Recent Advances in Photoelectrochemical Sensors for Analysis of Toxins and Abused Drugs in the Environment
Abstract
1. Introduction
2. Principle of PEC Sensors
3. Photoactive Materials in PEC Sensors for Analysis of Toxins and Abused Drugs in the Environment
3.1. Semiconductors
3.2. Semiconductor-Based Heterojunctions
3.2.1. Semiconductor–Semiconductor Heterojunctions
3.2.2. Semiconductor–Carbon Heterojunctions
3.2.3. Semiconductor–Metal Heterojunctions
3.2.4. Multi-Component Heterojunctions
4. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Munoz, M.; Cires, S.; de Pedro, Z.M.; Colina, J.A.; Velasquez-Figueroa, Y.; Carmona-Jimenez, J.; Caro-Borrero, A.; Salazar, A.; Fuster, M.C.S.; Contreras, D.; et al. Overview of toxic cyanobacteria and cyanotoxins in Ibero-American freshwaters: Challenges for risk management and opportunities for removal by advanced technologies. Sci. Total Environ. 2021, 761, 143197. [Google Scholar] [CrossRef]
- Chen, L.K.; Guo, C.S.; Sun, Z.Y.; Xu, J. Occurrence, bioaccumulation and toxicological effect of drugs of abuse in aquatic ecosystem: A review. Environ. Res. 2021, 200, 111362. [Google Scholar] [CrossRef]
- Du, X.; Jiang, D.; Li, H.; Hao, N.; You, T.; Wang, K. An intriguing signal-off responsive photoelectrochemical aptasensor for ultrasensitive detection of microcystin-LR and its mechanism study. Sens. Actuator B-Chem. 2018, 259, 316–324. [Google Scholar] [CrossRef]
- Xu, J.Y.; Zhang, W.Y.; Zhong, S.Z.; Xie, X.X.; Che, H.M.; Si, W.R.; Tuo, X.; Xu, D.X.; Zhao, S.J. Microcystin-leucine-arginine affects brain gene expression programs and behaviors of offspring through paternal epigenetic information. Sci. Total Environ. 2023, 857, 159032. [Google Scholar] [CrossRef]
- Guo, X.; Meng, R.Y.; Liu, J.J.; Zhang, S.Y.; Liu, H.H.; Du, X.D.; Zhang, H.Z.; Li, Y.S. Microcystin leucine arginine induces human sperm damage: Involvement of the Ca2+/CaMKKβ/AMPK pathway. Ecotoxicol. Environ. Saf. 2023, 256, 114845. [Google Scholar] [CrossRef]
- Tang, Y.; Chai, Y.; Liu, X.; Li, L.; Yang, L.; Liu, P.; Zhou, Y.; Ju, H.; Cheng, Y. A photoelectrochemical aptasensor constructed with core-shell CuS-TiO2 heterostructure for detection of microcystin-LR. Biosens. Bioelectron. 2018, 117, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, R.Y.; Manikandan, S.; Subbaiya, R.; Biruntha, M.; Balachandar, R.; Karmegam, N. Origin, transport and ecological risk assessment of illicit drugs in the environment—A review. Chemosphere 2023, 311, 137091. [Google Scholar] [CrossRef]
- Metcalfe, C.D.; Bayen, S.; Desrosiers, M.; Munoz, G.; Sauve, S.; Yargeau, V. An introduction to the sources, fate, occurrence and effects of endocrine disrupting chemicals released into the environment. Environ. Res. 2022, 207, 112658. [Google Scholar] [CrossRef] [PubMed]
- Fent, K.; Weston, A.A.; Caminada, D. Ecotoxicology of human pharmaceuticals. Aquat. Toxicol. 2006, 76, 122–159. [Google Scholar] [CrossRef]
- Michalaki, A.; Grintzalis, K. Acute and Transgenerational Effects of Non-Steroidal Anti-Inflammatory Drugs on Daphnia magna. Toxics 2023, 11, 320. [Google Scholar] [CrossRef]
- Parolini, M. Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review. Sci. Total Environ. 2020, 740, 140043. [Google Scholar] [CrossRef]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef]
- Marmon, P.; Owen, S.F.; Margiotta-Casaluci, L. Pharmacology-informed prediction of the risk posed to fish by mixtures of non-steroidal anti-inflammatory drugs (NSAIDs) in the environment. Environ. Int. 2021, 146, 106222. [Google Scholar] [CrossRef] [PubMed]
- Zastepa, A.; Pick, F.R.; Blais, J.M.; Saleem, A. Analysis of intracellular and extracellular microcystin variants in sediments and pore waters by accelerated solvent extraction and high performance liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2015, 872, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Fresco-Cala, B.; Gálvez-Vergara, A.; Cárdenas, S. Preparation, characterization and evaluation of hydrophilic polymers containing magnetic nanoparticles and amine-modified carbon nanotubes for the determination of anti-inflammatory drugs in urine samples. Talanta 2020, 218, 121124. [Google Scholar] [CrossRef]
- Vardali, S.; Papadouli, C.; Rigos, G.; Nengas, I.; Panagiotaki, P.; Golomazou, E. Recent Advances in Mycotoxin Determination in Fish Feed Ingredients. Molecules 2023, 28, 2519. [Google Scholar] [CrossRef] [PubMed]
- Foss, A.J.; Aubel, M.T. Using the MMPB technique to confirm microcystin concentrations in water measured by ELISA and HPLC (UV, MS, MS/MS). Toxicon 2015, 104, 91–101. [Google Scholar] [CrossRef]
- Liu, J.; Xing, Y.; Lin, Y.; Xie, Y.; Zhou, X. Effect of pretreatment approach on the ELISA-based detection of cyanotoxins in water: Analysis and application. Sci. Total Environ. 2023, 871, 161988. [Google Scholar] [CrossRef]
- Garg, K.; Villavicencio-Aguilar, F.; Solano-Rivera, F.; Gilbert, L. Analytical Validation of a Direct Competitive ELISA for Multiple Mycotoxin Detection in Human Serum. Toxins 2022, 14, 727. [Google Scholar] [CrossRef]
- Abdelwahab, N.S.; Abdelrahman, M.M. Simultaneous Determination of Methocarbamol and Ibuprofen by First Derivative Synchronous Fluorescence Spectroscopic Method in Their Binary Mixture and Spiked Human Plasma. J. Fluoresc. 2014, 24, 129–135. [Google Scholar] [CrossRef]
- Pouyanfar, N.; Harofte, S.Z.; Soltani, M.; Siavashy, S.; Asadian, E.; Ghorbani-Bidkorbeh, F.; Kecili, R.; Hussain, C.M. Artificial intelligence-based microfluidic platforms for the sensitive detection of environmental pollutants: Recent advances and prospects. Trends Environ. Anal. Chem. 2022, 34, e00160. [Google Scholar] [CrossRef]
- Zhao, W.-W.; Xu, J.-J.; Chen, H.-Y. Photoelectrochemical bioanalysis: The state of the art. Chem. Soc. Rev. 2015, 44, 729–741. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Kang, J.; Wu, Y.; Pang, C.; Li, S.; Li, J.; Xiong, Y.; Luo, J.; Wang, M.; Xu, Z. Recent advances in metal/covalent organic framework-based materials for photoelectrochemical sensing applications. Trac-Trends Anal. Chem. 2022, 157, 116793. [Google Scholar] [CrossRef]
- Bilge, S.; Sınağ, A. Current trends and strategies in the development of green MXene-based photoelectrochemical sensing application. Trac-Trends Anal. Chem. 2023, 163, 117059. [Google Scholar] [CrossRef]
- Qureshi, A.; Shaikh, T.; Niazi, J.H. Semiconductor quantum dots in photoelectrochemical sensors from fabrication to biosensing applications. Analyst 2023, 148, 1633–1652. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Xu, Y.-T.; Wang, B.; Yu, S.-Y.; Shi, X.-M.; Zhao, W.-W.; Jiang, D.; Chen, H.-Y.; Xu, J.-J. A Photoelectrochemical Nanoreactor for Single-Cell Sampling and Near Zero-Background Faradaic Detection of Intracellular microRNA. Angew. Chem. Int. Ed. 2022, 61, e202212752. [Google Scholar]
- Li, C.-J.; Hu, J.; Gao, G.; Chen, J.-H.; Wang, C.-S.; Zhou, H.; Chen, G.; Qu, P.; Lin, P.; Zhao, W.-W. Biomolecules-Incorporated Metal-Organic Frameworks Gated Light-Sensitive Organic Photoelectrochemical Transistor for Biodetection. Adv. Funct. Mater. 2023, 33, 2211277. [Google Scholar] [CrossRef]
- Shi, L.; Yin, Y.; Zhang, L.-C.; Wang, S.; Sillanpää, M.; Sun, H. Design and engineering heterojunctions for the photoelectrochemical monitoring of environmental pollutants: A review. Appl. Catal. B 2019, 248, 405–422. [Google Scholar] [CrossRef]
- Yang, L.; Liu, X.; Li, L.; Zhang, S.; Zheng, H.; Tang, Y.; Ju, H. A visible light photoelectrochemical sandwich aptasensor for adenosine triphosphate based on MgIn2S4-TiO2 nanoarray heterojunction. Biosens. Bioelectron. 2019, 142, 111487. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Y.; Xu, D.; Chen, L.; Qiu, X.; Zhu, Y. Graphitic Carbon Nitride for Photoelectrochemical Detection of Environmental Pollutants. ACS EST Engg. 2022, 2, 140–157. [Google Scholar] [CrossRef]
- Hao, N.; Zhang, Y.; Zhong, H.; Zhou, Z.; Hua, R.; Qian, J.; Liu, Q.; Li, H.; Wang, K. Design of a Dual Channel Self-Reference Photoelectrochemical Biosensor. Anal. Chem. 2017, 89, 10133–10136. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Tang, D. Recent advances in photoelectrochemical biosensors for analysis of mycotoxins in food. Trac-Trends Anal. Chem. 2020, 124, 115814. [Google Scholar] [CrossRef]
- Peng, B.; Tang, L.; Zeng, G.M.; Zhou, Y.Y.; Zhang, Y.; Long, B.Q.; Fang, S.Y.; Chen, S.; Yu, J.F. Current Progress in Aptasensors for Heavy Metal Ions Based on Photoelectrochemical Method: A Review. Curr. Anal. Chem. 2018, 14, 4–12. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, B.; Tang, Y.; Wang, C.; Zhao, F.; Zeng, B. Recent advances in bismuth oxyhalide-based functional materials for photoelectrochemical sensing. Trac-Trends Anal. Chem. 2020, 131, 116020. [Google Scholar] [CrossRef]
- Chen, W.F.; Liu, S.Y.; Fu, Y.K.; Yan, H.C.; Qin, L.; Lai, C.; Zhang, C.; Ye, H.Y.; Chen, W.J.; Qin, F.Z.; et al. Recent advances in photoelectrocatalysis for environmental applications: Sensing, pollutants removal and microbial inactivation. Coord. Chem. Rev. 2022, 454, 214341. [Google Scholar] [CrossRef]
- Shi, Y.T.; Zou, Y.T.; Khan, M.S.; Zhang, M.G.; Yan, J.; Zheng, X.H.; Wang, W.Q.; Xie, Z.G. Metal-organic framework-derived photoelectrochemical sensors: Structural design and biosensing technology. J. Mater. Chem. C 2023, 11, 3692–3709. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, M.; Zhang, L. Label-free and visible-light driven photoelectrochemical sensor with CuCo2O4@CoO Core-shell hybrid rod as photoanode for selective sensing diclofenac. Electrochim. Acta 2021, 397, 139239. [Google Scholar] [CrossRef]
- Gao, K.; Bai, X.; Zhang, Y.; Ji, Y. N–doped graphene quantum dots embedded in BiOBr nanosheets as hybrid thin film electrode for quantitative photoelectrochemical detection paracetamol. Electrochim. Acta 2019, 318, 422–429. [Google Scholar] [CrossRef]
- Shi, T.; Wen, Z.; Ding, L.; Liu, Q.; Guo, Y.; Ding, C.; Wang, K. Visible/near-infrared light response VOPc/carbon nitride nanocomposites: VOPc sensitizing carbon nitride to improve photo-to-current conversion efficiency for fabricating photoelectrochemical diclofenac aptasensor. Sens. Actuator B-Chem. 2019, 299, 126834. [Google Scholar] [CrossRef]
- Ouyang, X.; Tang, L.; Feng, C.; Peng, B.; Liu, Y.; Ren, X.; Zhu, X.; Tan, J.; Hu, X. Au/CeO2/g-C3N4 heterostructures: Designing a self-powered aptasensor for ultrasensitive detection of Microcystin-LR by density functional theory. Biosens. Bioelectron. 2020, 164, 112328. [Google Scholar] [CrossRef] [PubMed]
- Bostan, H.B.; Taghdisi, S.M.; Bowen, J.L.; Demertzis, N.; Rezaee, R.; Panahi, Y.; Tsatsakis, A.M.; Karimi, G. Determination of microcystin-LR, employing aptasensors. Biosens. Bioelectron. 2018, 119, 110–118. [Google Scholar] [CrossRef]
- Fan, L.; Xiao, G.; Wang, M.; Zhao, S.; Yang, Q.; Cheng, L.; Huang, J.J.; Yue, Z. Ultrasensitive photoelectrochemical microcystin-LR immunosensor using carboxyl-functionalized graphene oxide enhanced gold nanoclusters for signal amplification. Anal. Chim. Acta 2021, 1185, 339078. [Google Scholar] [CrossRef] [PubMed]
- Qileng, A.; Wei, J.; Lu, N.; Liu, W.; Cai, Y.; Chen, M.; Lei, H.; Liu, Y. Broad-specificity photoelectrochemical immunoassay for the simultaneous detection of ochratoxin A, ochratoxin B and ochratoxin C. Biosens. Bioelectron. 2018, 106, 219–226. [Google Scholar] [CrossRef]
- Bai, X.Y.; Gao, W.K.; Zhou, C.H.; Zhao, D.Y.; Zhang, Y.; Jia, N.Q. Photoelectrochemical determination of diclofenac using oriented single-crystalline TiO2 nanoarray modified with molecularly imprinted polypyrrole. Microchim. Acta 2022, 189, 90. [Google Scholar] [CrossRef]
- Chen, J.; Gao, P.; Wang, H.; Han, L.; Zhang, Y.; Wang, P.; Jia, N. A PPy/Cu2O molecularly imprinted composite film-based visible light-responsive photoelectrochemical sensor for microcystin-LR. J. Mater. Chem. 2018, 6, 3937–3944. [Google Scholar] [CrossRef]
- Wang, H.; Liang, D.; Xu, Y.; Liang, X.; Qiu, X.; Lin, Z. A highly efficient photoelectrochemical sensor for detection of chlorpyrifos based on 2D/2D β-Bi2O3/g-C3N4 heterojunctions. Environ. Sci.-Nano 2021, 8, 773–783. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, C.; Liang, G.; Yan, W.; Guo, Y.; Bi, Y.; Dong, C. Highly sensitive photoelectrochemical aptasensor based on MoS2 quantum dots/TiO2 nanotubes for detection of atrazine. Sens. Actuator B-Chem. 2021, 334, 129652. [Google Scholar] [CrossRef]
- Ge, L.; Liu, Q.; Jiang, D.; Ding, L.; Wen, Z.; Guo, Y.; Ding, C.; Wang, K. Oxygen vacancy enhanced photoelectrochemical performance of Bi2MoO6/B, N co-doped graphene for fabricating lincomycin aptasensor. Biosens. Bioelectron. 2019, 135, 145–152. [Google Scholar] [CrossRef]
- Chen, K.; Liu, M.; Zhao, G.; Shi, H.; Fan, L.; Zhao, S. Fabrication of a Novel and Simple Microcystin-LR Photoelectrochemical Sensor with High Sensitivity and Selectivity. Environ. Sci. Technol. 2012, 46, 11955–11961. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, L.; Sheng, S.; Jiang, C.; Wang, Y. MIL-125(Ti)-derived COOH functionalized TiO2 grafted molecularly imprinted polymers for photoelectrochemical sensing of ofloxacin. Sens. Actuator B-Chem. 2021, 343, 130119. [Google Scholar] [CrossRef]
- Zu, M.; Zhou, X.; Zhang, S.; Qian, S.; Li, D.-S.; Liu, X.; Zhang, S. Sustainable engineering of TiO2-based advanced oxidation technologies: From photocatalyst to application devices. J. Mater. Sci. Technol. 2021, 78, 202–222. [Google Scholar] [CrossRef]
- Liu, Y.; Gan, X.; Zhou, B.; Xiong, B.; Li, J.; Dong, C.; Bai, J.; Cai, W. Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode. J. Hazard. Mater. 2009, 171, 678–683. [Google Scholar] [CrossRef] [PubMed]
- Shamraiz, U.; Hussain, R.A.; Badshah, A. Fabrication and applications of copper sulfide (CuS) nanostructures. J. Solid State Chem. 2016, 238, 25–40. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, Y.; Gao, W.; Zhao, D.; Yang, D.; Jia, N. Hollow ZnS–CdS nanocage based photoelectrochemical sensor combined with molecularly imprinting technology for sensitive detection of oxytetracycline. Biosens. Bioelectron. 2020, 168, 112522. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Jiang, D.; Li, H.; Bao, J.; Xu, L.; Qian, J.; Chen, C.; Xia, J. BiPO4 nanocrystal/BiOCl nanosheet heterojunction as the basis for a photoelectrochemical 4-chlorophenol sensor. Sens. Actuator B-Chem. 2019, 279, 466–475. [Google Scholar] [CrossRef]
- Yu, S.-Y.; Zhang, L.; Zhu, L.-B.; Gao, Y.; Fan, G.-C.; Han, D.-M.; Chen, G.; Zhao, W.-W. Bismuth-containing semiconductors for photoelectrochemical sensing and biosensing. Coord. Chem. Rev. 2019, 393, 9–20. [Google Scholar] [CrossRef]
- Zhou, Y.; Yin, H.; Ai, S. Recent advances and applications of Bi2S3-based composites in photoelectrochemical sensors and biosensors. Trac-Trends Anal. Chem. 2023, 158, 116876. [Google Scholar] [CrossRef]
- Li, R.; Liu, Y.; Cheng, L.; Yang, C.; Zhang, J. Photoelectrochemical Aptasensing of Kanamycin Using Visible Light-Activated Carbon Nitride and Graphene Oxide Nanocomposites. Anal. Chem. 2014, 86, 9372–9375. [Google Scholar] [CrossRef]
- Low, S.S.; Chen, Z.; Li, Y.; Lu, Y.; Liu, Q. Design principle in biosensing: Critical analysis based on graphitic carbon nitride (G-C3N4) photoelectrochemical biosensor. Trac-Trends Anal. Chem. 2021, 145, 116454. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, N.; Zhao, W.-W.; Jiang, D.-C.; Xu, J.-J.; Chen, H.-Y. Polymer Dots for Photoelectrochemical Bioanalysis. Anal. Chem. 2017, 89, 4945–4950. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Zhang, M.; Zeng, B.; Zhao, F. Molecularly imprinted photoelectrochemical sensor for aflatoxin B1 detection based on organic/inorganic hybrid nanorod arrays. Sens. Actuator B-Chem. 2021, 339, 129900. [Google Scholar] [CrossRef]
- Li, L.; Zhang, S.; Zhao, H. A low cost universal photoelectrochemical detector for organic compounds based on photoelectrocatalytic oxidation at a nanostructured TiO2 photoanode. J. Electroanal. Chem. 2011, 656, 211–217. [Google Scholar] [CrossRef]
- Özcan, L. Photoelectrochemical determination of paracetamol by using TiO2 modified FTO electrodes. Anal. Bioanal. Electrochem. 2019, 11, 1117–1128. [Google Scholar]
- Lin, Y.-M.; Tseng, Y.-H.; Huang, J.-H.; Chao, C.C.; Chen, C.-C.; Wang, I. Photocatalytic Activity for Degradation of Nitrogen Oxides over Visible Light Responsive Titania-Based Photocatalysts. Environ. Sci. Technol. 2006, 40, 1616–1621. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Wang, H.; Khan, M.S.; Bao, C.; Wang, H.; Wu, D.; Wei, Q.; Du, B. An ultrasensitive photoelectrochemical immunosensor for insulin detection based on BiOBr/Ag2S composite by in-situ growth method with high visible-light activity. Biosens. Bioelectron. 2017, 97, 253–259. [Google Scholar] [CrossRef]
- Chava, R.K.; Kang, M. Improving the photovoltaic conversion efficiency of ZnO based dye sensitized solar cells by indium doping. J. Alloys Compd. 2017, 692, 67–76. [Google Scholar] [CrossRef]
- Chahrour, K.M.; Ooi, P.C.; Eid, A.M.; Nazeer, A.A.; Madkour, M.; Dee, C.F.; Wee, M.F.M.R.; Hamzah, A.A. Synergistic effect of bi-phased and self-doped Ti3+ on anodic TiO2 nanotubes photoelectrode for photoelectrochemical sensing. J. Alloys Compd. 2022, 900, 163496. [Google Scholar] [CrossRef]
- Chen, L.-C.; Tu, Y.-J.; Wang, Y.-S.; Kan, R.-S.; Huang, C.-M. Characterization and photoreactivity of N-, S-, and C-doped ZnO under UV and visible light illumination. J. Photochem. Photobiol. A 2008, 199, 170–178. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Yan, J.; Tan, Q.; Liang, G.; Qu, S.; Zhong, Z. Enhanced Photoelectrochemical Properties of Ti3+ Self-Doped Branched TiO2 Nanorod Arrays with Visible Light Absorption. Material 2018, 11, 1791. [Google Scholar] [CrossRef]
- Li, H.; Qiao, Y.; Li, J.; Fang, H.; Fan, D.; Wang, W. A sensitive and label-free photoelectrochemical aptasensor using Co-doped ZnO diluted magnetic semiconductor nanoparticles. Biosens. Bioelectron. 2016, 77, 378–384. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, H.; Won, M.; Kim, E.; Li, M.; Kim, J.S. Codoping g-C3N4 with boron and graphene quantum dots: Enhancement of charge transfer for ultrasensitive and selective photoelectrochemical detection of dopamine. Biosens. Bioelectron. 2023, 224, 115050. [Google Scholar] [CrossRef] [PubMed]
- Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C.L.; Psaro, R.; Dal Santo, V. Effect of Nature and Location of Defects on Bandgap Narrowing in Black TiO2 Nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600–7603. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, H.; Sun, Y.; Li, F.; Li, T.; Liu, X.; Zhou, Y.; Chen, W.; Ju, H. Oxygen vacancies enhanced photoelectrochemical aptasensing of 2, 3’, 5, 5’-tetrachlorobiphenyl amplified with Ag3VO4 nanoparticle-TiO2 nanotube array heterostructure. Biosens. Bioelectron. 2020, 167, 112477. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Guo, S.; Yan, J.; Li, F.; He, W. BiOBr nanosheets with oxygen vacancies and lattice strain for enhanced photoelectrochemical sensing of doxycycline. Appl. Surf. Sci. 2020, 512, 145695. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, B.; Wang, C.; Xi, J.; Zhao, F.; Zeng, B. Tailoring the Surface Oxygen Vacancies in Nanoporous BiOCl0.8I0.2 Nanoflowers for Photocathodic Sensing. ACS Appl. Nano Mater. 2020, 3, 6423–6431. [Google Scholar] [CrossRef]
- Yan, P.; Dong, J.; Mo, Z.; Xu, L.; Qian, J.; Xia, J.; Zhang, J.; Li, H. Enhanced photoelectrochemical sensing performance of graphitic carbon nitride by nitrogen vacancies engineering. Biosens. Bioelectron. 2020, 148, 111802. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, D.; Shan, X.; Du, X.; Wei, M.; Zhang, Y.; Chen, Z. Visible light-driven self-powered aptasensors for ultrasensitive Microcystin-LR detection based on the carrier density effect of N-doped graphene hydrogel/hematite Schottky junctions. Analyst 2021, 146, 6220–6227. [Google Scholar] [CrossRef]
- Li, M.Y.; Zhang, G.X.; Feng, C.Q.; Wu, H.M.; Mei, H. Highly sensitive detection of chromium (VI) by photoelectrochemical sensor under visible light based on Bi SPR-promoted BiPO4/BiOI heterojunction. Sens. Actuator B-Chem. 2020, 305, 127449. [Google Scholar] [CrossRef]
- Zhao, M.; Yang, L.; Jiang, J.; Shi, N.; Huo, W.; Zhao, Z.; Yang, R.; Wang, J.; Zhao, Z.; Li, G.; et al. Highly Sensitive Detection of Ciprofloxacin by Photoelectrochemical Sensor Under Visible Light Based on BiPO4/BiOI Heterojunction. J. Electrochem. Soc. 2019, 166, B1742. [Google Scholar] [CrossRef]
- Xu, L.; Jiang, D.; Zhao, Y.; Yan, P.; Dong, J.; Qian, J.; Ao, H.; Li, J.; Yan, C.; Li, H. Integrated BiPO4 nanocrystal/BiOBr heterojunction for sensitive photoelectrochemical sensing of 4-chlorophenol. Dalton Trans. 2018, 47, 13353–13359. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Yang, Z.; Wang, C.; Wang, K.; Liu, Q.; Jiang, D.; Yan, Y.; Wang, K. One-pot synthesis of BiPO4 functionalized reduced graphene oxide with enhanced photoelectrochemical performance for selective and sensitive detection of chlorpyrifos. J. Mater. Chem. A 2015, 3, 13671–13678. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Zhai, L.Y.; Li, M.Q.; Wu, J.H.; Li, L. A novel RGO/BiVO4 photoelectrochemical sensor for tetracycline hydrochloride detection. Chem. Phys. Lett. 2023, 814, 140291. [Google Scholar] [CrossRef]
- Qi, X.; Tao, S. MWCNT modified Ni–Fe LDH/BiVO4 heterojunction: Boosted visible-light-driven photoelectrochemical aptasensor for ofloxacin detection. RSC Adv. 2022, 12, 24269–24277. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, C.; Hu, S.; Liu, X.; Zhang, L.; Huang, W.; Song, S.; Xia, L. A Facile Photoelectrochemical Sensor for High Sensitive Dopamine and Ascorbic Acid Detection Based on Bi surface Plasmon Resonance-Promoted BiVO4 Microspheres. J. Electrochem. Soc. 2020, 167, 027536. [Google Scholar] [CrossRef]
- Hao, N.; Chen, S.B.; Qian, J.; Zhang, Y.; Liu, Q.; Zhang, X.; Wang, K. A sensitive photoelectrochemical (PEC) platform fabricated with nitrogen doped graphene quantum dots decorated Bi2WO6 for detection of pentachlorophenol. J. Electroanal. Chem. 2017, 801, 410–415. [Google Scholar] [CrossRef]
- Li, Y.; Yu, X.; Li, R.; Zhao, F.; Liu, G.; Wang, X. Selective and sensitive visible-light-prompt photoelectrochemical sensor of paracetamol based on Bi2WO6 modified with Bi and copper sulfide. RSC Adv. 2021, 11, 2884–2891. [Google Scholar] [CrossRef]
- Tong, M.; Zhang, N.; Tan, Z.; Chi, L.; Zhang, K.; Chen, B.; Hu, F.; Guo, C. Oxygen vacancy-rich Bi2WO6 nanocrystals for fast and wide-range photoelectrochemical sensing of hydrogen peroxide. Microchem. J. 2023, 190, 108618. [Google Scholar] [CrossRef]
- Ge, L.; Xu, Y.H.; Ding, L.J.; You, F.H.; Liu, Q.; Wang, K. Perovskite-type BiFeO3/ultrathin graphite-like carbon nitride nanosheets p-n heterojunction: Boosted visible-light-driven photoelectrochemical activity for fabricating ampicillin aptasensor. Biosens. Bioelectron. 2019, 124, 33–39. [Google Scholar] [CrossRef]
- Zhou, Q.; Lin, Y.; Zhang, K.; Li, M.; Tang, D. Reduced graphene oxide/BiFeO3 nanohybrids-based signal-on photoelectrochemical sensing system for prostate-specific antigen detection coupling with magnetic microfluidic device. Biosens. Bioelectron. 2018, 101, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Li, Y.; Xu, G.; Hu, Y.; Kou, Z.; Feng, Q.; Lv, J.; Zhang, Y.; Wang, J.; Wu, Y. Z-scheme carbon-bridged Bi2O3/TiO2 nanotube arrays to boost photoelectrochemical detection performance. Appl. Catal. B 2019, 248, 255–263. [Google Scholar] [CrossRef]
- Li, G.; Zhang, D.; Yu, J.C.; Leung, M.K.H. An Efficient Bismuth Tungstate Visible-Light-Driven Photocatalyst for Breaking Down Nitric Oxide. Environ. Sci. Technol. 2010, 44, 4276–4281. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, S.; Kim, D.-H. Synthesis of Bi2S3/Bi2WO6 hierarchical microstructures for enhanced visible light driven photocatalytic degradation and photoelectrochemical sensing of ofloxacin. Chem. Eng. J. 2018, 354, 692–705. [Google Scholar] [CrossRef]
- Wang, Y.; Zu, M.; Zhou, X.; Lin, H.; Peng, F.; Zhang, S. Designing efficient TiO2-based photoelectrocatalysis systems for chemical engineering and sensing. Chem. Eng. J. 2020, 381, 122605. [Google Scholar] [CrossRef]
- Shen, S.; Chen, J.; Wang, M.; Sheng, X.; Chen, X.; Feng, X.; Mao, S.S. Titanium dioxide nanostructures for photoelectrochemical applications. Prog. Mater. Sci. 2018, 98, 299–385. [Google Scholar] [CrossRef]
- Kang, Q.; Yang, L.; Chen, Y.; Luo, S.; Wen, L.; Cai, Q.; Yao, S. Photoelectrochemical detection of pentachlorophenol with a Multiple Hybrid CdSexTe1−x/TiO2 Nanotube Structure-Based Label-Free Immunosensor. Anal. Chem. 2010, 82, 9749–9754. [Google Scholar] [CrossRef]
- Gao, B.; Zhao, X.; Liang, Z.; Wu, Z.; Wang, W.; Han, D.; Niu, L. CdS/TiO2 Nanocomposite-Based Photoelectrochemical Sensor for a Sensitive Determination of Nitrite in Principle of Etching Reaction. Anal. Chem. 2021, 93, 820–827. [Google Scholar] [CrossRef]
- Jia, S.; Li, X.; Zhang, B.; Yang, J.; Zhang, S.; Li, S.; Zhang, Z. TiO2/CuS heterostructure nanowire array photoanodes toward water oxidation: The role of CuS. Appl. Surf. Sci. 2019, 463, 829–837. [Google Scholar] [CrossRef]
- Jena, A.; Chen, C.-J.; Chang, H.; Hu, S.-F.; Liu, R.-S. Comprehensive view on recent developments in hydrogen evolution using MoS2 on a Si photocathode: From electronic to electrochemical aspects. J. Mater. Chem. A 2021, 9, 3767–3785. [Google Scholar] [CrossRef]
- Wei, J.; Qileng, A.; Yan, Y.; Lei, H.; Zhang, S.; Liu, W.; Liu, Y. A novel visible-light driven photoelectrochemical immunosensor based on multi-amplification strategy for ultrasensitive detection of microcystin-LR. Anal. Chim. Acta 2017, 994, 82–91. [Google Scholar] [CrossRef]
- Liu, Q.; Shi, T.; Cheng, Y.; Wen, Z.; Ding, C.; Li, Y.; Wang, K. Amplified photocurrent signal for fabricating photoelectrochemical sulfadimethoxine aptasensor based on carbon nitride photosensitization with visible/near-infrared light responsive zinc phthalocyanine. J. Hazard. Mater. 2021, 406, 124749. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z. Recent advances in two-dimensional layered materials for photoelectrochemical sensing. Trac-Trends Anal. Chem. 2020, 133, 116089. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Yan, P.; Ouyang, Q.; Dong, J.; Qian, J.; Chen, J.; Xu, L.; Li, H. Co3O4 nanoparticles/graphitic carbon nitride heterojunction for photoelectrochemical aptasensor of oxytetracycline. Anal. Chim. Acta 2020, 1125, 299–307. [Google Scholar] [CrossRef]
- Liu, J.; Yan, K.; Zhang, J. A biophotoelectrocatalytic system for pollutant removal based on carbon fiber cloth supported TiO2 photoanode with oxygen vacancy defects and CuO/g-C3N4 photocathode. Carbon 2022, 200, 410–421. [Google Scholar] [CrossRef]
- Liu, M.; Yu, J.; Ding, X.; Zhao, G. Photoelectrochemical Aptasensor for the Sensitive Detection of Microcystin-LR Based on Graphene Functionalized Vertically-aligned TiO2 Nanotubes. Electroanalysis 2016, 28, 161–168. [Google Scholar] [CrossRef]
- do Prado, T.M.; Cincotto, F.H.; Fatibello-Filho, O.; Cruz de Moraes, F. Bismuth Vanadate/Reduced Graphene Oxide Nanocomposite Electrode for Photoelectrochemical Determination of Diclofenac in Urine. Electroanalysis 2018, 30, 2704–2711. [Google Scholar] [CrossRef]
- Lu, H.; Wang, G.; Dai, R.; Ding, X.; Liu, M.; Sun, H.; Sun, C.; Zhao, G. Visible-light-driven photoelectrochemical aptasensor based on reduced graphene oxide/Ti–Fe–O nanotube arrays for highly sensitive and selective determination of microcystin-LR. Electrochim. Acta 2019, 324, 134820. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, M.; Xu, Y.; Wen, Z.; Ding, C.; Guo, Y.; Hao, N.; Wang, K. Bi3+ engineered black anatase titania coupled with graphene for effective tobramycin photoelectrochemical detection. Sens. Actuator B-Chem. 2020, 321, 128464. [Google Scholar] [CrossRef]
- Zhou, Y.; Yin, H.; Ai, S. Applications of two-dimensional layered nanomaterials in photoelectrochemical sensors: A comprehensive review. Coordin. Chem. Rev. 2021, 447, 214156. [Google Scholar] [CrossRef]
- Seo, D.-B.; Trung, T.N.; Bae, S.-S.; Kim, E.-T. Improved Photoelectrochemical Performance of MoS2 through Morphology-Controlled Chemical Vapor Deposition Growth on Graphene. Nanomaterials 2021, 11, 1585. [Google Scholar] [CrossRef]
- Salem, M.; Akir, S.; Massoudi, I.; Litaiem, Y.; Gaidi, M.; Khirouni, K. Photoelectrochemical and optical properties tuning of graphene-ZnO nanocomposites. J. Alloy. Compd. 2018, 767, 982–987. [Google Scholar] [CrossRef]
- Wang, B.; Huang, Z.; Tang, P.; Luo, S.; Liu, Y.; Li, J.; Qi, X. One-pot synthesized Bi2Te3/graphene for a self-powered photoelectrochemical-type photodetector. Nanotechnology 2020, 31, 115201. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Liu, Y.; Yang, Y.; Zhang, J. A Cathodic “Signal-off” Photoelectrochemical Aptasensor for Ultrasensitive and Selective Detection of Oxytetracycline. Anal. Chem. 2015, 87, 12215–12220. [Google Scholar] [CrossRef] [PubMed]
- Hao, N.; Zhang, X.; Zhou, Z.; Qian, J.; Liu, Q.; Chen, S.; Zhang, Y.; Wang, K. Three-dimensional nitrogen-doped graphene porous hydrogel fabricated biosensing platform with enhanced photoelectrochemical performance. Sens. Actuator B-Chem. 2017, 250, 476–483. [Google Scholar] [CrossRef]
- Jiang, D.; Du, X.; Liu, Q.; Hao, N.; Wang, K. MoS2/nitrogen doped graphene hydrogels p-n heterojunction: Efficient charge transfer property for highly sensitive and selective photoelectrochemical analysis of chloramphenicol. Biosens. Bioelectron. 2019, 126, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Huang, Q.; Zhuge, W.; Liu, Y.; Zhang, C.; Yang, W.; Xiang, G. Blue-light photoelectrochemical sensor based on nickel tetra-amined phthalocyanine-graphene oxide covalent compound for ultrasensitive detection of erythromycin. Biosens. Bioelectron. 2018, 106, 212–218. [Google Scholar] [CrossRef]
- Tayebi, M.; Kolaei, M.; Tayyebi, A.; Masoumi, Z.; Belbasi, Z.; Lee, B.-K. Reduced graphene oxide (RGO) on TiO2 for an improved photoelectrochemical (PEC) and photocatalytic activity. Sol. Energy 2019, 190, 185–194. [Google Scholar] [CrossRef]
- Tian, J.; Zhao, H.; Quan, X.; Zhang, Y.; Yu, H.; Chen, S. Fabrication of graphene quantum dots/silicon nanowires nanohybrids for photoelectrochemical detection of microcystin-LR. Sens. Actuator B-Chem. 2014, 196, 532–538. [Google Scholar] [CrossRef]
- Liu, M.; Ding, X.; Yang, Q.; Wang, Y.; Zhao, G.; Yang, N. A pM leveled photoelectrochemical sensor for microcystin-LR based on surface molecularly imprinted TiO2@CNTs nanostructure. J. Hazard. Mater. 2017, 331, 309–320. [Google Scholar] [CrossRef]
- Li, Y.; Bu, Y.; Jiang, F.; Dai, X.; Ao, J.-P. Fabrication of ultra-sensitive photoelectrochemical aptamer biosensor: Based on semiconductor/DNA interfacial multifunctional reconciliation via 2D-C3N4. Biosens. Bioelectron. 2020, 150, 111903. [Google Scholar] [CrossRef]
- Hou, W.; Cronin, S.B. A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Adv. Funct. Mater. 2013, 23, 1612–1619. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, G.; Yu, J.; Fan, W. Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light. J. Mater. Chem. 2012, 22, 21337–21354. [Google Scholar] [CrossRef]
- Tan, J.; Peng, B.; Tang, L.; Feng, C.; Wang, J.; Yu, J.; Ouyang, X.; Zhu, X. Enhanced photoelectric conversion efficiency: A novel h-BN based self-powered photoelectrochemical aptasensor for ultrasensitive detection of diazinon. Biosens. Bioelectron. 2019, 142, 111546. [Google Scholar] [CrossRef]
- Pei, F.; Feng, S.; Zhang, Y.; Wu, Y.; Chen, C.; Sun, Y.; Xie, Z.; Hao, Q.; Cao, Y.; Tong, Z.; et al. A photoelectrochemical immunosensor based on Z-scheme CdS composite heterojunction for aflatoxin B1. Biosens. Bioelectron. 2022, 214, 114500. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Ling, S.; Li, H.; Yan, P.; Xia, J.; Qiu, J.; Wang, K.; Li, H.; Yuan, S. Photoelectrochemical monitoring of 4-chlorophenol by plasmonic Au/graphitic carbon nitride composites. Sens. Actuator B-Chem. 2017, 240, 308–314. [Google Scholar] [CrossRef]
- Geng, H.; Chen, X.; Sun, L.; Qiao, Y.; Song, J.; Shi, S.; Cai, Q. ZnCuInSe/Au/TiO2 sandwich nanowires-based photoelectrochemical biosensor for ultrasensitive detection of kanamycin. Anal. Chim. Acta 2021, 1146, 166–173. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, X.; Lu, G.; Du, B.; Liu, M. A highly sensitive and selective photoelectrochemical aptasensor for atrazine based on Au NPs/3DOM TiO2 photonic crystal electrode. J. Hazard. Mater. 2023, 451, 131132. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, Y.; Xu, L.; Yan, P.; Qian, J.; Zhao, L.; Zhang, J.; Li, H. Specific electron-transfer and surface plasmon resonance integrated boosting visible-light photoelectrochemical sensor for 4-chlorophenol. J. Electroanal. Chem. 2019, 833, 251–257. [Google Scholar] [CrossRef]
- Yang, S.; Deng, K.; Zhang, J.; Bai, C.; Peng, J.; Fang, Z.; Xu, W. Synergy effect of Ag plasmonic resonance and heterostructure construction enhanced visible-light photoelectrochemical sensing for quercetin. Electrochim. Acta 2021, 371, 137772. [Google Scholar] [CrossRef]
- Zhu, J.-H.; Feng, Y.-G.; Wang, A.-J.; Mei, L.-P.; Luo, X.; Feng, J.-J. A signal-on photoelectrochemical aptasensor for chloramphenicol assay based on 3D self-supporting AgI/Ag/BiOI Z-scheme heterojunction arrays. Biosens. Bioelectron. 2021, 181, 113158. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Gao, Y.; Yan, J.; Song, W. Integrating CuO/g-C3N4 p-n heterojunctioned photocathode with MoS2 QDs@Cu NWs multifunctional signal amplifier for ultrasensitive detection of AβO. Biosens. Bioelectron. 2021, 176, 112945. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Zhuge, W.; Liu, Y.; Zhang, C.; Yang, W.; Huang, Y. Photoelectrochemical Dopamine Sensor Based on Cu-Doped Bi2WO6 Micro-Flowers Sensitized Cobalt Tetraaminophthalocyanine Functionalized Graphene Oxide. J. Electrochem. Soc. 2019, 166, B1612–B1619. [Google Scholar] [CrossRef]
- Wen, Z.; Zhu, W.; You, F.; Yuan, R.; Ding, L.; Hao, N.; Wei, J.; Wang, K. Ultrasensitive photoelectrochemical aptasensor for carbendazim detection based on in-situ constructing Schottky junction via photoreducing Pd nanoparticles onto CdS microsphere. Biosens. Bioelectron. 2022, 203, 114036. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhou, L.; Peng, J. Blue-light photoelectrochemical aptasensor for kanamycin based on synergistic strategy by Schottky junction and sensitization. Sens. Actuator B-Chem. 2021, 340, 129898. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Y.; Zeng, T.; Qiao, L.; Zhang, M.; Song, K.; Yin, N.; Tao, Y.; Zhao, Y.; Zhang, C.; et al. Self-powered photoelectrochemical aptasensor based on hollow tubular g-C3N4/Bi/BiVO4 for tobramycin detection. Anal. Chim. Acta 2023, 1250, 340951. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, D.; Zhang, M.; Zhang, Z.; Qian, J.; Hao, N.; Ding, C.; Wang, K. High-performance photoelectrochemical aptasensor for enrofloxacin based on Bi-doped ultrathin polymeric carbon nitride nanocomposites with SPR effect and carbon vacancies. Sens. Actuator B-Chem. 2020, 316, 128142. [Google Scholar] [CrossRef]
- Tian, Y.; Cui, Q.; Xu, L.; Jiao, A.; Ma, H.; Wang, C.; Zhang, M.; Wang, X.; Li, S.; Chen, M. Alloyed AuPt nanoframes loaded on h-BN nanosheets as an ingenious ultrasensitive near-infrared photoelectrochemical biosensor for accurate monitoring glucose in human tears. Biosens. Bioelectron. 2021, 192, 113490. [Google Scholar] [CrossRef]
- Tang, L.; Ouyang, X.; Peng, B.; Zeng, G.; Zhu, Y.; Yu, J.; Feng, C.; Fang, S.; Zhu, X.; Tan, J. Highly sensitive detection of microcystin-LR under visible light using a self-powered photoelectrochemical aptasensor based on a CoO/Au/g-C3N4 Z-scheme heterojunction. Nanoscale 2019, 11, 12198–12209. [Google Scholar] [CrossRef] [PubMed]
- Okoth, O.K.; Yan, K.; Feng, J.; Zhang, J. Label-free photoelectrochemical aptasensing of diclofenac based on gold nanoparticles and graphene-doped CdS. Sens. Actuator B-Chem. 2018, 256, 334–341. [Google Scholar] [CrossRef]
- Altın, İ.; Sökmen, M.; Bıyıklıoğlu, Z. Sol gel synthesis of cobalt doped TiO2 and its dye sensitization for efficient pollutant removal. Mater. Sci. Semicond. Process. 2016, 45, 36–44. [Google Scholar] [CrossRef]
- Lima, F.M.D.; Freires, A.D.; Pereira, N.D.; Silva, G.G.; da Rocha, C.Q.; Damos, F.S.; Luz, R.D.S. Photoelectrochemical sensing of tannic acid based on the use of TiO2 sensitized with 5-methylphenazinium methosulfate and carboxy-functionalized CdTe quantum dots. Microchim. Acta 2018, 185, 521. [Google Scholar] [CrossRef] [PubMed]
- Sousa, C.S.; Lima, K.; Botelho, C.N.; Pereira, N.M.; Fernandes, R.N.; Silva, G.G.; Damos, F.S.; Luz, R.C.S. Photoelectrochemical sensor for determination of naringin at low oxidation potential using a modified FTO electrode with cadmium sulfide and titanium dioxide sensitized with chloroprotoporphyrin IX iron(III). J. Solid State Electrochem. 2020, 24, 1715–1726. [Google Scholar] [CrossRef]
- Wei, J.; Xie, X.; Chang, W.; Yang, Z.; Liu, Y. Ultrasensitive photoelectrochemical detection of microcystin-LR based on hybridization chain reaction assisted exciton-plasmon interaction and enzymatic biocatalytic precipitation. Sens. Actuator B-Chem. 2018, 276, 180–188. [Google Scholar] [CrossRef]
- Botelho, C.N.; Pereira, N.D.M.; Silva, G.G.; Silva de Menezes, A.; Brito Bezerra, C.W.; Damos, F.S.; Luz, R.D.C.S. Photoelectrochemical-assisted determination of caffeic acid exploiting a composite based on carbon nanotubes, cadmium telluride quantum dots, and titanium dioxide. Anal. Method 2019, 11, 4775–4784. [Google Scholar] [CrossRef]
- Yan, T.; Ding, H.; Feng, R.; Yuan, R.; Zhao, Y.; Sun, M.; Yan, L.; Wei, Q. Self-powered Aptasensors Made with the In2O3–In2S3–Ti3C2 Composite for Dual-mode Detection of Microcystin-LR. ACS Appl. Mater. Interfaces 2022, 14, 25308–25316. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Y.; Liu, X.; Bao, Y.; Niu, L. Recent Advances in Photoelectrochemical Sensors for Analysis of Toxins and Abused Drugs in the Environment. Chemosensors 2023, 11, 412. https://doi.org/10.3390/chemosensors11070412
Mao Y, Liu X, Bao Y, Niu L. Recent Advances in Photoelectrochemical Sensors for Analysis of Toxins and Abused Drugs in the Environment. Chemosensors. 2023; 11(7):412. https://doi.org/10.3390/chemosensors11070412
Chicago/Turabian StyleMao, Yan, Xiaoxin Liu, Yu Bao, and Li Niu. 2023. "Recent Advances in Photoelectrochemical Sensors for Analysis of Toxins and Abused Drugs in the Environment" Chemosensors 11, no. 7: 412. https://doi.org/10.3390/chemosensors11070412
APA StyleMao, Y., Liu, X., Bao, Y., & Niu, L. (2023). Recent Advances in Photoelectrochemical Sensors for Analysis of Toxins and Abused Drugs in the Environment. Chemosensors, 11(7), 412. https://doi.org/10.3390/chemosensors11070412