Gas Sensor Based on ZnO Nanostructured Film for the Detection of Ethanol Vapor
Abstract
:1. Introduction
2. Experimental Details
2.1. Synthesis of ZnO<La> Material
2.2. Gas Sensor Fabrication
2.3. Gas Sensing Test
2.4. Characterization
3. Results and Discussion
3.1. Gas Sensing Studies
3.2. Gas Sensing Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, G.; Zhang, X.; Lu, H.; Yan, C.; Chen, K.; Lu, H.; Gao, J.; Yang, Z.; Zhu, G.; Wang, C.; et al. Ethanol sensing properties and reduced sensor resistance using porous Nb2O5-TiO2 n-n junction nanofibers. Sens. Actuators B Chem. 2019, 283, 602–612. [Google Scholar] [CrossRef]
- Boroujerdi, R.; Paul, R. Introducing Graphene–Indium Oxide Electrochemical Sensor for Detecting Ethanol in Aqueous Samples with CCD-RSM Optimization. Chemosensors 2022, 10, 42. [Google Scholar] [CrossRef]
- Wang, C.; Li, R.; Feng, L.; Xu, J. The SnO2/MXene Composite Ethanol Sensor Based on MEMS Platform. Chemosensors 2022, 10, 109. [Google Scholar] [CrossRef]
- Ayyala, S.K.; Covington, J.A. Nickel-Oxide Based Thick-Film Gas Sensors for Volatile Organic Compound Detection. Chemosensors 2021, 9, 247. [Google Scholar] [CrossRef]
- Wright, N.A.; Lee, L.-T. Alcohol-related traffic laws and drunk-driving fatal accidents. Accid. Anal. Prev. 2021, 161, 106358. [Google Scholar] [CrossRef]
- Duko, B.; Pereira, G.; Betts, K.; Tait, R.J.; Newnham, J.; Alati, R. Associations of prenatal alcohol exposure and offspring harmful alcohol use: Findings from the Raine Study. Drug Alcohol. Depend. 2020, 217, 108305. [Google Scholar] [CrossRef]
- Deng, X.; Zhang, L.; Guo, J.; Chen, Q.; Ma, J. ZnO enhanced NiO-based gas sensors towards ethanol. Mater. Res. Bull. 2017, 90, 170–174. [Google Scholar] [CrossRef]
- Wahab, R.; Ahmad, N.; Alam, M.; Ahmad, J. Nanorods of ZnO: An effective hydrazine sensor and their chemical properties. Vacuum 2019, 165, 290–296. [Google Scholar] [CrossRef]
- Wang, B.-R.; Wang, R.-Z.; Bai, Y.-J.; Liu, L.-Y.; Jiang, Q.-L. Zinc oxide nanonets with hierarchical crystalline nodes: High-performance ethanol sensors enhanced by grain boundaries. J. Alloy. Compd. 2021, 877, 160277. [Google Scholar] [CrossRef]
- Tan, X.-Q.; Liu, J.-Y.; Niu, J.-R.; Liu, J.-Y.; Tian, J.-Y. Recent Progress in Magnetron Sputtering Technology Used on Fabrics. Materials 2018, 11, 1953. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Li, S.; Li, L.; Chen, L.; Zhu, Y. Facile fabrication and superior gas sensing properties of spongelike Co-doped ZnO microspheres for ethanol sensors. Ceram. Int. 2018, 44, 16773–16780. [Google Scholar] [CrossRef]
- Juang, F.-R.; Chen, B.-Y. Effect of adding ZHS microcubes on ZnO nanorods for CO2 gas sensing applications. Solid-State Electron. 2020, 164, 107711. [Google Scholar] [CrossRef]
- Aleksanyan, M.S.; Sayunts, A.G.; Shahkhatuni, G.H.; Aroutiounian, V.M.; Shahnazaryan, G.E. Study of Characteristics of the Sensor Detecting of Low Concentration of Ammonia. J. Contemp. Phys. Armen. Acad. Sci. 2021, 56, 352–358. [Google Scholar] [CrossRef]
- Nie, C.; Zeng, W.; Li, Y. The 3D crystal morphologies of NiO gas sensor and constantly improved sensing properties to ethanol. J. Mater. Sci. Mater. Electron. 2018, 30, 1794–1802. [Google Scholar] [CrossRef]
- Tharsika, T.; Thanihaichelvan, M.; Haseeb, A.S.M.A.; Akbar, S.A. Highly Sensitive and Selective Ethanol Sensor Based on ZnO Nanorod on SnO2 Thin Film Fabricated by Spray Pyrolysis. Front. Mater. 2019, 6, 122. [Google Scholar] [CrossRef]
- Zhang, K.; Lin, Z. Highly sensitive ethanol sensor based on zinc oxide-based nanomaterials with low power consumption. J. Mater. Sci. Mater. Electron. 2021, 32, 17395–17405. [Google Scholar] [CrossRef]
- Subha, P.P.; Jayaraj, M.K. Enhanced room temperature gas sensing properties of low temperature solution processed ZnO/CuO heterojunction. BMC Chem. 2019, 13, 4. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Gupta, A.; Shafiei, M.; Langford, S.J. Recent Advances in Perylene Diimide-Based Active Materials in Electrical Mode Gas Sensing. Chemosensors 2021, 9, 30. [Google Scholar] [CrossRef]
- Nasri, A.; Pétrissans, M.; Fierro, V.; Celzard, A. Gas sensing based on organic composite materials: Review of sensor types, progresses and challenges. Mater. Sci. Semicond. Process. 2021, 128, 105744. [Google Scholar] [CrossRef]
- An, T.K.; Yun, H.-J.; Narote, R.; Kim, R.; Lee, S.U.; Kim, Y.; Nam, S.; Cha, H.; Jeong, Y.J.; Kim, K.; et al. Synthesis and characterization of an ester-terminated organic semiconductor for ethanol vapor detection. Org. Electron. 2014, 15, 2277–2284. [Google Scholar] [CrossRef]
- Wei, H.-L.; Kumar, P.; Yao, D.-J. Printed Resistive Sensor Array Combined with a Flexible Substrate for Ethanol and Methane Detection. ECS J. Solid State Sci. Technol. 2020, 9, 115008. [Google Scholar] [CrossRef]
- Aroutiounian, V.M.; Arakelyan, V.M.; Xachaturyan, E.A.; Shahnazaryan, G.E.; Aleksanyan, M.S.; Forro, L.; Magrez, A.; Her-nadi, K.; Nemeth, Z. Manufacturing and investigations of i-butane sensor made of SnO2/multiwall-carbon-nanotube nanocomposite. Sens. Actuators B Chem. 2012, 173, 890–896. [Google Scholar] [CrossRef]
- Pandeeswari, R.; Jeyaprakash, B.G. High sensing response of β-Ga2O3 thin film towards ammonia vapours: Influencing factors at room temperature. Sens. Actuators B Chem. 2014, 195, 206–214. [Google Scholar] [CrossRef]
- Du, X.; George, S.M. Thickness dependence of sensor response for CO gas sensing by tin oxide films grown using atomic layer deposition. Sens. Actuators B Chem. 2008, 135, 152–160. [Google Scholar] [CrossRef]
- Wilson, R.L.; Simion, C.E.; Blackman, C.S.; Carmalt, C.J.; Stanoiu, A.; Di Maggio, F.; Covington, J.A. The Effect of Film Thickness on the Gas Sensing Properties of Ultra-Thin TiO2 Films Deposited by Atomic Layer Deposition. Sensors 2018, 18, 735. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Kumar, A.; Gautam, Y.K.; Chandra, R.; Goyat, M.S.; Tewari, B.S.; Tewari, R.K. Influence of SiC thin films thickness on the electrical properties of Pd/SiC thin films for hydrogen gas sensor. Vacuum 2020, 182, 109750. [Google Scholar] [CrossRef]
- Tian, J.; Jiang, H.; Deng, X.; Zhao, X.; Tian, J.; Shi, G.; Li, G.; Zhang, J.; Zhang, W. Response modulation of PdNi nano-film hydrogen sensors by thickness control. Appl. Surf. Sci. 2021, 562, 150064. [Google Scholar] [CrossRef]
- Mauraya, A.K.; Singh, P.; Muthiah, S.; Kushvaha, S.S.; Muthusamy, S.K. Effect of post-oxidation processes and thickness of SnO2 films prepared by vacuum evaporation on CO gas sensing characteristics. Ceram. Int. 2021, 47, 13015–13022. [Google Scholar] [CrossRef]
- Nandi, S.K.; Chakraborty, S.; Bera, M.K.; Maiti, C.K. Structural and optical properties of ZnO films grown on silicon and their applications in MOS devices in conjunction with ZrO2 as a gate dielectric. Bull. Mater. Sci. 2007, 30, 247–254. [Google Scholar] [CrossRef]
- Manikandan, A.; Manikandan, E.; Meenatchi, B.; Vadivel, S.; Jaganathan, S.K.; Ladchumananandasivam, R.; Henini, M.; Maaza, M.; Aanand, J.S. Rare earth element (REE) lanthanum doped zinc oxide (La: ZnO) nanomaterials: Synthesis structural optical and antibacterial studies. J. Alloys Compd. 2017, 723, 1155–1161. [Google Scholar] [CrossRef] [Green Version]
- Alamdari, S.; Ghamsari, M.S.; Lee, C.; Han, W.; Park, H.-H.; Tafreshi, M.J.; Afarideh, H.; Ara, M.H.M. Preparation and Characterization of Zinc Oxide Nanoparticles Using Leaf Extract of Sambucus ebulus. Appl. Sci. 2020, 10, 3620. [Google Scholar] [CrossRef]
- Cao, P.; Yang, Z.; Navale, S.T.; Han, S.; Liu, X.; Liu, W.; Lu, Y.; Stadler, F.J.; Zhu, D. Ethanol sensing behavior of Pd-nanoparticles decorated ZnO-nanorod based chemiresistive gas sensors. Sens. Actuators B Chem. 2019, 298, 126850. [Google Scholar] [CrossRef]
- Rafiee, Z.; Roshan, H.; Sheikhi, M.H. Low concentration ethanol sensor based on graphene/ZnO nanowires. Ceram. Int. 2021, 47, 5311–5317. [Google Scholar] [CrossRef]
- Hui, G.; Zhu, M.; Yang, X.; Liu, L.; Pan, G.; Wang, Z. Highly sensitive ethanol gas sensor based on CeO2/ZnO binary heterojunction composite. Mater. Lett. 2020, 278, 128453. [Google Scholar] [CrossRef]
- Sudha, M.; Radha, S.; Kirubaveni, S.; Kiruthika, R.; Govindaraj, R.; Santhosh, N. Experimental study on structural, optoelectronic and room temperature sensing performance of Nickel doped ZnO based ethanol sensors. Solid State Sci. 2018, 78, 30–39. [Google Scholar] [CrossRef]
- Xu, M.; Li, Q.; Ma, Y.; Fan, H. Ni-doped ZnO nanorods gas sensor: Enhanced gas-sensing properties, AC and DC electrical behaviors. Sens. Actuators B Chem. 2014, 199, 403–409. [Google Scholar] [CrossRef]
- Darvishnejad, M.H.; Firooz, A.A.; Beheshtian, J.; Khodadadi, A.A. Highly sensitive and selective ethanol and acetone gas sensors by adding some dopants (Mn, Fe, Co, Ni) onto hexagonal ZnO plates. RSC Adv. 2016, 6, 7838–7845. [Google Scholar] [CrossRef]
- Zahirullah, S.S.; Immanuel, P.; Pravinraj, S.; Inbaraj, P.F.H.; Prince, J.J. Synthesis and characterization of Bi doped ZnO thin films using SILAR method for ethanol sensor. Mater. Lett. 2018, 230, 1–4. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Han, N.; Zhou, X.; Gong, S.; Yang, L.; Hu, P.; Chen, Y. Highly sensitive and selective ethanol and acetone gas sensors based on modified ZnO nanomaterials. Mater. Des. 2017, 121, 69–76. [Google Scholar] [CrossRef]
- Vijayalakshmi, K.; Jereil, S.D. Enhanced ethanol sensing performance of Fe: TiO2 nanowires and their mechanism of sensing at room temperature. Ceram. Int. 2015, 41, 3220–3226. [Google Scholar] [CrossRef]
- Afrouzmehr, M.; Yasrebi, N.; Sheikhi, M.H. Fabrication and characterization of Ag-Decorated indium–tin-oxide nanoparticle based ethanol sensors using an enhanced electrophoretic method. Ceram. Int. 2021, 47, 30504–30513. [Google Scholar] [CrossRef]
- Cheng, Y.; Guo, H.; Wang, Y.; Zhao, Y.; Li, Y.; Liu, L.; Li, H.; Duan, H. Low cost fabrication of highly sensitive ethanol sensor based on Pd-doped α-Fe 2 O 3 porous nanotubes. Mater. Res. Bull. 2018, 105, 21–27. [Google Scholar] [CrossRef]
- Umar, A.; Ibrahim, A.A.; Nakate, U.T.; Albergi, H.; Alsaiari, M.A.; Ahmed, F.; Alharthi, F.A.; Alghamdi, A.A.; Al-Zaqri, N. Fabrication and characterization of CuO nanoplates based sensor device for ethanol gas sensing application. Chem. Phys. Lett. 2021, 763, 138204. [Google Scholar] [CrossRef]
- Wang, L.; Ma, S.; Xu, X.; Li, L.; Yang, T.; Cao, P.; Yun, P.; Wang, S.; Han, T. Oxygen vacancy-based Tb-doped SnO2 nanotubes as an ultra-sensitive sensor for ethanol detection. Sens. Actuators B Chem. 2021, 344, 130111. [Google Scholar] [CrossRef]
- Liu, H.; Fan, H.-T.; Xu, X.-J.; Lu, H.; Zhang, T. Synthesis and gas sensing characteristics of LaxSr1−xFeO3 nanofibers via electrospinning. Solid-State Electron. 2013, 79, 87–91. [Google Scholar] [CrossRef]
- Piliai, L.; Tomeček, D.; Hruška, M.; Khalakhan, I.; Nováková, J.; Fitl, P.; Yatskiv, R.; Grym, J.; Vorokhta, M.; Matolínová, I.; et al. New Insights towards High-Temperature Ethanol-Sensing Mechanism of ZnO-Based Chemiresistors. Sensors 2020, 20, 5602. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, J. Palladium Reagents and Catalysts: New Perspectives for the 21st Century, 1st ed.; John Wiley & Sons Ltd.: Chichester, UK, 2004; pp. 1–26. [Google Scholar]
- Ren, Q.; Cao, Y.-Q.; Arulraj, D.; Liu, C.; Wu, D.; Li, W.-M.; Li, A.-D. Review—Resistive-Type Hydrogen Sensors Based on Zinc Oxide Nanostructures. J. Electrochem. Soc. 2020, 167, 067528. [Google Scholar] [CrossRef]
Temperature (°C) | Response Time (s) | Recovery Time (s) | Response |
---|---|---|---|
100 | 1.27 × 103 | 2.47 × 103 | 3.16 |
150 | 0.6 × 103 | 2.41 × 103 | 4.88 |
200 | 42 | 0.19 × 103 | 13.1 |
250 | 14 | 61 | 1.17 × 102 |
300 | 12 | 8 | 22.6 |
Materials | T (°C) | Ethanol (ppm) | Response | Reference |
---|---|---|---|---|
Pd decorated ZnO nanorods | 260 | 500 | 81% | [32] |
Graphene/ZnO nanowires | 125 | 20 | 26 | [33] |
CeO2/ZnO nanosheets | 310 | 100 | 90 | [34] |
ZnO<Ni> nanorods | 150 | 100 | 376% | [35] |
Ni-ZnO | 370 | 500 | 313% | [36] |
Co-ZnO plates | 300 | 300 | 570% | [37] |
ZnO<Bi> nanograin | 400 | 1000 | 60% | [38] |
ZnO<Mn> nanograins | 240 | 20 | 11.4 | [39] |
ZnO<La> | 250 | 675 | 117 | This work |
ZnO<La> nanograins | 250 | 0.7 | 1.5 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aleksanyan, M.; Sayunts, A.; Shahkhatuni, G.; Simonyan, Z.; Shahnazaryan, G.; Aroutiounian, V. Gas Sensor Based on ZnO Nanostructured Film for the Detection of Ethanol Vapor. Chemosensors 2022, 10, 245. https://doi.org/10.3390/chemosensors10070245
Aleksanyan M, Sayunts A, Shahkhatuni G, Simonyan Z, Shahnazaryan G, Aroutiounian V. Gas Sensor Based on ZnO Nanostructured Film for the Detection of Ethanol Vapor. Chemosensors. 2022; 10(7):245. https://doi.org/10.3390/chemosensors10070245
Chicago/Turabian StyleAleksanyan, Mikayel, Artak Sayunts, Gevorg Shahkhatuni, Zarine Simonyan, Gohar Shahnazaryan, and Vladimir Aroutiounian. 2022. "Gas Sensor Based on ZnO Nanostructured Film for the Detection of Ethanol Vapor" Chemosensors 10, no. 7: 245. https://doi.org/10.3390/chemosensors10070245
APA StyleAleksanyan, M., Sayunts, A., Shahkhatuni, G., Simonyan, Z., Shahnazaryan, G., & Aroutiounian, V. (2022). Gas Sensor Based on ZnO Nanostructured Film for the Detection of Ethanol Vapor. Chemosensors, 10(7), 245. https://doi.org/10.3390/chemosensors10070245