:water (9:1, v/v) and methanol/water (7:3, v/v) | [6] |
AZY | MIP | Precipitation | AZY, MAA, EGDMA, AIBN, methanol:acetonitrile (1:4, v/v) | Immersion in methanol:acetic acid (9:1, v/v) | [27] |
AZY | MIP/GNU/GO | CV (−0.5 to 1.0 V); 0.075 M HNO3, 0.025 M H2SO4 | AZY, aniline | Immersion in ethanol:water | [8] |
AZY | MIP | CV (−0.85 V to +1.35 V); 0.10 M 4BA6FPh in methanol | AZY, 3-TBA, 2,2′-Bth | Immersion in methanol:acid acetic (9:1, v/v) | [17] |
AZY | MIP | CV (−0.2 to 1.4 V); PBS pH 7.0 | AZY, 4-ABA | Extraction in PBS pH 10.0 | [24] |
AZY | MIP | CA: 1.65 V; 30 s; 0.10 M TBAP in acetonitrile | AZY, Ph-3-TBA, 4,4′ -Br-3,3′ -Bth, 3-Me-Th in acetonitrile containing 5% DMF | Immersion in glacial acetic acid:acetonitrile (1:9 v/v) and ultrasonation | [105] |
CAP | MWCNTs/MIP/CKM-3/P-r-GO | Bulk | CAP, MWCNT suspension, EGDMA, AIBN | Immersion in methanol:acetic acid (9:1, v/v) | [101] |
CAP | 3D CNTs@Cu NPs@MIP | Bulk | CAP, MAA, EGDMA, AIBN, THF | - | [106] |
CAP | MIP/PEDOT | CA: 0.95 V; 250 s; 0.20 M LiClO4 in acetonitrile | CAP, Eriochrome Black T | CV in 0.20 M LiClO4 in acetonitrile | [26] |
CFE | AgDs/MIP/cMWCNTs | Surface molecular imprinting | CFE, AAM, MBAA, APS | Immersion in 0.50 M HCl | [94] |
CFE | AuNW/GO/MIP | CV (−0.35 to 0.64 V); HNO3/H2SO4 solution (3:1) | CFE, aniline | Immersion in ethanol:water solution | [91] |
CFLX | MIP | CV (−1.0 to 1.2 V); PBS pH 7.2 | CFLX, indole-3-acetic acid | Immersion in methanol, 0.10 M NaOH, PBS pH = 7.20 | [92] |
CFX | MIP/Ag@AuNPs/ILs | CV (0 to 1.0 V); BRB pH 3.00 | CFX, phenol | Immersion in 1.00 M NaCl | [107] |
CFZ | AgDs/MIP/cMWCNTs | Surface molecular imprinting | CFZ, AAM, MBAA, APS, PBS pH 3.00 | Immersion in 0.50 M HCl | [12] |
CIP | Ch-AuNPs/MIP | Bulk | CIP, MAA, EGDMA, AIBN, dimethylamide:methanol (2:3) | Immersion in methanol:acetic acid (9:1, v/v) | [16] |
CLO | GO/AuNPs/MIP | Bulk | CLO, MAA, EGDMA, AIBN | Soxhlet extraction with methanol | [97] |
CTC | MWCNT-IL/MIP | Bulk | CTC, MWCNT-IL, CAVImBr, EGDMA, AIBN, methanol:H2O (5:1, v/v) | Soxhlet extraction with methanol:acid acetic (9:1, v/v) | [23] |
DAP | MIP/AuPtNPs | CV (0 and 0.8 V) | DAP, o-phenylenediamine | Immersion in 0.10 M NaOH | [108] |
DMZ | P-Arg@MIP | CV (−2.0 to 2.2 V); PBS pH 7.4 | DMZ, L-arginine | Incubation in 0.25 M NaOH | [109] |
FZD | MWCNTs/MIP | Precipitation | FZD, AMPS, EGDMA, AIBN | Washing with acetic acid:methanol (1:9, v/v) | [18] |
KANA | MWCNTs/Fe3O4/PMMA | Bulk | KANA, MAA, EGDMA, AIBN in acetonitrile | Washing with methanol:acetic acid (8:2, v/v) | [4] |
KANA | MIP | CV (−0.4 to 0.15 V); PBS pH 6.8 | KANA, pyrrole | Immersion in 0.01 M HCl | [96] |
KANA | target/ APT/Fc/β-CD-SH/ Au@Fe3O4/MIP | CV (0 to 0.8 V) | KANA, 3-aminophenylboronic acid | Washing with 5%HCl | [110] |
MMZ | MIP | CV (-1.0 to 2.0 V); 0.10 M NaClO4 | MMZ, pyrrole | DPV in BR pH 3.00 | [99] |
MNZ | MIP/MWCNTs | CV (−0.8 to 0.8 V) | MNZ, dopamine | CV in diluted H2SO4 | [100] |
MNZ | MIP | CV (0 to 0.8 V) | MNZ, o-phenylenediamine | Immersion in diluted H2SO4 | [111] |
MNZ | CuCo2O4/N-CNTs/MIP | CV (−0.2 to 1.2 V); 0.10 M PBS | MNZ, aniline | Immersion in methanol:acetic acid (9:1, v/v) solution | [112] |
MTX | MIP | CV (0 to 0.8 V); 0.01 M HCl | MTX, β-cyclodextrins | Immersion in PBS pH 9.00 | [113] |
NFX | fMWCNTs-MIP | Precipitation | NFX, MAA, EGDMA, AIBN, fMWCNTs | Soxhlet extraction with methanol:acetic acid (9:1, v/v) | [114] |
OXC | MIP/GNU/GO | CV (−0.2 to 1.0 V); 0.025 M H2SO4, 0.075 M HNO3 | OXC, aniline | Immersion in ethanol:water (1:1, v/v) solution | [38] |
SDZ, AP | MIP/GO@COF | CV (−0.6 to 1.2 V); 0.10 M TBAP in acetonitril | SDZ, AP, pyrrole | PPy overoxidation CV (−0.6 to 1.2 V) in 0.05 M NaOH | [93] |
SM2 | MIP/GQDs-PtNPs | CV (−0.5 to −0.8 V); PBS (pH 6.5) | SM2, EDOT, MAA | Immersion in methanol:acetic acid (90:10, v/v) | [39] |
SMX | oxMWCNTs/UPPyMIP | CA: 0.75 V; 600 s; 0.20 M K2HPO4 | SMX, pyrrole | CV in BRB pH 2.36 | [22] |
TC | MIOPPy-AuNP | CV (0.0 to 0.8 V); 0.10 M KCl | TC, pyrrole | PPy overoxidation CV (0 to 1.2 V) in 0.05 M NaOH | [31] |
TC | Mag/MIP | Bulk | TC, acrylic acid, Fe3O4-C=C, EGDMA, AIBN, ethanol:methanol (30%, v/v) | Soxhlet extraction with methanol:acid acetic (9:1, v/v) | [32] |
TS | MIP/CoN NWs | Ultrasound assisted bulk | TS, MAA, EGDMA, AIBN, acetonitrile | Immersion in acetic acid:methanol (1:9, v/v) | [115] |
VAN | MIPDA/peptide/AuNPs | CV (−0.5 V to 0.5 V); PBS pH 7.4 | VAN, dopamine | Immersion in ethanol:acetic acid (18:1, v/v) | [95] |
RIF, INZ | Cu-MOF/MC/MIP | CV (−0.5 V to 0.8 V); 0.1 M LiClO4 | RIF, INZ, pyrrole | Immersion and stirring in a methanol:water (1:1, v/v) solution | [7] |
Antibiotic | Electrode | Technique | Sample | Sensor Performances | Ref. |
---|---|---|---|---|---|
AMOX | MWCNTs/MIP/SWCNTs/GCE; MWCNTs/MIP/dendritic Pt-Pd bimetallic NPs-SWCNT/GCE | DPV | Milk, honey | LOD = 8.9 × 10−10 M | [102] |
Linearity: 1.0 × 10−9 − 1.0 × 10−6 M; 1.0 × 10−6 − 6.0 × 10−6 M | |||||
AMOX | Mag/MIP/CPE | SWV | River water, milk | LOD = 7.5 × 10−7 M | [6] |
Linearity: 2.5 × 10−6 − 5.7 × 10−5 M | |||||
AZY | MIP/CPE | ECL | Blood, urine | LOD = 2.3 × 10−11 M | [27] |
Linearity: 1.0 × 10−10 − 4.0 × 10−7 M | |||||
AZY | MIP/GNU/GO/ GCE | DPV | Human blood | LOD = 1.0 × 10−10 M | [8] |
Linearity: 3.0 × 10−10 − 9.2 × 10−7 M | |||||
AZY | MIP/GCE | CV (indrect) | Human plasma, tears, urine | LOD = 8.5 × 10−10 M | [17] |
Linearity: 1.33 × 10−8 − 6.66 × 10−5 M | |||||
AZY | MIP/SPCE | DPV | Water | LOD = 8.0 × 10−8 M | [24] |
Linearity: 5.0 × 10−7 − 10.0 × 10−5 M | |||||
AZY | MIP/GCE | SWV | Tap and sewage water | LOD = 1.20 × 10−7 M | [105] |
Linearity: 4.0 × 10−7 − 1.0 × 10−4 M | |||||
CAP | MWCNTs/MIP/CKM-3/P-r-GO /GCE | DPV | Milk, honey | LOD = 1.0 × 10−10 M | [101] |
Linearity: 5.0 × 10−9 − 5 × 10−7 M; 5.0 × 10−7 − 4.0 × 10−6 M | |||||
CAP | 3D CNTs@Cu NPs@MIP /GCE | CV | PBS, milk | LOD = 1.0 × 10−5 M | [106] |
Linearity: 1.0 × 10−5 − 5.0 × 10−4 M | |||||
CAP | MIP/PEDOT/SPCE | EIS/SWV | Aquarium fish water | LOD = 2.6 × 10−10 M/6.5 × 10−10 | [26] |
Linearity: 1.0 × 10−9 − 1.0 × 10−7 M | |||||
CFE | AgDs/MIP/cMWCNTs/GCE | ASDPV | Tablets, serum | LOD = 1.0 × 10−9 M | [94] |
Linearity: 1.0 × 10−8 − 6.0 × 10−4 M | |||||
CFE | AuNW/GO/MIP/GCE | CV/ DPV | Human serum, urine | LOD = 7.1 × 10−9 M | [91] |
Linearity: 2.0 × 10−8 − 9.5 × 10−7 M | |||||
CFLX | MIP/GCE | DPV | Untreated river water, pharmaceuticals | LOD = 4.9 × 10−9 M | [92] |
Linearity: 1.0 × 10−8 − 1.0 × 10−6 M | |||||
CFX | MIP/Ag@AuNPs/ILs/GCE | DPV | BRB | LOD = 2.0 × 10−12 M | [107] |
Linearity: 1.0 × 10−11 − 1.0 × 10−9 M | |||||
CFZ | AgDs/MIP/cMWCNTs /GCE | ASDPV | Serum | LOD = 5.5 × 10−10 M | [12] |
Linearity: 2.0 × 10−9 − 5.0 × 10−7; 5.0 × 10−7 − 7.0 × 10−6 M | |||||
CIP | Ch-AuNp/MIP/GCE | DPV | Tablets, water | LOD = 2.1 × 10−7 M | [16] |
Linearity: 1.0 × 10−6 − 1.0 × 10−4 M | |||||
CLO | GO/AuNp/MIP/SPCE | DPV | Milk | LOD = 3.6 × 10−8 M | [97] |
Linearity: 1.1 × 10−7 − 7.5 × 10−7 M | |||||
CTC | MWCNT-IL/MIP/GCE | LSV/ DPV | Eye ointments, milk, tap water | LOD = 8.0 × 10−8 µM | [23] |
Linearity: 4.0 × 10−7 − 5.5 × 10−5 M | |||||
DAP | MIP/AuPtNPs/GCE | DPV | Serum, human plasma | LOD = 1.61 × 10−13 M | [108] |
Linearity:1.0 × 10−12 − 2.0 × 10−11 M | |||||
FZD | MWCNTs/MIP/CPE | DPV | Tap water, river water | LOD = 3.0 × 10−8 M | [18] |
Linearity:1.0 × 10−8 − 1.0 × 10−6 M | |||||
KANA | MWCNTs/Fe3O4/PMMA/CE | DPV | Chicken/ pig liver, milk | LOD = 2.3 × 10−11 M | [4] |
Linearity: 1.0 × 10−10 − 1.0 × 10−6 M | |||||
KANA | MIP/ BPPGE | CV (indirect) | Milk, honey | LOD = 3.9 × 10−6 M | [96] |
Linearity: 5.0 × 10−6 − 5.0 × 10−5 M | |||||
KANA | target/ APT/Fc/β-CD-SH/Au@Fe3O4/MIP/GCE | DPV | Milk, tap, artesian and groundwater | LOD = 1.87 × 10−9 M | [110] |
Linearity: 1.0 × 10−8 − 5.0 × 10−7 M | |||||
MMZ | MIP/PGE | DPV | Tablets, human blood serum | LOD = 3 × 10−6 M | [99] |
Linearity: 7.0 × 10−6 − 6 × 10−3 M | |||||
MNZ | MIP/MWCNTs/GCE | CV (indirect) | Tablets, fish meat | LOD = 2.87 × 10−10 M | [100] |
Linearity:1.0 × 10−9 − 1.2 × 10−6 M | |||||
MNZ | MIP/GCE | DPV/CV (indirect) | Mouse serum | LODDPV = 3.33 × 10−10 M LODCV = 6.67 × 10−10 M | [111] |
LinearityDPV: 1.0 × 10−9 − 1.0 × 10−8 M LinearityCV: 2.0 × 10−9 − 1.0 × 10−7 M | |||||
MNZ | CuCo2O4/N-CNTs/MIP /GCE | DPV | Tablets, human serum; urine | LOD = 4.8 × 10−10 M | [112] |
Linearity: 5.0 × 10−9 − 1.0 × 10−7 Μ; 1.0 × 10−7 − 1.0 × 10−4 M | |||||
MTX | MIP/GCE | DPV | Urine | LOD = 3 × 10−8 M | [113] |
Linearity: 6.0 × 10−8 − 1.0 × 10−5 M | |||||
NFX | fMWCNTs-MIP/GCE | DPV | Tablets, rat serum | LOD = 1.58 × 10−9 M | [114] |
Linearity: 3.0 × 10−9 − 3.9 × 10−7 M; 3.91 × 10−8 − 3.125 × 10−6 M | |||||
OXC | MIP/GNU/GO/SPCE | DPV | Milk | LOD = 2.0 × 10−10 M | [38] |
Linearity: 7.0 × 10−10 − 5.75 × 10−7 M | |||||
SDZ | MIP/GO@COF/GCE | DPV | Beef, fodder | LOD = 1.6 × 10−7 M | [93] |
Linearity: 5.0 × 10−7 − 2.0 × 10−4 M | |||||
SMD | MIP/GQDs-PtNPs/GCE | DPV | Milk, pork | LOD = 2.30 × 10−11 M | [39] |
Linearity: 1.00 × 10−10 − 1.00 × 10−4 M | |||||
SMX | oxMWCNTs/UPPyMIP /GCE | DPV | Milk | LOD = 4.13 × 10−11 M | [22] |
Linearity: 1.99 × 10−6 − 1.08 × 10−5 M | |||||
TC | MIOPPy-AuNP/SPCE | DPV | Shrimp | LOD = 6.5 × 10−7 M | [31] |
Linearity: 1.0 × 10−6 − 2.0 × 10−5 M | |||||
TC | Mag/MIP/CPE | SWV | Milk | LOD = 1.5 × 10−7 M | [32] |
Linearity: 5.0 × 10−7 − 4.0 × 10−5 M | |||||
TS | MIP/CoN NWs/CC | DPV | Tear, plasma, spiked urine | LOD = 5.5 × 10−12 M | [115] |
Linearity: 8.6 × 10−11 − 6.7 × 10−5 M | |||||
VAN | MIPDA/peptide/AuNPs/GCE | EIS | Fetal calf serum, probiotic drink, honey | LOQ = 1.0 × 10−12 M | [95] |
Linearity: 1.0 × 10−5 − 1.0 × 10−4 M | |||||
RIF, INZ | Cu-MOF/MC/MIP/GCE | CV/ DPV | Pharmaceutical formulations, blood serum, urine | LODRIF = 2.8 × 10−10 M LODINZ = 3.7 × 10−10 M | [7] |
Linearity: 8.0 × 10−8 − 8.5 × 10−5 M |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Preda, D.; David, I.G.; Popa, D.-E.; Buleandra, M.; Radu, G.L. Recent Trends in the Development of Carbon-Based Electrodes Modified with Molecularly Imprinted Polymers for Antibiotic Electroanalysis. Chemosensors 2022, 10, 243. https://doi.org/10.3390/chemosensors10070243
Preda D, David IG, Popa D-E, Buleandra M, Radu GL. Recent Trends in the Development of Carbon-Based Electrodes Modified with Molecularly Imprinted Polymers for Antibiotic Electroanalysis. Chemosensors. 2022; 10(7):243. https://doi.org/10.3390/chemosensors10070243
Chicago/Turabian StylePreda, Daniel, Iulia Gabriela David, Dana-Elena Popa, Mihaela Buleandra, and Gabriel Lucian Radu. 2022. "Recent Trends in the Development of Carbon-Based Electrodes Modified with Molecularly Imprinted Polymers for Antibiotic Electroanalysis" Chemosensors 10, no. 7: 243. https://doi.org/10.3390/chemosensors10070243
APA StylePreda, D., David, I. G., Popa, D. -E., Buleandra, M., & Radu, G. L. (2022). Recent Trends in the Development of Carbon-Based Electrodes Modified with Molecularly Imprinted Polymers for Antibiotic Electroanalysis. Chemosensors, 10(7), 243. https://doi.org/10.3390/chemosensors10070243