Nickel-Doped ZnO Porous Sea Urchin Nanostructures with Various Amounts of Oxygen Defects for Volatile Organic Compound Detection
Abstract
:1. Introduction
2. Experimental Details
2.1. Synthesis of Ni-Doped ZnO Nanostructures
2.2. Material Characterization
2.3. Fabrication and Testing of the Gas Sensor
3. Results and Discussion
3.1. Structural and Morphological Characterization
3.2. Gas-Sensing Performance
3.3. Gas-Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shooshtari, M.; Salehi, A. An electronic nose based on carbon nanotube-titanium dioxide hybrid nanostructures for detection and discrimination of volatile organic compounds. Sens. Actuators B Chem. 2018, 357, 131418. [Google Scholar] [CrossRef]
- Broza, Y.; Vishinkin, R.; Barash, O.; Nakhleh, M.; Haick, H. Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation. Chem. Soc. Rev. 2018, 47, 4781–4859. [Google Scholar] [CrossRef]
- Kim, K.; Choi, P.; Itoh, T.; Masuda, Y. Catalyst-free highly sensitive SnO2 nanosheet gas sensors for parts per billion-level detection of acetone. ACS Appl. Mater. Interfaces 2020, 12, 51637–51644. [Google Scholar] [CrossRef]
- Huang, B.; Zeng, W.; Li, Y. Synthesis of ZIF-8 coating on ZnO nanorods for enhanced gas-sensing performance. Chemosensors 2022, 10, 297. [Google Scholar] [CrossRef]
- Zhang, S.; Lin, Z.; Song, P.; Sun, J.; Wang, Q. MOF-derived In2O3 nanotubes/Cr2O3 nanoparticles composites for superior ethanol gas-sensing performance at room temperature. Ceram. Int. 2022, 48, 28334–28342. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Li, X.; Ge, C.; Hussain, S.; Liu, G.; Qiao, G. WO3 porous nanosheet arrays with enhanced low temperature NO2 gas sensing performance. Sens. Actuators B Chem. 2020, 316, 128050. [Google Scholar] [CrossRef]
- Li, Q.; Zeng, W.; Zhou, Q.; Wang, Z. Highly sensitive ethanol sensing using NiO hollow spheres synthesized via hydrothermal method. Chemosensors 2022, 10, 341. [Google Scholar] [CrossRef]
- Vijayakumar, Y.; Nagaraju, P.; Sreekanth, T.; Rushidhar, U.; Reddy, P. Effect of precursor volume on chemically sprayed V2O5 thin films for acetaldehyde detection. Superlattices Microstruct. 2021, 153, 106870. [Google Scholar] [CrossRef]
- Beitollahi, H.; Tajik, S.; Nejad, F.; Safaei, M. Recent advances in ZnO nanostructure-based electrochemical sensors and biosensors. J. Mater. Chem. B 2020, 8, 5826–5844. [Google Scholar] [CrossRef]
- Liu, B.H.; Wang, S.; Yuan, Z.; Duan, Z.H.; Zhao, Q.N.; Zhang, Y.J.; Su, Y.J.; Jiang, Y.D.; Xie, G.Z.; Tai, H.L. Novel chitosan/ZnO bilayer film with enhanced humidity-tolerant property: Endowing triboelectric nanogenerator with acetone analysis capability. Nano Energy 2020, 78, 105256. [Google Scholar] [CrossRef]
- Cui, X.S.; Lu, Z.R.; Wang, Z.C.; Zeng, W.; Zhou, Q. Highly sensitive SF6 decomposition byproducts sensing platform based on CuO/ZnO heterojunction nanofibers. Chemosensors 2023, 11, 58. [Google Scholar] [CrossRef]
- Dilova, T.; Atanasova, G.; Dikovska, A.; Nedyalkov, N. The effect of light irradiation on the gas-sensing properties of nanocomposites based on ZnO and Ag nanoparticles. Appl. Surf. Sci. 2020, 505, 144625. [Google Scholar] [CrossRef]
- Si, W.; Du, W.; Wang, F.; Wu, L.; Liu, J.; Liu, W.; Cui, P.; Zhang, X. One-pot hydrothermal synthesis of nano-sheet assembled NiO/ZnO microspheres for efficient sulfur dioxide detection. Ceram. Int. 2020, 46, 7279–7287. [Google Scholar] [CrossRef]
- Dang, T.; Son, N.; Lanh, N.; Phuoc, P.; Viet, N.; Thong, L.; Hung, C.; Duy, N.; Hoa, N.; Hieu, N. Extraordinary H2S gas sensing performance of ZnO/rGO external and internal heterojunctions. J. Alloy. Compd. 2021, 879, 160457. [Google Scholar] [CrossRef]
- Yuan, Z.; Feng, Z.; Kong, L.; Zhan, J.; Ma, X. Simple synthesis of porous ZnO nanoplates hyper-doped with low concentration of Pt for efficient acetone sensing. J. Alloy. Compd. 2021, 865, 158890. [Google Scholar] [CrossRef]
- Cao, P.; Yang, Z.; Navale, S.; Han, S.; Liu, X.; Liu, W.; Lu, Y.; Stadler, F.; Zhu, D. Ethanol sensing behavior of Pd-nanoparticles decorated ZnO-nanorod based chemiresistive gas sensors. Sens. Actuators B Chem. 2019, 298, 126850. [Google Scholar] [CrossRef]
- Ahemad, M.; Le, T.; Kim, D.; Yu, Y. Bimetallic AgAualloy@ZnO core-shell nanoparticles for ultra-high detection of ethanol: Potential impact of alloy composition on sensing performance. Sens. Actuators B Chem. 2022, 359, 131595. [Google Scholar] [CrossRef]
- Drmosh, Q.; Wajih, Y.; Alade, I.; Mohamedkhair, A.; Qamar, M.; Hakeem, A.; Yamani, Z. Engineering the depletion layer of Au-modified ZnO/Ag core-shell films for high-performance acetone gas sensing. Sens. Actuators B Chem. 2021, 338, 129851. [Google Scholar] [CrossRef]
- Guo, W.; Zhao, B.; Zhou, Q.; He, Y.; Wang, Z.; Radacsi, N. Fe-doped ZnO/reduced graphene oxide nanocomposite with synergic enhanced gas sensing performance for the effective detection of formaldehyde. ACS Omega 2019, 4, 10252–10262. [Google Scholar] [CrossRef] [Green Version]
- Mo, Y.; Shi, F.; Qin, S.; Tang, P.; Feng, Y.; Zhao, Y.; Li, D. Facile fabrication of mesoporous hierarchical Co-doped ZnO for highly sensitive ethanol detection. Ind. Eng. Chem. Res. 2019, 58, 8061–8071. [Google Scholar] [CrossRef]
- Elkhalidi, Z.; Hartiti, B.; Siadat, M.; Comini, E.; Arachchige, H.; Fadili, S.; Thevenin, P. Acetone sensor based on Ni doped ZnO nanostructues: Growth and sensing capability. J. Mater. Sci. Mater. Electron. 2019, 30, 7681–7690. [Google Scholar] [CrossRef]
- Rahman, M. Efficient formaldehyde sensor development based on Cu-codoped ZnO nanomaterial by an electrochemical approach. Sens. Actuators B Chem. 2020, 305, 127541. [Google Scholar] [CrossRef]
- Namgung, G.; Ta, Q.; Yang, W.; Noh, J. Diffusion-driven Al-doping of ZnO nanorods and stretchable gas sensors made of doped ZnO nanorods/Ag nanowires bilayers. ACS Appl. Mater. Interfaces 2019, 11, 1411–1419. [Google Scholar] [CrossRef]
- Kamble, V.; Navale, Y.; Patil, V.; Desai, N.; Salunkhe, S. Enhanced NO2 gas sensing performance of Ni-doped ZnO nanostructures. J. Mater. Sci. Mater. Electron. 2021, 32, 2219–2233. [Google Scholar] [CrossRef]
- Badawi, A.; Althobaiti, M.; Ali, E.; Alharthi, S.; Alharbi, A. A comparative study of the structural and optical properties of transition metals (M = Fe, Co, Mn, Ni) doped ZnO films deposited by spray-pyrolysis technique for optoelectronic applications. Opt. Mater. 2022, 124, 112055. [Google Scholar] [CrossRef]
- Jiang, B.; Yang, S. Nickel-doped ZnO nanowalls with enhanced electron transport ability for electrochemical water splitting. Nanomaterials 2021, 11, 1980. [Google Scholar] [CrossRef]
- Minhas, H.; Kumar, D.; Kumar, A. Preparation, characterization and electromagnetic interference shielding effect of Ni-doped ZnO thin films. Mater. Res. Express 2019, 6, 105049. [Google Scholar] [CrossRef]
- Modaberi, M.; Rooydell, R.; Brahma, S.; Akande, A.; Mwakikunga, B.; Liu, C. Enhanced response and selectivity of H2S sensing through controlled Ni doping into ZnO nanorods by using single metal organic precursors. Sens. Actuators B Chem. 2018, 273, 1278–1290. [Google Scholar] [CrossRef]
- Bhati, V.; Ranwa, S.; Fanetti, M.; Valant, M.; Kumar, M. Efficient hydrogen sensor based on Ni-doped ZnO nanostructures by RF sputtering. Sens. Actuators B Chem. 2018, 255, 588–597. [Google Scholar] [CrossRef]
- Wu, J.; Li, T.; Meng, G.; Xiang, Y.; Hai, J.; Wang, B. Carbon nanofiber supported Ni-ZnO catalyst for efficient and selective hydrogenation of pyrolysis gasoline. Catal. Sci. Technol. 2021, 11, 4216–4225. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Sun, G.; Zhang, B.; Wang, Y.; Cao, J.; Zhang, Z. Synthesis of NiO-decorated ZnO porous nanosheets with improved CH4 sensing performance. Appl. Surf. Sci. 2019, 497, 143811. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, W.; Li, Y.; Song, Z.; Zeng, W.; Tang, S.; Wang, S.; Zhou, D. Hierarchical heterostructures of nanosheet-assembled NiO-modified ZnO microflowers for high performance acetylene detection. Ceram. Int. 2020, 46, 3574–3581. [Google Scholar] [CrossRef]
- Lei, C.S.; Pi, M.; Cheng, B.; Jiang, C.J.; Qin, J.Q. Fabrication of hierarchical porous ZnO/NiO hollow microspheres for adsorptive removal of Congo red. Appl. Surf. Sci. 2018, 435, 1002–1010. [Google Scholar] [CrossRef]
- Cun, T.; Dong, C.; Huang, Q. Ionothermal precipitation of highly dispersive ZnO nanoparticles with improved photocatalytic performance. Appl. Surf. Sci. 2016, 384, 73–82. [Google Scholar] [CrossRef]
- Niu, H.; Zhou, D.; Yang, X.; Li, X.; Wang, Q.; Qu, F. Towards three-dimensional hierarchical ZnO nanofiber@Ni(OH)2 nanoflake core-shell heterostructures for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2015, 3, 18413–18421. [Google Scholar] [CrossRef]
- Starukh, G.; Rozovik, O.; Oranska, O. Organo/Zn-Al LDH nanocomposites for cationic dye removal from aqueous media. Nanoscale Res. Lett. 2016, 11, 228–237. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; Cheng, Y.; Wang, J.; Yang, H.; Li, M.; Chen, J.; Chao, M.; Tong, Y.; Liang, E. Amorphous NiO electrocatalyst overcoated ZnO nanorod photoanodes for enhanced photoelectrochemical performance. New J. Chem. 2016, 4, 107. [Google Scholar] [CrossRef]
- Su, C.; Zhang, L.; Han, Y.; Ren, C.; Li, B.; Wang, T.; Zeng, M.; Su, Y.; Hu, N.; Zhou, Z.; et al. Glucose-assisted synthesis of hierarchical NiO-ZnO heterostructure with enhanced glycol gas sensing performance. Sens. Actuators B Chem. 2021, 329, 129167. [Google Scholar] [CrossRef]
- Ouyang, Y.; Xia, X.; Ye, H.; Wang, L.; Jiao, X.; Lei, W.; Hao, Q. Three-dimensional hierarchical structure ZnO@C@NiO on carbon cloth for asymmetric supercapacitor with enhanced cycle stability. ACS Appl. Mater. Inter. 2018, 10, 3549–3561. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, P.; Nath, M. Green synthesis of p-NiO/n-ZnO nanocomposites: Excellent adsorbent for removal of congo red and efficient catalyst for reduction of 4-nitrophenol present in wastewater. J. Water Process Eng. 2020, 33, 101017. [Google Scholar] [CrossRef]
- Zhou, Q.; Zeng, W.; Chen, W.; Xu, L.; Kumar, R.; Umar, A. High sensitive and low-concentration sulfur dioxide (SO2) gas sensor application of heterostructure NiO-ZnO nanodisks. Sens. Actuators B Chem. 2019, 298, 126870. [Google Scholar] [CrossRef]
- Wei, S.; Wang, S.; Zhang, Y.; Zhou, M. Different morphologies of ZnO and their ethanol sensing property. Sens. Actuators B Chem. 2014, 192, 480–487. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, J.; Meng, F. High response n-propanol sensor based on co-modified ZnO nanorods. J. Alloy. Compd. 2022, 910, 164971. [Google Scholar] [CrossRef]
- Gao, L.; Fu, H.; Zhu, J.; Wang, J.; Chen, Y.; Liu, H. Synthesis of SnO2 nanoparticles for formaldehyde detection with high sensitivity and good selectivity. J. Mater. Res. 2020, 35, 2208–2217. [Google Scholar] [CrossRef]
- San, X.; Li, M.; Liu, D.; Wang, G.; Shen, Y.; Meng, D.; Meng, F. A facile one-step hydrothermal synthesis of NiO/ZnO heterojunction microflowers for the enhanced formaldehyde sensing properties. J. Alloy. Compd. 2018, 739, 260–269. [Google Scholar] [CrossRef]
- Umar, A.; Ibrahim, A.; Kumar, R.; Algadi, H.; Albargi, H.; Alsairi, M.; Alhmami, M.; Zeng, W.; Ahmed, F.; Akbar, S. CdO-ZnO nanorices for enhanced and selective formaldehyde gas sensing applications. Environ. Res. 2021, 200, 111377. [Google Scholar] [CrossRef]
- Dong, C.; Xu, L.; Hang, B.; Deng, S.; Xiao, X.; Wang, Y. Nonaqueous synthesis of Ag-functionalized In2O3/ZnO nanocomposites for highly sensitive formaldehyde sensor. Sens. Actuators B Chem. 2016, 224, 193–200. [Google Scholar] [CrossRef]
- Jiao, S.; Xue, W.; Zhang, C.; Li, F.; Meng, B.; Zhan, Z. Improving the formaldehyde gas sensing performance of the ZnO/SnO2 nanoparticles by PdO decoration. J. Mater. Sci. Mater. Electron. 2020, 31, 684–692. [Google Scholar]
- Sun, Y.; Yang, H.; Zhao, Z.; Suematsu, K.; Li, P.; Yu, Z.; Zhang, W.; Hu, J. Fabrication of ZnO quantum dots@SnO2 hollow nanospheres hybrid hierarchical structures for effectively detecting formaldehyde. Sens. Actuators B Chem. 2020, 318, 128222. [Google Scholar] [CrossRef]
- Bai, S.; Guo, J.; Shu, X.; Xiang, X.; Luo, R.; Li, D.; Chen, A.; Liu, C. Surface functionalization of Co3O4 hollow spheres with ZnO nanoparticles for modulating sensing properties of formaldehyde. Sens. Actuators B Chem. 2017, 245, 359–368. [Google Scholar] [CrossRef]
- Zhao, S.; Shen, Y.; Li, A.; Chen, Y.; Gao, S.; Liu, W.; Wei, D. Effects of rare earth elements doping on gas sensing properties of ZnO nanowires. Ceram. Int. 2021, 47, 24218–24226. [Google Scholar] [CrossRef]
- Han, M.; Kim, H.; Lee, H.; Park, J.; Lee, H. Effects of porosity and particle size on the gas sensing properties of SnO2 films. Appl. Surf. Sci. 2019, 481, 133–137. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, H.; Weng, H.; Dong, X.; Huang, J.; Joo, S.W. Nickel-Doped ZnO Porous Sea Urchin Nanostructures with Various Amounts of Oxygen Defects for Volatile Organic Compound Detection. Chemosensors 2023, 11, 223. https://doi.org/10.3390/chemosensors11040223
Ren H, Weng H, Dong X, Huang J, Joo SW. Nickel-Doped ZnO Porous Sea Urchin Nanostructures with Various Amounts of Oxygen Defects for Volatile Organic Compound Detection. Chemosensors. 2023; 11(4):223. https://doi.org/10.3390/chemosensors11040223
Chicago/Turabian StyleRen, Haibo, Huaipeng Weng, Xumeng Dong, Jiarui Huang, and Sang Woo Joo. 2023. "Nickel-Doped ZnO Porous Sea Urchin Nanostructures with Various Amounts of Oxygen Defects for Volatile Organic Compound Detection" Chemosensors 11, no. 4: 223. https://doi.org/10.3390/chemosensors11040223
APA StyleRen, H., Weng, H., Dong, X., Huang, J., & Joo, S. W. (2023). Nickel-Doped ZnO Porous Sea Urchin Nanostructures with Various Amounts of Oxygen Defects for Volatile Organic Compound Detection. Chemosensors, 11(4), 223. https://doi.org/10.3390/chemosensors11040223