Review—Recent Progress in Graphene Based Modified Electrodes for Electrochemical Detection of Dopamine
Abstract
:1. Introduction
2. Overview of Graphene Synthesis and Electrochemical Properties
2.1. Synthesis Methods
2.2. Electrochemical Properties
2.3. Electrochemical Techniques of Dopamine Detection
2.3.1. Cyclic Voltammetry (CV)
2.3.2. Differential Pulse Voltammetry (DPV) and Square Wave Voltammetry (SWV)
2.3.3. Amperometric i-t Curve
3. Application of Graphene in Electroanalytical Detection of DA
3.1. Reduced Graphene Oxide
3.2. Doped Reduced Graphene Oxide
3.3. Graphene Nanocomposite
3.3.1. Graphene/Metal Oxide
3.3.2. Graphene/Metal Nanoparticles
3.3.3. Graphene/Conducting Polymers
Sensor | Linear Range µM | LOD µM | Sensitivity A/M−1 | Anti-Interference Molecules | Ref. |
---|---|---|---|---|---|
rGO-SP-FTO | 5 × 10−1–50 | 7 × 10−2 | - | AA and UA | [44] |
3D-GNM electrode | 5–25 | 2.6 × 10−1 | - | [48] | |
SPCE/GONR | 5 × 10−1–3 × 102 | 1.5 × 10−1 | 5.49 × 10−2 | UA | [47] |
GCE/pyrrolic-N-rGO | 5 × 10−1–85 | 3.35 × 10−1 | 3.51 | UA | [56] |
GCE/N-rGO | 103–6 × 104 | 102 | - | AA and UA | [57] |
NHGA/GCE | 5–50 | 2.2 × 10−1 | - | AA and UA | [59] |
3D-NG/GCE | 1–103 | 2.6 × 10−1 | - | AA and UA | [60] |
GCE/CuAlO2-rGO | 9.2 × 10−2–1.6 × 10−1 | 1.5 × 10−2 | - | AA and UA | [64] |
Fe2O3-NiO@GO/GCE | 10–15 × 102 | 5 × 10−3 | 1.68 × 10−1 | metabolic species | [65] |
MnO2NFs/NG/GCE | 10−1–10 | 4.3 × 10−2 | - | UA | [67] |
Au/CRGO/Fc-ac-PPP | 10−4−103 | 2 × 10−4 | - | AA and UA | [27] |
GN/PEDOT/GCE | 2 × 10−1–90 | 54 × 10−3 | 9 × 10−4 | AA and UA | [70] |
PEDOS/N-Gr/GCE | 8 × 10−3–80 | 6.6 × 10−3 | - | AA and UA | [71] |
PEDOT/N-Gr/GCE | 4 × 10−2–70 | 1.8 × 10−2 | - | ||
PANI/TRGO-700 | 8 × 10−1–20 | 4.3 × 10−1 | 6.7 | AA and UA | [72] |
AuNPs@GO/PPy/CFP | 2 × 10−1–60 | 1.15 × 10−1 | - | AA and UA | [73] |
Fe3O4@PPy/rGO | 0–102 | 6.3 × 10−2 | 8.35 × 10−1 | - | [74] |
3.3.4. Graphene/Chitosan Nanocomposite
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pandikumar, A.; How, G.T.S.; Peik See, T.; Saiha Omar, F.; Jayabal, S.; Zangeneh Kamali, K.; Yusoff, N.; Jamil, A.; Ramaraj, R.; Abraham John, S.; et al. Graphene and Its Nanocomposite Material Based Electrochemical Sensor Platform for Dopamine. RSC Adv. 2014, 4, 63296–63323. [Google Scholar] [CrossRef] [Green Version]
- Shafi, P.M.; Joseph, N.; Karthik, R.; Shim, J.-J.; Bose, A.C.; Ganesh, V. Lemon Juice-Assisted Synthesis of LaMnO3 Perovskite Nanoparticles for Electrochemical Detection of Dopamine. Microchem. J. 2021, 164, 105945. [Google Scholar] [CrossRef]
- Shi, Z.; Wu, X.; Zou, Z.; Yu, L.; Hu, F.; Li, Y.; Guo, C.; Li, C.M. Screen-Printed Analytical Strip Constructed with Bacteria-Templated Porous N-Doped Carbon Nanorods/Au Nanoparticles for Sensitive Electrochemical Detection of Dopamine Molecules. Biosens. Bioelectron. 2021, 186, 113303. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-Y.; Kang, P.; Wang, S.-Q.; Liu, Z.-G.; Li, Y.-X.; Guo, Z. Ag Nanoparticles Anchored onto Porous CuO Nanobelts for the Ultrasensitive Electrochemical Detection of Dopamine in Human Serum. Sens. Actuators B Chem. 2021, 327, 128878. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.; Xu, L.; Peng, C.; Song, Y. A Novel Popamine-Imprinted Chitosan/CuCo2O4@carbon/Three-Dimensional Macroporous Carbon Integrated Electrode. J. Alloys Compd. 2020, 817, 152771. [Google Scholar] [CrossRef]
- Ali, S.R.; Ma, Y.; Parajuli, R.R.; Balogun, Y.; Lai, W.Y.-C.; He, H. A Nonoxidative Sensor Based on a Self-Doped Polyaniline/Carbon Nanotube Composite for Sensitive and Selective Detection of the Neurotransmitter Dopamine. Anal. Chem. 2007, 79, 2583–2587. [Google Scholar] [CrossRef]
- Zhao, K.; Quan, X. Carbon-Based Materials for Electrochemical Reduction of CO2 to C2+ Oxygenates: Recent Progress and Remaining Challenges. ACS Catal. 2021, 11, 2076–2097. [Google Scholar] [CrossRef]
- Scotto, J.; Piccinini, E.; von Bilderling, C.; Coria-Oriundo, L.L.; Battaglini, F.; Knoll, W.; Marmisolle, W.A.; Azzaroni, O. Flexible Conducting Platforms Based on PEDOT and Graphite Nanosheets for Electrochemical Biosensing Applications. Appl. Surf. Sci. 2020, 525, 146440. [Google Scholar] [CrossRef]
- Ananda Murthy, H.C.; Gebremedhn Kelele, K.; Ravikumar, C.R.; Nagaswarupa, H.P.; Tadesse, A.; Desalegn, T. Graphene-Supported Nanomaterials as Electrochemical Sensors: A Mini Review. Results Chem. 2021, 3, 100131. [Google Scholar] [CrossRef]
- Lawal, A.T. Graphene-Based Nano Composites and Their Applications. A Review. Biosens. Bioelectron. 2019, 141, 111384. [Google Scholar] [CrossRef]
- Silva, A.O.; Cunha, R.S.; Hotza, D.; Machado, R.A.F. Chitosan as a Matrix of Nanocomposites: A Review on Nanostructures, Processes, Properties, and Applications. Carbohydr. Polym. 2021, 272, 118472. [Google Scholar] [CrossRef] [PubMed]
- da Silva Alves, D.C.; Healy, B.; Yu, T.; Breslin, C. Graphene-Based Materials Immobilized within Chitosan: Applications as Adsorbents for the Removal of Aquatic Pollutants. Materials 2021, 14, 3655. [Google Scholar] [CrossRef] [PubMed]
- Eddin, F.B.K.; Fen, Y.W. Recent Advances in Electrochemical and Optical Sensing of Dopamine. Sensors 2020, 20, 1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Q.; Liu, J.; Liu, X.; Li, G.; Chen, D.; Deng, P.; Liang, J. Fabrication of Amine-Modified Magnetite-Electrochemically Reduced Graphene Oxide Nanocomposite Modified Glassy Carbon Electrode for Sensitive Dopamine Determination. Nanomaterials 2018, 8, 194. [Google Scholar] [CrossRef] [Green Version]
- Prekodravac, J.R.; Kepić, D.P.; Colmenares, J.C.; Giannakoudakis, D.A.; Jovanović, S.P. A Comprehensive Review on Selected Graphene Synthesis Methods: From Electrochemical Exfoliation through Rapid Thermal Annealing towards Biomass Pyrolysis. J. Mater. Chem. C 2021, 9, 6722–6748. [Google Scholar] [CrossRef]
- Lee, J.-H.; Park, S.-J.; Choi, J.-W. Electrical Property of Graphene and Its Application to Electrochemical Biosensing. Nanomaterials 2019, 9, 297. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Wang, C.; Sui, X.; Riaz, M.A.; Xu, M.; Wei, L.; Chen, Y. Synthesis of Graphene Materials by Electrochemical Exfoliation: Recent Progress and Future Potential. Carbon Energy 2019, 1, 173–199. [Google Scholar] [CrossRef] [Green Version]
- Olabi, A.G.; Abdelkareem, M.A.; Wilberforce, T.; Sayed, E.T. Application of Graphene in Energy Storage Device—A Review. Renew. Sustain. Energy Rev. 2021, 135, 110026. [Google Scholar] [CrossRef]
- Phan, D.-T.; Chung, G.-S. Effects of Rapid Thermal Annealing on Humidity Sensor Based on Graphene Oxide Thin Films. Sens. Actuators B Chem. 2015, 220, 1050–1055. [Google Scholar] [CrossRef]
- Bhuyan, M.S.A.; Uddin, M.N.; Islam, M.; Bipasha, F.A.; Hossain, S.S. Synthesis of Graphene. Int. Nano Lett. 2016, 6, 65–83. [Google Scholar] [CrossRef] [Green Version]
- Yue, H.Y.; Song, S.S.; Guo, X.R.; Huang, S.; Gao, X.; Wang, Z.; Wang, W.Q.; Zhang, H.J.; Wu, P.F. Three-Dimensional ZnO Nanosheet Spheres/Graphene Foam for Electrochemical Determination of Levodopa in the Presence of Uric Acid. J. Electroanal. Chem. 2019, 838, 142–147. [Google Scholar] [CrossRef]
- Yu, X.Z.; Hwang, C.G.; Jozwiak, C.M.; Köhl, A.; Schmid, A.K.; Lanzara, A. New Synthesis Method for the Growth of Epitaxial Graphene. J. Electron Spectrosc. Relat. Phenom. 2011, 184, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Prekodravac, J.; Marković, Z.; Jovanović, S.; Budimir, M.; Peruško, D.; Holclajtner-Antunović, I.; Pavlović, V.; Syrgiannis, Z.; Bonasera, A.; Todorović-Marković, B. The Effect of Annealing Temperature and Time on Synthesis of Graphene Thin Films by Rapid Thermal Annealing. Synth. Met. 2015, 209, 461–467. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Z.; Liu, P.; Guo, X. Laser-Induced Graphene Based Flexible Electronic Devices. Biosensors 2022, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Korri-Youssoufi, H.; Zribi, B.; Miodek, A.; Haghiri-Gosnet, A.-M. Chapter 4-Carbon-Based Nanomaterials for Electrochemical DNA Sensing. In Nanotechnology and Biosensors; Nikolelis, D.P., Nikoleli, G.-P., Eds.; Advanced Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2018; pp. 113–150. ISBN 978-0-12-813855-7. [Google Scholar]
- Brownson, D.A.C.; Kampouris, D.K.; Banks, C.E. Graphene Electrochemistry: Fundamental Concepts through to Prominent Applications. Chem. Soc. Rev. 2012, 41, 6944–6976. [Google Scholar] [CrossRef]
- Hsine, Z.; Bizid, S.; Mlika, R.; Sauriat-Dorizon, H.; Haj Said, A.; Korri-Youssoufi, H. Nanocomposite Based on Poly (Para-Phenylene)/Chemical Reduced Graphene Oxide as a Platform for Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid. Sensors 2020, 20, 1256. [Google Scholar] [CrossRef] [Green Version]
- Chu, K.; Wang, J.; Liu, Y.; Li, Y.; Jia, C.; Zhang, H. Creating Defects on Graphene Basal-Plane toward Interface Optimization of Graphene/CuCr Composites. Carbon 2019, 143, 85–96. [Google Scholar] [CrossRef]
- Pavlov, S.V.; Kislenko, S.A. Graphene Electrochemistry: Edge vs. Basal Plane Sites. J. Phys. Conf. Ser. 2018, 1092, 012112. [Google Scholar] [CrossRef]
- Pavlov, S.V.; Nazmutdinov, R.R.; Fedorov, M.V.; Kislenko, S.A. Role of Graphene Edges in the Electron Transfer Kinetics: Insight from Theory and Molecular Modeling. J. Phys. Chem. C 2019, 123, 6627–6634. [Google Scholar] [CrossRef]
- Burke, M.; Larrigy, C.; Vaughan, E.; Paterakis, G.; Sygellou, L.; Quinn, A.J.; Herzog, G.; Galiotis, C.; Iacopino, D. Fabrication and Electrochemical Properties of Three-Dimensional (3D) Porous Graphitic and Graphene like Electrodes Obtained by Low-Cost Direct Laser Writing Methods. ACS Omega 2020, 5, 1540–1548. [Google Scholar] [CrossRef]
- Zhang, G.; Cuharuc, A.S.; Güell, A.G.; Unwin, P.R. Electrochemistry at Highly Oriented Pyrolytic Graphite (HOPG): Lower Limit for the Kinetics of Outer-Sphere Redox Processes and General Implications for Electron Transfer Models. Phys. Chem. Chem. Phys. 2015, 17, 11827–11838. [Google Scholar] [CrossRef] [Green Version]
- Webb, M.J.; Palmgren, P.; Pal, P.; Karis, O.; Grennberg, H. A Simple Method to Produce Almost Perfect Graphene on Highly Oriented Pyrolytic Graphite. Carbon 2011, 49, 3242–3249. [Google Scholar] [CrossRef] [Green Version]
- Sumdani, M.G.; Islam, M.R.; Yahaya AN, A.; Safie, S.I. Recent Advances of the Graphite Exfoliation Processes and Structural Modification of Graphene: A Review. J. Nanoparticle Res. 2021, 23, 253. [Google Scholar] [CrossRef]
- Ashwini, R.; Mohanta, Z.; Kumar, M.K.P.; Santosh, M.S.; Srivastava, C. Enhanced Heterogeneous Electron Transfer Kinetics in Graphene Oxide Produced from Mechanically Milled Graphite. Carbon Trends 2021, 5, 100095. [Google Scholar] [CrossRef]
- Kislenko, V.A.; Pavlov, S.V.; Kislenko, S.A. Influence of Defects in Graphene on Electron Transfer Kinetics: The Role of the Surface Electronic Structure. Electrochim. Acta 2020, 341, 136011. [Google Scholar] [CrossRef]
- Yadav, A.; Wehrhold, M.; Neubert, T.J.; Iost, R.M.; Balasubramanian, K. Fast Electron Transfer Kinetics at an Isolated Graphene Edge Nanoelectrode with and without Nanoparticles: Implications for Sensing Electroactive Species. ACS Appl. Nano Mater. 2020, 3, 11725–11735. [Google Scholar] [CrossRef]
- Govindasamy, M.; Wang, S.-F.; Pan, W.C.; Subramanian, B.; Ramalingam, R.J.; Al-lohedan, H. Facile Sonochemical Synthesis of Perovskite-Type SrTiO3 Nanocubes with Reduced Graphene Oxide Nanocatalyst for an Enhanced Electrochemical Detection of α-Amino Acid (Tryptophan). Ultrason. Sonochemistry 2019, 56, 193–199. [Google Scholar] [CrossRef]
- Roy, I.; Sarkar, G.; Mondal, S.; Rana, D.; Bhattacharyya, A.; Saha, N.R.; Adhikari, A.; Khastgir, D.; Chattopadhyay, S.; Chattopadhyay, D. Synthesis and Characterization of Graphene from Waste Dry Cell Battery for Electronic Applications. RSC Adv. 2016, 6, 10557–10564. [Google Scholar] [CrossRef]
- Singh, M.; Sahu, A.; Mahata, S.; Singh, P.K.; Rai, V.K.; Rai, A. Efficient Electrochemical Determination of P-Aminophenol Using a Novel Tricomponent Graphene-Based Nanocomposite. New J. Chem. 2019, 43, 14972–14978. [Google Scholar] [CrossRef]
- Beitollahi, H.; Safaei, M.; Tajik, S. Different Electrochemical Sensors for Determination of Dopamine as Neurotransmitter in Mixed and Clinical Samples: A Review. Anal. Bioanal. Chem. Res. 2019, 6, 81–96. [Google Scholar] [CrossRef]
- dos Santos, P.L.; Katic, V.; Toledo, K.C.F.; Bonacin, J.A. Photochemical One-Pot Synthesis of Reduced Graphene Oxide/Prussian Blue Nanocomposite for Simultaneous Electrochemical Detection of Ascorbic Acid, Dopamine, and Uric Acid. Sens. Actuators B Chem. 2018, 255, 2437–2447. [Google Scholar] [CrossRef]
- Vinodhkumar, G.; Ramya, R.; Vimalan, M.; Potheher, I.; Cyrac Peter, A. Reduced Graphene Oxide Based on Simultaneous Detection of Neurotransmitters. Prog. Chem. Biochem. Res. 2018, 1, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Ahammad, A.J.S.; Islam, T.; Hasan, M.M.; Mozumder, M.N.I.; Karim, R.; Odhikari, N.; Pal, P.R.; Sarker, S.; Kim, D.M. Reduced Graphene Oxide Screen-Printed FTO as Highly Sensitive Electrodes for Simultaneous Determination of Dopamine and Uric Acid. J. Electrochem. Soc. 2018, 165, B174. [Google Scholar] [CrossRef]
- Xu, G.; Jarjes, Z.A.; Wang, H.-W.; Phillips, A.R.J.; Kilmartin, P.A.; Travas-Sejdic, J. Detection of Neurotransmitters by Three-Dimensional Laser-Scribed Graphene Grass Electrodes. ACS Appl. Mater. Interfaces 2018, 10, 42136–42145. [Google Scholar] [CrossRef]
- Yu, J.; Kim, T.H. A Facile Electrochemical Fabrication of Reduced Graphene Oxide-Modified Glassy Carbon Electrode for Simultaneous Detection of Dopamine, Ascorbic Acid, and Uric Acid. J. Electrochem. Sci. Technol 2017, 8, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, S.; Taher, M.A.; Beitollahi, H. Treated Screen Printed Electrodes Based on Electrochemically Reduced Graphene Nanoribbons for the Sensitive Voltammetric Determination of Dopamine in the Presence of Uric Acid. Electroanalysis 2020, 32, 2036–2044. [Google Scholar] [CrossRef]
- Gong, J.; Tang, H.; Wang, M.; Lin, X.; Wang, K.; Liu, J. Novel Three-Dimensional Graphene Nanomesh Prepared by Facile Electro-Etching for Improved Electroanalytical Performance for Small Biomolecules. Mater. Des. 2022, 215, 110506. [Google Scholar] [CrossRef]
- Baig, N.; Kawde, A.-N.; Ibrahim, M. Efficient Ionic Medium Supported Reduced Graphene Oxide-Based Sensor for Selective Sensing of Dopamine. Mater. Adv. 2020, 1, 783–793. [Google Scholar] [CrossRef]
- Butler, D.; Moore, D.; Glavin, N.R.; Robinson, J.A.; Ebrahimi, A. Facile Post-Deposition Annealing of Graphene Ink Enables Ultrasensitive Electrochemical Detection of Dopamine. ACS Appl. Mater. Interfaces 2021, 13, 11185–11194. [Google Scholar] [CrossRef]
- Anuar, N.S.; Basirun, W.J.; Ladan, M.; Shalauddin, M.D.; Mehmood, M.S. Fabrication of Platinum Nitrogen-Doped Graphene Nanocomposite Modified Electrode for the Electrochemical Detection of Acetaminophen. Sens. Actuators B Chem. 2018, 266, 375–383. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, C.; Zheng, F.; Li, X.; Sun, C.-L.; Chen, W. Nitrogen and Sulfur Co-Doped Graphene Nanoribbons: A Novel Metal-Free Catalyst for High Performance Electrochemical Detection of 2, 4, 6-Trinitrotoluene (TNT). Carbon 2018, 126, 328–337. [Google Scholar] [CrossRef]
- Yang, Z.; Zheng, X.; Zheng, J. A Facile One-Step Synthesis of Fe2O3/Nitrogen-Doped Reduced Graphene Oxide Nanocomposite for Enhanced Electrochemical Determination of Dopamine. J. Alloys Compd. 2017, 709, 581–587. [Google Scholar] [CrossRef] [Green Version]
- Kaushal, S.; Kaur, M.; Kaur, N.; Kumari, V.; Pal Singh, P. Heteroatom-Doped Graphene as Sensing Materials: A Mini Review. RSC Adv. 2020, 10, 28608–28629. [Google Scholar] [CrossRef]
- Bian, S.; Shen, C.; Qian, Y.; Liu, J.; Xi, F.; Dong, X. Facile Synthesis of Sulfur-Doped Graphene Quantum Dots as Fluorescent Sensing Probes for Ag+ Ions Detection. Sens. Actuators B Chem. 2017, 242, 231–237. [Google Scholar] [CrossRef]
- Wiench, P.; González, Z.; Gryglewicz, S.; Menéndez, R.; Gryglewicz, G. Enhanced Performance of Pyrrolic N-Doped Reduced Graphene Oxide-Modified Glassy Carbon Electrodes for Dopamine Sensing. J. Electroanal. Chem. 2019, 852, 113547. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, S. Electrochemical Sensors Based on Nitrogen-Doped Reduced Graphene Oxide for the Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid. J. Alloys Compd. 2020, 842, 155873. [Google Scholar] [CrossRef]
- Soni, R.; Palit, K.; Soni, M.; Kumar, R.; Sharma, S.K. Highly Sensitive Electrochemical Sensing of Neurotransmitter Dopamine from Scalable UV Irradiation-Based Nitrogen-Doped Reduced Graphene Oxide-Modified Electrode. Bull. Mater. Sci. 2020, 43, 175. [Google Scholar] [CrossRef]
- Feng, S.; Yu, L.; Yan, M.; Ye, J.; Huang, J.; Yang, X. Holey Nitrogen-Doped Graphene Aerogel for Simultaneously Electrochemical Determination of Ascorbic Acid, Dopamine and Uric Acid. Talanta 2021, 224, 121851. [Google Scholar] [CrossRef]
- Jiang, J.; Ding, D.; Wang, J.; Lin, X.; Diao, G. Three-Dimensional Nitrogen-Doped Graphene-Based Metal-Free Electrochemical Sensors for Simultaneous Determination of Ascorbic Acid, Dopamine, Uric Acid, and Acetaminophen. Analyst 2021, 146, 964–970. [Google Scholar] [CrossRef]
- Li, G.; Xia, Y.; Tian, Y.; Wu, Y.; Liu, J.; He, Q.; Chen, D. Review—Recent Developments on Graphene-Based Electrochemical Sensors toward Nitrite. J. Electrochem. Soc. 2019, 166, B881. [Google Scholar] [CrossRef]
- Ravi, A.; Punith Kumar, M.K.; Rekha, M.Y.; Santosh, M.S.; Srivastava, C. Chapter One-Graphene Based Nanocomposites: Synthesis, Properties and Application as Electrochemical Sensors. In Comprehensive Analytical Chemistry; Hussain, C.M., Ed.; Analytical Applications of Graphene for Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2020; Volume 91, pp. 1–20. [Google Scholar]
- Hira, S.A.; Yusuf, M.; Annas, D.; Nagappan, S.; Song, S.; Park, S.; Park, K.H. Recent Advances on Conducting Polymer-Supported Nanocomposites for Nonenzymatic Electrochemical Sensing. Ind. Eng. Chem. Res. 2021, 60, 13425–13437. [Google Scholar] [CrossRef]
- Subramaniam, T.; Kesavan, G.; Venkatachalam, G. Development of CuAlO2-Encapsulated Reduced Graphene Oxide Nanocomposites: An Efficient and Selective Electrocatalyst for Detection of Neurodegenerative Disorders. ACS Appl. Bio. Mater. 2020, 3, 7769–7778. [Google Scholar] [CrossRef]
- Wang, W.; Wei, F.; Han, B. Preparation of Electrochemical Sensor Based on Magnetic Graphene Nanocomposite for Determination of Dopamine. Int. J. Electrochem. Sci. 2022, 17, 220232. [Google Scholar] [CrossRef]
- Vinodhkumar, G.; Jose, S.P.; Lokeswarareddy, S.; Sekar, C.; Potheher, I.V.; Peter, A.C. Sensitivity Enhancement in RGO/Mn3O4 Hybrid Nanocomposites: A Modified Glassy Carbon Electrode for the Simultaneous Detection of Dopamine and Uric Acid. Synth. Met. 2021, 280, 116859. [Google Scholar] [CrossRef]
- Li, Q.; Xia, Y.; Wan, X.; Yang, S.; Cai, Z.; Ye, Y.; Li, G. Morphology-Dependent MnO2/Nitrogen-Doped Graphene Nanocomposites for Simultaneous Detection of Trace Dopamine and Uric Acid. Mater. Sci. Eng. C 2020, 109, 110615. [Google Scholar] [CrossRef]
- Minta, D.; González, Z.; Wiench, P.; Gryglewicz, S.; Gryglewicz, G. N-Doped Reduced Graphene Oxide/Gold Nanoparticles Composite as an Improved Sensing Platform for Simultaneous Detection of Dopamine, Ascorbic Acid, and Uric Acid. Sensors 2020, 20, 4427. [Google Scholar] [CrossRef]
- Hsine, Z.; Blili, S.; Milka, R.; Dorizon, H.; Said, A.H.; Korri-Youssoufi, H. Sensor Based on Redox Conjugated Poly(Para-Phenylene) for the Simultaneous Detection of Dopamine, Ascorbic Acid, and Uric Acid in Human Serum Sample. Anal. Bioanal. Chem. 2020, 412, 4433–4446. [Google Scholar] [CrossRef]
- Teng, H.; Song, J.; Xu, G.; Gao, F.; Luo, X. Nitrogen-Doped Graphene and Conducting Polymer PEDOT Hybrids for Flexible Supercapacitor and Electrochemical Sensor. Electrochim. Acta 2020, 355, 136772. [Google Scholar] [CrossRef]
- Kadir, A.; Jamal, R.; Abdiryim, T.; Sawut, N.; Che, Y.; Helil, Z.; Zhang, H. Electrochemical Sensor Formed from Poly(3,4-Ethylenedioxyselenophene) and Nitrogen-Doped Graphene Composite for Dopamine Detection. RSC Adv. 2021, 11, 37544–37551. [Google Scholar] [CrossRef]
- Minta, D.; González, Z.; Melendi-Espina, S.; Gryglewicz, G. Highly Efficient and Stable PANI/TRGO Nanocomposites as Active Materials for Electrochemical Detection of Dopamine. Surf. Interfaces 2022, 28, 101606. [Google Scholar] [CrossRef]
- Tan, C.; Zhao, J.; Sun, P.; Zheng, W.; Cui, G. Gold Nanoparticle Decorated Polypyrrole/Graphene Oxide Nanosheets as a Modified Electrode for Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. New J. Chem. 2020, 44, 4916–4926. [Google Scholar] [CrossRef]
- Santhosh Kumar, R.; Govindan, K.; Ramakrishnan, S.; Kim, A.R.; Kim, J.-S.; Yoo, D.J. Fe3O4 Nanorods Decorated on Polypyrrole/Reduced Graphene Oxide for Electrochemical Detection of Dopamine and Photocatalytic Degradation of Acetaminophen. Appl. Surf. Sci. 2021, 556, 149765. [Google Scholar] [CrossRef]
- El Khamlichi, R.; Bouchta, D.; Ben Atia, M.; Choukairi, M.; Khalid, R.T.; Raissouni, I.; Tazi, S.; Mohammadi, A.; Soussi, A.; Draoui, K.; et al. A Novel Carbon/Chitosan Paste Electrode for Electrochemical Detection of Normetanephrine in the Urine. J. Solid State Electrochem. 2018, 22, 1983–1994. [Google Scholar] [CrossRef]
- Annu; Raja, A.N. Recent Development in Chitosan-Based Electrochemical Sensors and Its Sensing Application. Int. J. Biol. Macromol. 2020, 164, 4231–4244. [Google Scholar] [CrossRef]
- Selvarajan, S.; Suganthi, A.; Rajarajan, M. A Facile Approach to Synthesis of Mesoporous SnO2/Chitosan Nanocomposite Modified Electrode for Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. Surf. Interfaces 2017, 7, 146–156. [Google Scholar] [CrossRef]
- Tashkhourian, J.; Nami-Ana, S.F.; Shamsipur, M. Designing a Modified Electrode Based on Graphene Quantum Dot-Chitosan Application to Electrochemical Detection of Epinephrine. J. Mol. Liq. 2018, 266, 548–556. [Google Scholar] [CrossRef]
- Kafi, M.A.; Paul, A.; Vilouras, A.; Dahiya, R. Mesoporous Chitosan Based Conformable and Resorbable Biostrip for Dopamine Detection. Biosens. Bioelectron. 2020, 147, 111781. [Google Scholar] [CrossRef]
- Ghanbari, K.; Nejabati, F. Ternary Nanocomposite-Based Reduced Graphene Oxide/Chitosan/Cr2O3 for the Simultaneous Determination of Dopamine, Uric Acid, Xanthine, and Hypoxanthine in Fish Meat. Anal. Methods 2020, 12, 1650–1661. [Google Scholar] [CrossRef]
- New Approach for Porous Chitosan–Graphene Matrix Preparation through Enhanced Amidation for Synergic Detection of Dopamine and Uric Acid|ACS Omega. Available online: https://pubs.acs.org/doi/10.1021/acsomega.7b00331 (accessed on 29 December 2021).
- Liu, C.-Y.; Chou, Y.-C.; Tsai, J.-H.; Huang, T.-M.; Chen, J.-Z.; Yeh, Y.-C. Tyrosinase/Chitosan/Reduced Graphene Oxide Modified Screen-Printed Carbon Electrode for Sensitive and Interference-Free Detection of Dopamine. Appl. Sci. 2019, 9, 622. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Ju, F.; Li, G.; Ma, L. Smartphone-Based Electrochemical Potentiostat Detection System Using PEDOT: PSS/Chitosan/Graphene Modified Screen-Printed Electrodes for Dopamine Detection. Sensors 2020, 20, 2781. [Google Scholar] [CrossRef]
- Yang, L.; Liu, D.; Huang, J.; You, T. Simultaneous Determination of Dopamine, Ascorbic Acid and Uric Acid at Electrochemically Reduced Graphene Oxide Modified Electrode. Sens. Actuators B Chem. 2014, 193, 166–172. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsine, Z.; Mlika, R.; Jaffrezic-Renault, N.; Korri-Youssoufi, H. Review—Recent Progress in Graphene Based Modified Electrodes for Electrochemical Detection of Dopamine. Chemosensors 2022, 10, 249. https://doi.org/10.3390/chemosensors10070249
Hsine Z, Mlika R, Jaffrezic-Renault N, Korri-Youssoufi H. Review—Recent Progress in Graphene Based Modified Electrodes for Electrochemical Detection of Dopamine. Chemosensors. 2022; 10(7):249. https://doi.org/10.3390/chemosensors10070249
Chicago/Turabian StyleHsine, Zouhour, Rym Mlika, Nicole Jaffrezic-Renault, and Hafsa Korri-Youssoufi. 2022. "Review—Recent Progress in Graphene Based Modified Electrodes for Electrochemical Detection of Dopamine" Chemosensors 10, no. 7: 249. https://doi.org/10.3390/chemosensors10070249
APA StyleHsine, Z., Mlika, R., Jaffrezic-Renault, N., & Korri-Youssoufi, H. (2022). Review—Recent Progress in Graphene Based Modified Electrodes for Electrochemical Detection of Dopamine. Chemosensors, 10(7), 249. https://doi.org/10.3390/chemosensors10070249