Modeling and Simulation of a TFET-Based Label-Free Biosensor with Enhanced Sensitivity
Abstract
:1. Introduction
2. Materials and Methods
3. Analytical Model of Device as Biosensor
4. Results and Discussions
4.1. Validation of the Proposed Structure and Its Mathematical Model
4.2. Drain Current Variation for Different Values of k for Electrically Neutral Biomolecules
4.3. Effect of Variation of Drain Current with Length of Cavity
4.4. Effect of Drain Current Variation with Cavity Thickness
4.5. Effects of Electrically Charged Biomolecules
4.5.1. Threshold Voltage and Sensitivity Analysis for Negatively Charged Biomolecules
4.5.2. Threshold Voltage and Sensitivity Analysis for Positively Charged Biomolecules
4.6. Impact of Fill Factor
4.7. Sensitivity Analysis
4.7.1. Current Sensitivity
4.7.2. Threshold Voltage Sensitivity
4.8. Impact of Dielectric Permittivity Variation on Current Ratio (Current Sensitivity)
4.9. Impact of Dielectric Permittivity Variation on Threshold Voltage
4.10. Impact of Dielectric Permittivity on Subthreshold Swing (SS)
4.11. Comparison with Literature
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, Y.; Wei, Q.; Park, H.; Lieber, C.M. Nanowire nano-sensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Chen, X.; Ren, T.; Zhang, P.; Yang, D. Carbon nanotube-based biosensors. Sens. Actuators B Chem. 2015, 207, 690–715. [Google Scholar] [CrossRef]
- Byon, H.R.; Choi, H.C. Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications. J. Am. Chem. Soc. 2006, 128, 2188–2189. [Google Scholar] [CrossRef]
- Tang, X.; Bansaruntip, S.; Nakayama, N.; Yenilmez, E.; Chang, Y.I.; Wang, Q. Carbon nanotube DNA sensor and sensing mechanism. Nano Lett. 2006, 6, 1632–1636. [Google Scholar] [CrossRef]
- Star, J.C.; Gabriel, P.; Bradley, K.; Grüner, G. Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 2003, 3, 459–463. [Google Scholar] [CrossRef]
- Alam, M.Z.; Alimuddin; Khan, S.A. A Review on Schiff Base as a Versatile Fluorescent Chemo-sensors Tool for Detection of Cu2+ and Fe3+ Metal Ion. J. Fluoresc. 2023, 13, 1–32. [Google Scholar] [CrossRef]
- Alam, M.Z.; Khan, S.A. A review on Rhodamine-based Schiff base derivatives: Synthesis and fluorescent chemo-sensors behaviour for detection of Fe3+ and Cu2+ ions. J. Coord.Chem. 2023, 76, 371–402. [Google Scholar] [CrossRef]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, A.; Ahmed, A.; Sundramoorthy, A.K.; Furukawa, H.; Arya, S.; Khosla, A. Recent Advances in Electrochemical Biosensors: Applications, Challenges, and Future Scope. Biosensors 2021, 11, 336. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, J. Optical biosensors: An exhaustive and comprehensive review. Analyst 2020, 145, 1605–1628. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Orooji, Y.; Karimi, F. A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens. Bioelectron. 2021, 184, 113252. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, K.; Danielsson, B. Principles and applications of thermal biosensors. Biosens. Bioelectron. 2001, 16, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Narang, R.; Saxena, M.; Gupta, M. Comparative Analysis of Dielectric-Modulated FET and TFET-Based Biosensor. IEEE Trans. Nanotechnol. 2015, 14, 427–435. [Google Scholar] [CrossRef]
- Kataoka, H.; Miyahara, Y. Label-free detection of DNA by field-effect devices. IEEE Sens. J. 2011, 11, 3153–3160. [Google Scholar] [CrossRef]
- Sarkar, S.; Banerjee, K. Fundamental limitations of conventional-FET biosensors: Quantum-mechanical-tunneling to the rescue. In Proceedings of the 70th Device Research Conference, University Park, PA, USA, 18–20 June 2012; pp. 83–84. [Google Scholar] [CrossRef]
- Narang, R.; Reddy, K.V.S.; Saxena, M.; Gupta, R.S.; Gupta, M. A Dielectric-Modulated Tunnel-FET-Based Biosensor for Label-Free Detection: Analytical Modeling Study and Sensitivity Analysis. IEEE Trans. Electron Devices 2012, 59, 2809–2817. [Google Scholar] [CrossRef]
- Narang, R.; Saxena, M.; Gupta, R.S.; Gupta, M. Dielectric Modulated Tunnel Field-Effect Transistor—A Biomolecule Sensor. IEEE Electron Device Lett. 2012, 33, 266–268. [Google Scholar] [CrossRef]
- Kanungo, S.; Chattopadhyay, S.; Gupta, P.S.; Rahman, H. Comparative Performance Analysis of the Dielectrically Modulated Full-Gate and Short-Gate Tunnel FET-Based Biosensors. IEEE Trans. Electron Devices 2015, 62, 994–1001. [Google Scholar] [CrossRef]
- Anam, A.; Anand., S.; Amin, S.I. Design and Performance Analysis of Tunnel Field Effect Transistor with Buried Strained Si1−xGex Source Structure Based Biosensor for Sensitivity Enhancement. IEEE Sens. J. 2020, 20, 13178–13185. [Google Scholar] [CrossRef]
- Narang, R.; Saxena, M.; Gupta, R.S.; Gupta, M. Analytical Model for a Dielectric Modulated Double Gate FET (DM-DG-FET) Biosensor. In Proceedings of the International Conference on Emerging Electronics, Bangalore, India, 11–14 December 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Shafi, N.; Sahu, C.; Periasamy, C. Virtually doped Si-Ge tunnel FET for enhanced sensitivity in biosensing applications. Superlattices Microstruct. 2018, 120, 75–89. [Google Scholar] [CrossRef]
- Anand, S.; Singh, A.; Amin, S.I.; Thool, A.S. Design and performance analysis of dielectrically modulated doping-less tunnel FET-based label free biosensor. IEEE Sens. J. 2019, 19, 4369–4374. [Google Scholar] [CrossRef]
- Narang, R.; Saxena, M.; Gupta, M. Modeling and simulation investigation of sensitivity of symmetric split gate Junctionless FET for biosensing application. IEEE Sens. J. 2017, 17, 4853–4861. [Google Scholar] [CrossRef]
- Singh, S.; Raj, B.; Vishvakarma, S.K. Analytical modeling of split gate junction-less transistor for a biosensor application. Sens. Biosens. Res. 2018, 18, 31–36. [Google Scholar] [CrossRef]
- Ghosh, B.; Akram, M.W. Junction less Tunnel Field Effect Transistor. IEEE Electron Device Lett. 2013, 34, 584–586. [Google Scholar] [CrossRef]
- Chakraborty, A.; Singha, D.; Sarkar, A. Staggered heterojunctions-based tunnel-FET for application as a label-free biosensor. Int. J. Nanopart. 2018, 10, 107–116. [Google Scholar] [CrossRef]
- Gao, N.; Lu, N.; Wang, Y. Robust ultrasensitive tunneling-FET biosensor for point-of-care diagnostics. Sci. Rep. 2016, 6, 22554. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, S.; Baishnab, K.L.; Bhowmik, B.; Guha, K. Design and optimization of asymmetrical TFET. In Microsystem Technologies; Springer, SCI: Berlin/Heidelberg, Germany, 2021; Volume 27, pp. 3457–3464. [Google Scholar] [CrossRef]
- Gupta, S.K.; Kumar, S. Analytical Modeling of a Triple Material Double Gate TFET with Hetero-Dielectric Gate Stack. Silicon 2018, 11, 1355–1369. [Google Scholar] [CrossRef]
- Darwin, S.; ASTS. Mathematical Modeling of Junctionless Triple Material Double Gate MOSFET for Low Power Applications. J. Nano Res. 2019, 56, 71–79. [Google Scholar] [CrossRef]
- Priya, G.L.; Balamurugan, N.B. New dual material double gate junctionless tunnel FET: Subthreshold modeling and simulation. AEU Int. J. Electron. Commun. 2019, 99, 130–138. [Google Scholar] [CrossRef]
- Im, H.; Huang, X.J.; Gu, B.; Choi, Y.K. A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2007, 2, 430–434. [Google Scholar] [CrossRef]
- Sharma, D.; Singh, D.; Pandey, S.; Yadav, S.; Kondekar, P.N. Comparative analysis of full-gate and short-gate dielectric modulated electrically doped Tunnel-FET based biosensors. Superlattice Microstruct. 2017, 111, 767–775. [Google Scholar] [CrossRef]
- Venkatesh, P.; Nigam, K.; Pandey, S.; Yadav, S.; Kondekar, P.N. A dielectrically modulated electrically doped tunnel FET for application of label free biosensor. Superlattice Microstruct. 2017, 109, 470–479. [Google Scholar] [CrossRef]
- Verma, M.; Tirkey, S.; Yadav, S.; Sharma, D.; Yadav, D.S. Performance assessment of a novel vertical dielectrically modulated TFET-based biosensor. IEEE Trans. Electron Devices 2017, 64, 3841–3848. [Google Scholar] [CrossRef]
- Devi, W.V.; Bhowmick, B. Optimization of Pocket doped Junctionless TFET and its Application in digital Inverter. Micro Nano Lett. 2018, 14, 69–73. [Google Scholar] [CrossRef]
- INTERNATIONAL. International Technology Roadmap for Semiconductor; INTERNATIONAL: New York, NY, USA, 2018; Available online: Ieee.org (accessed on 28 July 2022).
- Hussain, S. A comprehensive study on tunneling field effect transistor using non-local band-to-band tunneling model. J. Phys. Conf. Ser. 2020, 1432, 012028. [Google Scholar] [CrossRef]
- Bal, P.; Ghosh, B.; Mondal, P. Dual material gate junctionless tunnel field effect transistor. J. Comput. Electron. 2014, 13, 230–234. [Google Scholar] [CrossRef]
- Soni, D.; Sharma, D.; Aslam, M.; Yadav, S. Approach for the improvement of sensitivity and sensing speed of TFET-based biosensor by using plasma formation concept. Micro Nano Lett. 2018, 13, 1728–1733. [Google Scholar] [CrossRef]
- Zweckstetter, M.; Hummer, G.; Bax, A. Prediction of Charge-Induced Molecular Alignment of Biomolecules Dissolved in Dilute Liquid-Crystalline Phases. Biophys. J. 2004, 86, 3444–3460. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, M.J.; Yang, H.; Kim, S.; Yeom, S.; Ryu, G.; Shin, Y.; Sul, O.; Jeong, J.K.; Lee, S.-B. Extended-Gate Amorphous InGaZnO Thin Film Transistor for Biochemical Sensing. IEEE Sens. J. 2020, 21, 178–184. [Google Scholar] [CrossRef]
- Kanungo, S.; Chattopadhyay, S.; Gupta, P.S. Study and analysis of the effects of Si-Ge source and pocket doped channel on sensing performance of dielectrically modulated tunnel FET based biosensor. IEEE Trans. Electron Devices 2016, 63, 2589–2596. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
L1 | 5 nm |
L2 | 5–10 nm |
L3 | 5–10 nm |
1 nm | |
2 nm | |
1 nm | |
5 nm | |
4.1 eV | |
(Co) | 4.7 eV |
(Sc) | 4.0 eV |
5–7 nm | |
10–30 nm | |
Bioanalyte permittivities | k = 1–12 |
References | ION (A/μm) | IOFF (A/μm) | Ratio | Vth (V) | SS (Average) mV/dec | SS (Point) mV/dec |
---|---|---|---|---|---|---|
Ref. [25] | 36 × 10−6 | 5 × 10−14 | 6 × 108 | 0.4 | 70 | 38 |
Ref. [30] | 1 × 10−6 | 1 × 10−13 | 6 × 107 | 0.8 | 48 | - |
Ref. [39] | 18 × 10−5 | 3 × 10−13 | 6 × 108 | 0.4 | - | 17 |
Present work (k = 12) | 3 × 10−4 | 2.4 × 10−17 | 1.2 × 1013 | 0.3 | 48 | 9 |
Parameters | Values for k |
---|---|
Air | 1 |
Ferro-cytochrome | 4 |
Biotin | 2 |
Bacteriophage T7 | 6 |
Zein | 7 |
Keratin | 9 |
Gelatin | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choudhury, S.; Baishnab, K.L.; Guha, K.; Jakšić, Z.; Jakšić, O.; Iannacci, J. Modeling and Simulation of a TFET-Based Label-Free Biosensor with Enhanced Sensitivity. Chemosensors 2023, 11, 312. https://doi.org/10.3390/chemosensors11050312
Choudhury S, Baishnab KL, Guha K, Jakšić Z, Jakšić O, Iannacci J. Modeling and Simulation of a TFET-Based Label-Free Biosensor with Enhanced Sensitivity. Chemosensors. 2023; 11(5):312. https://doi.org/10.3390/chemosensors11050312
Chicago/Turabian StyleChoudhury, Sagarika, Krishna Lal Baishnab, Koushik Guha, Zoran Jakšić, Olga Jakšić, and Jacopo Iannacci. 2023. "Modeling and Simulation of a TFET-Based Label-Free Biosensor with Enhanced Sensitivity" Chemosensors 11, no. 5: 312. https://doi.org/10.3390/chemosensors11050312
APA StyleChoudhury, S., Baishnab, K. L., Guha, K., Jakšić, Z., Jakšić, O., & Iannacci, J. (2023). Modeling and Simulation of a TFET-Based Label-Free Biosensor with Enhanced Sensitivity. Chemosensors, 11(5), 312. https://doi.org/10.3390/chemosensors11050312