Design of Functional Ti3C2Tx MXene for Gas Sensors and Energy Harvesting: A Review
Abstract
:1. Introduction
2. Synthesis of Ti3C2Tx MXene
2.1. Etching
2.2. Delamination
3. Structure and Properties
4. Applications of Ti3C2Tx MXenes in Gas Sensors
4.1. MXene Gas Sensors
4.2. MXene Composites with Chalcogenides and Conductive Polymers
4.3. MXene-Semiconductive Metal Oxide Composites
4.4. Self-Powered Gas Sensors
5. Applications of Ti3C2Tx MXene for Energy Harvesting
5.1. MXene in Triboelectric Energy
5.2. MXene in Piezoelectric Energy Harvesting
5.3. MXene in Thermoelectric Energy Harvesting
5.4. MXene for Hydroelectric Energy Harvesting
5.5. MXene for Solar Energy Harvesting
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cristoloveanu, S.; Wan, J.; Zaslavsky, A. A Review of Sharp-Switching Devices for Ultra-Low Power Applications. IEEE J. Electron Devices Soc. 2016, 4, 215–226. [Google Scholar] [CrossRef]
- Raza, U.; Kulkarni, P.; Sooriyabandara, M. Low Power Wide Area Networks: An Overview. IEEE Commun. Surv. Tutor. 2017, 19, 855–873. [Google Scholar] [CrossRef]
- Nazir, G.; Rehman, A.; Park, S.-J. Energy-Efficient Tunneling Field-Effect Transistors for Low-Power Device Applications: Challenges and Opportunities. ACS Appl. Mater. Interfaces 2020, 12, 47127–47163. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644. [Google Scholar] [CrossRef]
- Zhang, H.-F.; Xuan, J.-Y.; Zhang, Q.; Sun, M.-L.; Jia, F.-C.; Wang, X.-M.; Yin, G.-C.; Lu, S.-Y. Strategies and Challenges for Enhancing Performance of MXene-Based Gas Sensors: A Review. Rare Met. 2022, 41, 3976–3999. [Google Scholar]
- Hong, L.; Guo, R.; Yuan, Y.; Ji, X.; Li, Z.; Lin, Z.; Pan, W. Recent Progress of Two-Dimensional MXenes in Photocatalytic Applications: A Review. Mater. Today Energy 2020, 18, 100521. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, F.; Hermawan, A.; Asakura, Y.; Hasegawa, T.; Kumagai, H.; Kato, H.; Kakihana, M.; Zhu, J.; Yin, S. SnO-SnO2 Modified Two-Dimensional MXene Ti3C2Tx for Acetone Gas Sensor Working at Room Temperature. J. Mater. Sci. Technol. 2021, 73, 128–138. [Google Scholar] [CrossRef]
- Wang, X.; Sun, K.; Li, K.; Li, X.; Gogotsi, Y. Ti3C2Tx/PEDOT: PSS Hybrid Materials for Room-Temperature Methanol Sensor. Chin. Chem. Lett. 2020, 31, 1018–1021. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef]
- Tran, N.M.; Ta, Q.T.H.; Noh, J.-S. Unusual Synthesis of Safflower-Shaped TiO2/Ti3C2 Heterostructures Initiated from Two-Dimensional Ti3C2 MXene. Appl. Surf. Sci. 2021, 538, 148023. [Google Scholar] [CrossRef]
- Sreedhar, A.; Ta, Q.T.H.; Noh, J.-S. 2D Ti3C2 MXene Interfaced ZnO/WO3 Thin Film Nanostructures towards Improved Photoelectrochemical Water Splitting. J. Electroanal. Chem. 2023, 940, 117509. [Google Scholar] [CrossRef]
- My Tran, N.; Thanh Hoai Ta, Q.; Sreedhar, A.; Noh, J.S. Ti3C2Tx MXene Playing as a Strong Methylene Blue Adsorbent in Wastewater. Appl. Surf. Sci. 2021, 537, 148006. [Google Scholar] [CrossRef]
- Nguyen, V.-H.; Nguyen, B.-S.; Hu, C.; Nguyen, C.C.; Nguyen, D.L.T.; Nguyen Dinh, M.T.; Vo, D.-V.N.; Trinh, Q.T.; Shokouhimehr, M.; Hasani, A. Novel Architecture Titanium Carbide (Ti3C2Tx) MXene Cocatalysts toward Photocatalytic Hydrogen Production: A Mini-Review. Nanomaterials 2020, 10, 602. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.V.; Rosen, J.; Gogotsi, Y. The World of Two-Dimensional Carbides and Nitrides (MXenes). Science 2021, 372, eabf1581. [Google Scholar] [CrossRef]
- Li, Q.; Li, Y.; Zeng, W. Preparation and Application of 2D MXene-Based Gas Sensors: A Review. Chemosensors 2021, 9, 225. [Google Scholar] [CrossRef]
- Wu, Z.; Shen, J.; Li, C.; Zhang, C.; Feng, K.; Wang, Z.; Wang, X.; Meira, D.M.; Cai, M.; Zhang, D. Mo2TiC2 MXene-Supported Ru Clusters for Efficient Photothermal Reverse Water–Gas Shift. ACS Nano 2022, 17, 1550–1559. [Google Scholar] [CrossRef]
- Gandla, D.; Zhang, F.; Tan, D.Q. Advantage of Larger Interlayer Spacing of a Mo2Ti2C3 MXene Free-Standing Film Electrode toward an Excellent Performance Supercapacitor in a Binary Ionic Liquid–Organic Electrolyte. ACS Omega 2022, 7, 7190–7198. [Google Scholar] [CrossRef]
- Tran, V.A.; Tran, N.T.; Doan, V.D.; Nguyen, T.-Q.; Thi, H.H.P.; Vo, G.N.L. Application Prospects of MXenes Materials Modifications for Sensors. Micromachines 2023, 14, 247. [Google Scholar] [CrossRef]
- Ji, H.; Zeng, W.; Li, Y. Gas Sensing Mechanisms of Metal Oxide Semiconductors: A Focus Review. Nanoscale 2019, 11, 22664–22684. [Google Scholar] [CrossRef]
- Ta, Q.T.H.; Tran, N.M.; Tri, N.N.; Sreedhar, A.; Noh, J.S. Highly Surface-Active Si-Doped TiO2/Ti3C2Tx Heterostructure for Gas Sensing and Photodegradation of Toxic Matters. Chem. Eng. J. 2021, 425, 131437. [Google Scholar] [CrossRef]
- Wu, M.; He, M.; Hu, Q.; Wu, Q.; Sun, G.; Xie, L.; Zhang, Z.; Zhu, Z.; Zhou, A. Ti3C2 MXene-Based Sensors with High Selectivity for NH3 Detection at Room Temperature. ACS Sens. 2019, 4, 2763–2770. [Google Scholar] [CrossRef] [PubMed]
- Ta, Q.T.H.; Tran, N.M.; Noh, J.-S. Rice Crust-Like ZnO/Ti3C2Tx MXene Hybrid Structures for Improved Photocatalytic Activity. Catalysts 2020, 10, 1140. [Google Scholar] [CrossRef]
- Gogotsi, Y. MXenes: From Discovery to Applications of Two-Dimensional Metal Carbides and Nitrides; CRC Press: Boca Raton, FL, USA, 2023; ISBN 1000618943. [Google Scholar]
- Bhati, V.S.; Kumar, M.; Banerjee, R. Gas Sensing Performance of 2D Nanomaterials/Metal Oxide Nanocomposites: A Review. J. Mater. Chem. C 2021, 9, 8776–8808. [Google Scholar] [CrossRef]
- Cao, M.; Wang, F.; Wang, L.; Wu, W.; Lv, W.; Zhu, J. Room Temperature Oxidation of Ti3C2 MXene for Supercapacitor Electrodes. J. Electrochem. Soc. 2017, 164, A3933–A3942. [Google Scholar] [CrossRef]
- Cao, F.; Zhang, Y.; Wang, H.; Khan, K.; Tareen, A.K.; Qian, W.; Zhang, H.; Ågren, H. Recent Advances in Oxidation Stable Chemistry of 2D MXenes. Adv. Mater. 2022, 34, 2107554. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Zhang, X.; Hui, Z.; Zhou, J.; Huang, X.; Sun, G.; Huang, W. Ti3C2TX MXene for Sensing Applications: Recent Progress, Design Principles, and Future Perspectives. ACS Nano 2021, 15, 3996–4017. [Google Scholar] [CrossRef]
- Zhang, H.; Li, M.; Zhu, C.; Tang, Q.; Kang, P.; Cao, J. Preparation of Magnetic α-Fe2O3/ZnFe2O4@Ti3C2 MXene with Excellent Photocatalytic Performance. Ceram. Int. 2020, 46, 81–88. [Google Scholar] [CrossRef]
- Shahzad, A.; Rasool, K.; Nawaz, M.; Miran, W.; Jang, J.; Moztahida, M.; Mahmoud, K.A.; Lee, D.S. Heterostructural TiO2/Ti3C2Tx (MXene) for Photocatalytic Degradation of Antiepileptic Drug Carbamazepine. Chem. Eng. J. 2018, 349, 748–755. [Google Scholar] [CrossRef]
- Thi, Q.V.; Han, J.; Park, J.; Kim, S.-S.; Jeon, D.-Y.; Joo, Y. Printable and Recyclable Carbon Nanotube Electronics with Degradable Soybean Oil-Based Polycationic Substrate as Gate Dielectrics. Carbon 2023, 212, 118089. [Google Scholar] [CrossRef]
- Kim, S.J.; Koh, H.J.; Ren, C.E.; Kwon, O.; Maleski, K.; Cho, S.Y.; Anasori, B.; Kim, C.K.; Choi, Y.K.; Kim, J.; et al. Metallic Ti3C2Tx MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio. ACS Nano 2018, 12, 986–993. [Google Scholar] [CrossRef] [PubMed]
- Solangi, N.H.; Mazari, S.A.; Mubarak, N.M.; Karri, R.R.; Rajamohan, N.; Vo, D.-V.N. Recent Trends in MXene-Based Material for Biomedical Applications. Environ. Res. 2023, 222, 115337. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Al Marzooqi, F.; El-Demellawi, J.K.; Al Marzooqi, N.; Arafat, H.A.; Alshareef, H.N. Ion-Selective Separation Using MXene-Based Membranes: A Review. ACS Mater. Lett. 2023, 5, 341–356. [Google Scholar] [CrossRef]
- Verma, R.; Thakur, P.; Chauhan, A.; Jasrotia, R.; Thakur, A. A Review on MXene and Its’ Composites for Electromagnetic Interference (EMI) Shielding Applications. Carbon 2023, 208, 170–190. [Google Scholar] [CrossRef]
- Li, Y.; Huang, S.; Peng, S.; Jia, H.; Pang, J.; Ibarlucea, B.; Hou, C.; Cao, Y.; Zhou, W.; Liu, H. Toward Smart Sensing by MXene. Small 2023, 19, 2206126. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-X.; Li, Z.-P.; Li, D.-D.; Hu, Z.-H.; Wu, C.; Lv, K.-L.; Li, Q. Ti3C2 MXene: Recent Progress in Its Fundamentals, Synthesis, and Applications. Rare Met. 2022, 41, 3268–3300. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Zhu, X.; Jiang, Y.; Chang, X.; Sun, S. Two-Dimensional Transition Metal MXene-Based Gas Sensors: A Review. Chinese Chem. Lett. 2023, 108286. [Google Scholar] [CrossRef]
- Li, H.; Sun, B.; Gao, T.; Li, H.; Ren, Y.; Zhou, G. Ti3C2 MXene Co-Catalyst Assembled with Mesoporous TiO2 for Boosting Photocatalytic Activity of Methyl Orange Degradation and Hydrogen Production. Chin. J. Catal. 2022, 43, 461–471. [Google Scholar] [CrossRef]
- Barsoum, M.W.; Gogotsi, Y. Removing Roadblocks and Opening New Opportunities for MXenes. Ceram. Int. 2023, 49, 24112–24122. [Google Scholar] [CrossRef]
- Simonenko, E.P.; Simonenko, N.P.; Mokrushin, A.S.; Simonenko, T.L.; Gorobtsov, P.Y.; Nagornov, I.A.; Korotcenkov, G.; Sysoev, V.V.; Kuznetsov, N.T. Application of Titanium Carbide MXenes in Chemiresistive Gas Sensors. Nanomaterials 2023, 13, 850. [Google Scholar] [CrossRef]
- Khan, K.; Tareen, A.K.; Iqbal, M.; Ye, Z.; Xie, Z.; Mahmood, A.; Mahmood, N.; Zhang, H. Recent Progress in Emerging Novel MXenes Based Materials and Their Fascinating Sensing Applications. Small 2023, 19, e2206147. [Google Scholar] [CrossRef] [PubMed]
- Janjhi, F.A.; Ihsanullah, I.; Bilal, M.; Castro-Muñoz, R.; Boczkaj, G.; Gallucci, F. MXene-Based Materials for Removal of Antibiotics and Heavy Metals from Wastewater–A Review. Water Resour. Ind. 2023, 29, 100202. [Google Scholar] [CrossRef]
- Liu, X.; Li, M.; Zhang, Y.; Zhu, X.; Guan, Y. Self-Powered Wireless Sensor Node Based on RF Energy Harvesting and Management Combined Design. Energy Convers. Manag. 2023, 292, 117393. [Google Scholar] [CrossRef]
- Miao, L.; Huo, Z.-M.; Rong, Y.; Mu, H.-W.; Sun, Z.-X. IoT Adaptive Threshold Energy Management Algorithm Based on Energy Harvesting. Ad Hoc Netw. 2023, 149, 103241. [Google Scholar] [CrossRef]
- Su, Y.; Chen, S.; Liu, B.; Lu, H.; Luo, X.; Chen, C.; Li, W.; Long, Y.; Tai, H.; Xie, G. Maxwell Displacement Current Induced Wireless Self-Powered Gas Sensor Array. Mater. Today Phys. 2023, 30, 100951. [Google Scholar] [CrossRef]
- Ghidiu, M.; Lukatskaya, M.R.; Zhao, M.Q.; Gogotsi, Y.; Barsoum, M.W. Conductive Two-Dimensional Titanium Carbide “clay” with High Volumetric Capacitance. Nature 2015, 516, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Shuck, C.E.; Han, M.; Maleski, K.; Hantanasirisakul, K.; Kim, S.J.; Choi, J.; Reil, W.E.B.; Gogotsi, Y. Effect of Ti3AlC2 MAX Phase on Structure and Properties of Resultant Ti3C2Tx MXene. ACS Appl. Nano Mater. 2019, 2, 3368–3376. [Google Scholar] [CrossRef]
- Shahzad, F.; Alhabeb, M.; Hatter, C.B.; Anasori, B.; Hong, S.M.; Koo, C.M.; Gogotsi, Y. Electromagnetic Interference Shielding with 2D Transition Metal Carbides (MXenes). Science 2016, 353, 1137–1140. [Google Scholar] [CrossRef]
- Cai, L.; Huang, Z.; Hu, W.; Hao, S.; Zhai, H.; Zhou, Y. Fabrication, Mechanical Properties, and Tribological Behaviors of Ti2AlC and Ti2AlSn0.2C Solid Solutions. J. Adv. Ceram. 2017, 6, 90–99. [Google Scholar] [CrossRef]
- Wang, X.; Mathis, T.S.; Li, K.; Lin, Z.; Vlcek, L.; Torita, T.; Osti, N.C.; Hatter, C.; Urbankowski, P.; Sarycheva, A.; et al. Influences from Solvents on Charge Storage in Titanium Carbide MXenes. Nat. Energy 2019, 4, 241–248. [Google Scholar] [CrossRef]
- Uzun, S.; Seyedin, S.; Stoltzfus, A.L.; Levitt, A.S.; Alhabeb, M.; Anayee, M.; Strobel, C.J.; Razal, J.M.; Dion, G.; Gogotsi, Y. Knittable and Washable Multifunctional MXene-Coated Cellulose Yarns. Adv. Funct. Mater. 2019, 29, 1905015. [Google Scholar] [CrossRef]
- Sreedhar, A.; Ta, Q.T.H.; Noh, J.-S. Role of Pn Junction Initiated Mixed-Dimensional 0D/2D, 1D/2D, and 2D/2D BiOX (X= Cl, Br, and I)/TiO2 Nanocomposite Interfaces for Environmental Remediation Applications: A Review. Chemosphere 2022, 305, 135478. [Google Scholar] [CrossRef]
- Perera, A.; Madhushani, K.A.U.; Punchihewa, B.T.; Kumar, A.; Gupta, R.K. MXene-Based Nanomaterials for Multifunctional Applications. Materials 2023, 16, 1138. [Google Scholar] [CrossRef] [PubMed]
- Nahirniak, S.; Ray, A.; Saruhan, B. Challenges and Future Prospects of the MXene-Based Materials for Energy Storage Applications. Batteries 2023, 9, 126. [Google Scholar] [CrossRef]
- Li, Z.; Yu, L.; Milligan, C.; Ma, T.; Zhou, L.; Cui, Y.; Qi, Z.; Libretto, N.; Xu, B.; Luo, J.; et al. Two-Dimensional Transition Metal Carbides as Supports for Tuning the Chemistry of Catalytic Nanoparticles. Nat. Commun. 2018, 9, 5258. [Google Scholar] [CrossRef]
- Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Transition Metal Carbides. ACS Nano 2012, 6, 1322–1331. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, H.; Urbankowski, P.; Gogotsi, Y. Topochemical Synthesis of 2D Materials. Chem. Soc. Rev. 2018, 47, 8744–8765. [Google Scholar] [CrossRef]
- Shuck, C.E.; Gogotsi, Y. Taking MXenes from the Lab to Commercial Products. Chem. Eng. J. 2020, 401, 125786. [Google Scholar] [CrossRef]
- Zhu, J.F.; Qi, G.Q.; Wang, F.; Yang, H.B. Synthesis of Ti3AlC2/Al2O3 Nanopowders by Mechano-Chemical Reaction. Adv. Powder Technol. 2010, 21, 578–581. [Google Scholar] [CrossRef]
- Wang, X.; Wu, L.; Gao, H.; Zhang, X. Synthesis of Ti3AlC2 and electrochemical performance of Ti3C2Tx nanosheet electrode. Sci. Sin. Chim. 2018, 48, 289–297. [Google Scholar] [CrossRef]
- Shahin, N.; Kazemi, S.; Heidarpour, A. Mechanochemical Synthesis Mechanism of Ti3AlC2 MAX Phase from Elemental Powders of Ti, Al and C. Adv. Powder Technol. 2016, 27, 1775–1780. [Google Scholar] [CrossRef]
- An, H.; Habib, T.; Shah, S.; Gao, H.; Radovic, M.; Green, M.J.; Lutkenhaus, J.L. Surface-Agnostic Highly Stretchable and Bendable Conductive MXene Multilayers. Sci. Adv. 2018, 4, eaaq0118. [Google Scholar] [CrossRef] [PubMed]
- Jawaid, A.; Hassan, A.; Neher, G.; Nepal, D.; Pachter, R.; Kennedy, W.J.; Ramakrishnan, S.; Vaia, R.A. Halogen Etch of Ti3AlC2 MAX Phase for MXene Fabrication. ACS Nano 2021, 15, 2771–2777. [Google Scholar]
- Shi, H.; Zhang, P.; Liu, Z.; Park, S.; Lohe, M.R.; Wu, Y.; Shaygan Nia, A.; Yang, S.; Feng, X. Ambient-stable Two-dimensional Titanium Carbide (MXene) Enabled by Iodine Etching. Angew. Chemie Int. Ed. 2021, 60, 8689–8693. [Google Scholar]
- Yang, S.; Zhang, P.; Wang, F.; Ricciardulli, A.G.; Lohe, M.R.; Blom, P.W.M.; Feng, X. Fluoride-free Synthesis of Two-dimensional Titanium Carbide (MXene) Using a Binary Aqueous System. Angew. Chemie 2018, 130, 15717–15721. [Google Scholar]
- Li, T.; Yao, L.; Liu, Q.; Gu, J.; Luo, R.; Li, J.; Yan, X.; Wang, W.; Liu, P.; Chen, B. Fluorine-free Synthesis of High-purity Ti3C2Tx (T= OH, O) via Alkali Treatment. Angew. Chemie Int. Ed. 2018, 57, 6115–6119. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Kuai, Z.; Peng, J.; Guo, W.; Li, H.; Peng, C.; Chen, S. MXene-Based Gold Nanoparticle Catalyst with High Activity and Stability for 4-Nitrophenol Reduction. J. Solid State Chem. 2023, 325, 124166. [Google Scholar]
- Hope, M.A.; Forse, A.C.; Griffith, K.J.; Lukatskaya, M.R.; Ghidiu, M.; Gogotsi, Y.; Grey, C.P. NMR Reveals the Surface Functionalisation of Ti3C2 MXene. Phys. Chem. Chem. Phys. 2016, 18, 5099–5102. [Google Scholar] [CrossRef]
- Venkateshalu, S.; Grace, A.N. MXenes—A New Class of 2D Layered Materials: Synthesis, Properties, Applications as Supercapacitor Electrode and Beyond. Appl. Mater. Today 2020, 18, 100509. [Google Scholar]
- Ding, L.; Wei, Y.; Li, L.; Zhang, T.; Wang, H.; Xue, J.; Ding, L.X.; Wang, S.; Caro, J.; Gogotsi, Y. MXene Molecular Sieving Membranes for Highly Efficient Gas Separation. Nat. Commun. 2018, 9, 155. [Google Scholar] [CrossRef]
- Malaki, M.; Maleki, A.; Varma, R.S. MXenes and Ultrasonication. J. Mater. Chem. A 2019, 7, 10843–10857. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, F.; Yu, M.; Zhuang, X.; Feng, X. Two-Dimensional Materials for Miniaturized Energy Storage Devices: From Individual Devices to Smart Integrated Systems. Chem. Soc. Rev. 2018, 47, 7426–7451. [Google Scholar] [PubMed]
- Hemanth, N.R.; Kandasubramanian, B. Recent Advances in 2D MXenes for Enhanced Cation Intercalation in Energy Harvesting Applications: A Review. Chem. Eng. J. 2020, 392, 123678. [Google Scholar]
- Lukatskaya, M.R.; Kota, S.; Lin, Z.; Zhao, M.-Q.; Shpigel, N.; Levi, M.D.; Halim, J.; Taberna, P.-L.; Barsoum, M.W.; Simon, P. Ultra-High-Rate Pseudocapacitive Energy Storage in Two-Dimensional Transition Metal Carbides. Nat. Energy 2017, 2, 17105. [Google Scholar]
- Li, X.; Bai, Y.; Shi, X.; Su, N.; Nie, G.; Zhang, R.; Nie, H.; Ye, L. Applications of MXene (Ti3C2Tx) in Photocatalysis: A Review. Mater. Adv. 2021, 2, 1570–1594. [Google Scholar] [CrossRef]
- Zhu, J.; Tang, Y.; Yang, C.; Wang, F.; Cao, M. Composites of TiO2 Nanoparticles Deposited on Ti3C2 MXene Nanosheets with Enhanced Electrochemical Performance. J. Electrochem. Soc. 2016, 163, A785–A791. [Google Scholar] [CrossRef]
- Ding, X.; Li, Y.; Li, C.; Wang, W.; Wang, L.; Feng, L.; Han, D. 2D Visible-Light-Driven TiO2@Ti3C2/g-C3N4 Ternary Heterostructure for High Photocatalytic Activity. J. Mater. Sci. 2019, 54, 9385–9396. [Google Scholar] [CrossRef]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nat. Rev. Mater. 2017, 2, 16098. [Google Scholar]
- Chae, Y.; Kim, S.J.; Cho, S.-Y.; Choi, J.; Maleski, K.; Lee, B.-J.; Jung, H.-T.; Gogotsi, Y.; Lee, Y.; Ahn, C.W. An Investigation into the Factors Governing the Oxidation of Two-Dimensional Ti3C2 MXene. Nanoscale 2019, 11, 8387–8393. [Google Scholar]
- Li, K.; Wang, X.; Li, S.; Urbankowski, P.; Li, J.; Xu, Y.; Gogotsi, Y. An Ultrafast Conducting Polymer@MXene Positive Electrode with High Volumetric Capacitance for Advanced Asymmetric Supercapacitors. Small 2020, 16, e1906851. [Google Scholar] [CrossRef]
- Hu, T.; Li, Z.; Hu, M.; Wang, J.; Hu, Q.; Li, Q.; Wang, X. Chemical Origin of Termination-Functionalized MXenes: Ti3C2T2 as a Case Study. J. Phys. Chem. C 2017, 121, 19254–19261. [Google Scholar]
- Wang, D.D.; Tian, W.B.; Lu, C.J.; Ding, J.X.; Zhu, Y.F.; Zhang, M.; Zhang, P.G.; Sun, Z.M. Comparison of the Interfacial Reactions and Properties between Ag/Ti3AlC2 and Ag/Ti3SiC2 Electrical Contact Materials. J. Alloys Compd. 2021, 857, 157588. [Google Scholar] [CrossRef]
- Son, W.; Gao, H.; Duong, T.; Talapatra, A.; Radovic, M.; Arróyave, R. Effect of A Mixing on Elastic Modulus, Cleavage Stress, and Shear Stress in the Ti3(SixAl1-x) C2 MAX Phase. Phys. Rev. B 2017, 95, 235131. [Google Scholar] [CrossRef]
- Husairi, F.S.; Eswar, K.A.; Azlinda, A.; Rusop, M.; Abdullah, S. Effect of Urea as a Stabiliser in the Thermal Immersion Method to Synthesise Zinc Oxide Nanostructures on Porous Silicon Nanostructures. Adv. Mater. Res. 2014, 832, 644–648. [Google Scholar] [CrossRef]
- Wang, H.; Sun, Y.; Wu, Y.; Tu, W.; Wu, S.; Yuan, X.; Zeng, G.; Xu, Z.J.; Li, S.; Chew, J.W. Electrical Promotion of Spatially Photoinduced Charge Separation via Interfacial-Built-in Quasi-Alloying Effect in Hierarchical Zn2In2S5/Ti3C2(O, OH)x Hybrids toward Efficient Photocatalytic Hydrogen Evolution and Environmental Remediation. Appl. Catal. B Environ. 2019, 245, 290–301. [Google Scholar]
- Junkaew, A.; Arróyave, R. Enhancement of the Selectivity of MXenes (M2C, M = Ti, V, Nb, Mo) via Oxygen-Functionalization: Promising Materials for Gas-Sensing and -Separation. Phys. Chem. Chem. Phys. 2018, 20, 6073–6082. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Wei, H.; Dong, J.; Du, Y.; Fang, X.; Zheng, W.; Sun, Y.; Jiang, Z. Fabrication of Urchin-like ZnO-MXene Nanocomposites for High-Performance Electromagnetic Absorption. Ceram. Int. 2017, 43, 10757–10762. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, Q.; Miao, J.; Zhang, P.; Wan, P.; He, L.; Xu, B. Flexible 3D Porous MXene Foam for High-Performance Lithium-Ion Batteries. Small 2019, 15, e1904293. [Google Scholar] [CrossRef]
- Zhang, M.; Qin, J.; Rajendran, S.; Zhang, X.; Liu, R. Heterostructured D-Ti3 C2/TiO2/g-C3N4 Nanocomposites with Enhanced Visible-Light Photocatalytic Hydrogen Production Activity. ChemSusChem 2018, 11, 4226–4236. [Google Scholar] [CrossRef]
- Gasso, S.; Mahajan, A. Development of Highly Sensitive and Humidity Independent Room Temeprature NO2 Gas Sensor Using Two Dimensional Ti3C2Tx Nanosheets and One Dimensional WO3 Nanorods Nanocomposite. ACS Sens. 2022, 7, 2454–2464. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, H.; Song, Y.; Shen, T.; Sun, J. Facile Solvothermal Synthesis of ZnO/Ti3C2Tx MXene Nanocomposites for NO2 Detection at Low Working Temperature. Sens. Actuators B Chem. 2022, 367, 132025. [Google Scholar] [CrossRef]
- Hantanasirisakul, K.; Gogotsi, Y. Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes). Adv. Mater. 2018, 30, 1804779. [Google Scholar] [CrossRef] [PubMed]
- Lipatov, A.; Alhabeb, M.; Lukatskaya, M.R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes. Adv. Electron. Mater. 2016, 2, 1600255. [Google Scholar] [CrossRef]
- Doan, T.H.P.; Hong, W.G.; Noh, J.-S. Palladium Nanoparticle-Decorated Multi-Layer Ti3C2Tx Dual-Functioning as a Highly Sensitive Hydrogen Gas Sensor and Hydrogen Storage. RSC Adv. 2021, 11, 7492–7501. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, C.; Jiang, F.; Liu, J.; Ma, X.; Liu, P.; Xu, J.; Wang, L.; Huang, R. Flexible and Lightweight Ti3C2Tx MXene@ Pd Colloidal Nanoclusters Paper Film as Novel H2 Sensor. J. Hazard. Mater. 2020, 399, 123054. [Google Scholar] [CrossRef]
- Nam, M.-S.; Kim, J.-Y.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Self-Heated, Flexible, and Selective H2 Gas Sensors Based on Pd-Decorated Ti3c2Tx Mxenes. Available online: http://dx.doi.org/10.2139/ssrn.4367681 (accessed on 26 June 2023).
- Yuan, W.; Yang, K.; Peng, H.; Li, F.; Yin, F. A Flexible VOCs Sensor Based on a 3D Mxene Framework with a High Sensing Performance. J. Mater. Chem. A 2018, 6, 18116–18124. [Google Scholar] [CrossRef]
- Sehab, N.; Amara, A.; Mebdoua, Y. Mechanical Activation-Assisted Electro-Thermal Explosion Synthesis of the Ti2AlC Phase. Mater. Manuf. Process. 2017, 32, 1260–1264. [Google Scholar] [CrossRef]
- Hermawan, A.; Zhang, B.; Taufik, A.; Asakura, Y.; Hasegawa, T.; Zhu, J.; Shi, P.; Yin, S. CuO Nanoparticles/Ti3C2Tx MXene Hybrid Nanocomposites for Detection of Toluene Gas. ACS Appl. Nano Mater. 2020, 3, 4755–4766. [Google Scholar] [CrossRef]
- Liu, Z.; Lv, H.; Xie, Y.; Wang, J.; Fan, J.; Sun, B.; Jiang, L.; Zhang, Y.; Wang, R.; Shi, K. A 2D/2D/2D Ti3C2TX@TiO2@MoS2 Heterostructure as an Ultrafast and High-Sensitivity NO2 Gas Sensor at Room-Temperature. J. Mater. Chem. A 2022, 10, 11980–11989. [Google Scholar] [CrossRef]
- He, T.; Liu, W.; Lv, T.; Ma, M.; Liu, Z.; Vasiliev, A.; Li, X. MXene/SnO2 Heterojunction Based Chemical Gas Sensors. Sens. Actuators B Chem. 2021, 329, 129275. [Google Scholar] [CrossRef]
- Ta, Q.T.H.; Tri, N.N.; Noh, J.-S. Improved NO2 Gas Sensing Performance of 2D MoS2/Ti3C2Tx MXene Nanocomposite. Appl. Surf. Sci. 2022, 604, 154624. [Google Scholar]
- Zhang, D.; Mi, Q.; Wang, D.; Li, T. MXene/Co3O4 Composite Based Formaldehyde Sensor Driven by ZnO/MXene Nanowire Arrays Piezoelectric Nanogenerator. Sensors Actuators B Chem. 2021, 339, 129923. [Google Scholar] [CrossRef]
- Yang, Z.; Jiang, L.; Wang, J.; Liu, F.; He, J.; Liu, A.; Lv, S.; You, R.; Yan, X.; Sun, P. Flexible Resistive NO2 Gas Sensor of Three-Dimensional Crumpled MXene Ti3C2Tx/ZnO Spheres for Room Temperature Application. Sens. Actuators B Chem. 2021, 326, 128828. [Google Scholar] [CrossRef]
- Guo, X.; Ding, Y.; Kuang, D.; Wu, Z.; Sun, X.; Du, B.; Liang, C.; Wu, Y.; Qu, W.; Xiong, L. Enhanced Ammonia Sensing Performance Based on MXene-Ti3C2Tx Multilayer Nanoflakes Functionalized by Tungsten Trioxide Nanoparticles. J. Colloid Interface Sci. 2021, 595, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wang, K.; Wei, W.; Wang, L.; Han, W. High-performance Flexible Sensing Devices Based on Polyaniline/MXene Nanocomposites. InfoMat 2019, 1, 407–416. [Google Scholar] [CrossRef]
- Sun, S.; Wang, M.; Chang, X.; Jiang, Y.; Zhang, D.; Wang, D.; Zhang, Y.; Lei, Y. W18O49/Ti3C2Tx Mxene Nanocomposites for Highly Sensitive Acetone Gas Sensor with Low Detection Limit. Sens. Actuators B Chem. 2020, 304, 127274. [Google Scholar] [CrossRef]
- Jin, L.; Wu, C.; Wei, K.; He, L.; Gao, H.; Zhang, H.; Zhang, K.; Asiri, A.M.; Alamry, K.A.; Yang, L. Polymeric Ti3C2T x MXene Composites for Room Temperature Ammonia Sensing. ACS Appl. Nano Mater. 2020, 3, 12071–12079. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Z.; Song, P.; Yang, Z.; Wang, Q. In2O3 Nanocubes/Ti3C2Tx MXene Composites for Enhanced Methanol Gas Sensing Properties at Room Temperature. Ceram. Int. 2021, 47, 23028–23037. [Google Scholar] [CrossRef]
- Chen, T.; Yan, W.; Wang, Y.; Li, J.; Hu, H.; Ho, D. SnS2/MXene Derived TiO2 Hybrid for Ultra-Fast Room Temperature NO2 Gas Sensing. J. Mater. Chem. C 2021, 9, 7407–7416. [Google Scholar] [CrossRef]
- Chen, W.Y.; Jiang, X.; Lai, S.-N.; Peroulis, D.; Stanciu, L. Nanohybrids of a MXene and Transition Metal Dichalcogenide for Selective Detection of Volatile Organic Compounds. Nat. Commun. 2020, 11, 1302. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Eom, W.; Shin, H.; Ambade, R.B.; Bang, J.H.; Kim, H.W.; Han, T.H. Room-Temperature, Highly Durable Ti3C2Tx MXene/Graphene Hybrid Fibers for NH3 Gas Sensing. ACS Appl. Mater. Interfaces 2020, 12, 10434–10442. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Lv, H.; Liu, Z.; Wang, J.; Bai, X.; Zhang, Y.; Chen, J.; Kan, K.; Shi, K. Co3O4@PEI/Ti3C2Tx MXene Nanocomposites for a Highly Sensitive NOx Gas Sensor with a Low Detection Limit. J. Mater. Chem. A 2021, 9, 6335–6344. [Google Scholar] [CrossRef]
- Zou, S.; Gao, J.; Liu, L.; Lin, Z.; Fu, P.; Wang, S.; Chen, Z. Enhanced Gas Sensing Properties at Low Working Temperature of Iron Molybdate/MXene Composite. J. Alloys Compd. 2020, 817, 152785. [Google Scholar] [CrossRef]
- Gogotsi, Y.; Huang, Q. MXenes: Two-Dimensional Building Blocks for Future Materials and Devices. ACS Nano 2021, 15, 5775–5780. [Google Scholar] [CrossRef]
- Lim, K.R.G.; Shekhirev, M.; Wyatt, B.C.; Anasori, B.; Gogotsi, Y.; Seh, Z.W. Fundamentals of MXene Synthesis. Nat. Synth. 2022, 1, 601–614. [Google Scholar] [CrossRef]
- Lee, E.; VahidMohammadi, A.; Prorok, B.C.; Yoon, Y.S.; Beidaghi, M.; Kim, D.-J. Room Temperature Gas Sensing of Two-Dimensional Titanium Carbide (MXene). ACS Appl. Mater. Interfaces 2017, 9, 37184–37190. [Google Scholar] [CrossRef]
- Majhi, S.M.; Ali, A.; Greish, Y.E.; El-Maghraby, H.F.; Qamhieh, N.N.; Hajamohideen, A.R.; Mahmoud, S.T. Accordion-like-Ti3C2 MXene-Based Gas Sensors with Sub-Ppm Level Detection of Acetone at Room Temperature. ACS Appl. Electron. Mater. 2022, 4, 4094–4103. [Google Scholar] [CrossRef]
- Chen, W.Y.; Lai, S.-N.; Yen, C.-C.; Jiang, X.; Peroulis, D.; Stanciu, L.A. Surface Functionalization of Ti3C2Tx MXene with Highly Reliable Superhydrophobic Protection for Volatile Organic Compounds Sensing. ACS Nano 2020, 14, 11490–11501. [Google Scholar] [CrossRef]
- Shuvo, S.N.; Ulloa Gomez, A.M.; Mishra, A.; Chen, W.Y.; Dongare, A.M.; Stanciu, L.A. Sulfur-Doped Titanium Carbide MXenes for Room-Temperature Gas Sensing. ACS Sens. 2020, 5, 2915–2924. [Google Scholar] [CrossRef]
- Li, D.; Qu, M.; Zhang, Q.; Xie, J. Multivariable Sensor Based on Mxene and Machine Learning for Selective Detections of VOCs. In Proceedings of the 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS), Virtual, 25–29 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 802–805. [Google Scholar]
- Lee, E.; VahidMohammadi, A.; Yoon, Y.S.; Beidaghi, M.; Kim, D.-J. Two-Dimensional Vanadium Carbide MXene for Gas Sensors with Ultrahigh Sensitivity toward Nonpolar Gases. ACS Sens. 2019, 4, 1603–1611. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Surya, S.G.; Babar, V.; Ming, F.; Sharma, S.; Alshareef, H.N.; Schwingenschlogl, U.; Salama, K.N. Selective Toluene Detection with Mo2CTx MXene at Room Temperature. ACS Appl. Mater. Interfaces 2020, 12, 57218–57227. [Google Scholar] [CrossRef] [PubMed]
- Vasseghian, Y.; Doan, V.D.; Nguyen, T.T.T.; Vo, T.-T.T.; Do, H.H.; Vu, K.B.; Vu, Q.H.; Dai Lam, T.; Tran, V.A. Flexible and High-Sensitivity Sensor Based on Ti3C2–MoS2 MXene Composite for the Detection of Toxic Gases. Chemosphere 2022, 291, 133025. [Google Scholar]
- Zhu, L.; Zeng, W. Room-Temperature Gas Sensing of ZnO-Based Gas Sensor: A Review. Sens. Actuators A Phys. 2017, 267, 242–261. [Google Scholar] [CrossRef]
- Yang, D.; Fan, X.; Zhao, D.; An, Y.; Hu, Y.; Luo, Z. Sc2CO2 and Mn-Doped Sc2CO2 as Gas Sensor Materials to NO and CO: A First-Principles Study. Phys. E Low-Dimens. Syst. Nanostruct. 2019, 111, 84–90. [Google Scholar] [CrossRef]
- Sun, L.; Sun, N.; Liu, Y.; Jiang, C. Anisotropic Frictional Properties between Ti3C2Tx MXene/SiO2 Layer-Dependent Heterojunctions. J. Sci. Adv. Mater. Devices 2021, 6, 488–493. [Google Scholar] [CrossRef]
- Zhao, Q.-N.; Zhang, Y.-J.; Duan, Z.-H.; Wang, S.; Liu, C.; Jiang, Y.-D.; Tai, H.-L. A Review on Ti3C2Tx-Based Nanomaterials: Synthesis and Applications in Gas and Humidity Sensors. Rare Met. 2021, 40, 1459–1476. [Google Scholar] [CrossRef]
- Devaraj, M.; Rajendran, S.; Hoang, T.K.A.; Soto-Moscoso, M. A Review on MXene and Its Nanocomposites for the Detection of Toxic Inorganic Gases. Chemosphere 2022, 302, 134933. [Google Scholar] [CrossRef]
- Ta, Q.T.H.; Thakur, D.; Noh, J.-S. Enhanced Gas Sensing Performance of ZnO/Ti3C2Tx MXene Nanocomposite. Micromachines 2022, 13, 1710. [Google Scholar] [CrossRef]
- Pazniak, H.; Plugin, I.A.; Loes, M.J.; Inerbaev, T.M.; Burmistrov, I.N.; Gorshenkov, M.; Polcak, J.; Varezhnikov, A.S.; Sommer, M.; Kuznetsov, D. V Partially Oxidized Ti3C2Tx MXenes for Fast and Selective Detection of Organic Vapors at Part-per-Million Concentrations. ACS Appl. Nano Mater. 2020, 3, 3195–3204. [Google Scholar] [CrossRef]
- Hou, M.; Guo, S.; Yang, L.; Gao, J.; Hu, T.; Wang, X.; Li, Y. Improvement of Gas Sensing Property for Two-Dimensional Ti3C2Tx Treated with Oxygen Plasma by Microwave Energy Excitation. Ceram. Int. 2021, 47, 7728–7737. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, D.; Yang, Y.; Mi, Q.; Zhang, J.; Yu, L. Multifunctional Latex/Polytetrafluoroethylene-Based Triboelectric Nanogenerator for Self-Powered Organ-like MXene/Metal–Organic Framework-Derived CuO Nanohybrid Ammonia Sensor. ACS Nano 2021, 15, 2911–2919. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Shi, B.; Li, Z.; Wang, Z.L. Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems. Adv. Sci. 2017, 4, 1700029. [Google Scholar] [CrossRef]
- Ahmed, A.; Hassan, I.; El-Kady, M.F.; Radhi, A.; Jeong, C.K.; Selvaganapathy, P.R.; Zu, J.; Ren, S.; Wang, Q.; Kaner, R.B. Integrated Triboelectric Nanogenerators in the Era of the Internet of Things. Adv. Sci. 2019, 6, 1802230. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, L.; Zhang, Y.; Jing, Q.; Hou, T.-C.; Wang, Z.L. Self-Powered Magnetic Sensor Based on a Triboelectric Nanogenerator. ACS Nano 2012, 6, 10378–10383. [Google Scholar] [CrossRef]
- Zhou, Y.; Deng, W.; Xu, J.; Chen, J. Engineering Materials at the Nanoscale for Triboelectric Nanogenerators. Cell Reports Phys. Sci. 2020, 1, 100142. [Google Scholar] [CrossRef]
- Dong, Y.; Mallineni, S.S.K.; Maleski, K.; Behlow, H.; Mochalin, V.N.; Rao, A.M.; Gogotsi, Y.; Podila, R. Metallic MXenes: A New Family of Materials for Flexible Triboelectric Nanogenerators. Nano Energy 2018, 44, 103–110. [Google Scholar] [CrossRef]
- Zhang, S.; Rana, S.M.S.; Bhatta, T.; Pradhan, G.B.; Sharma, S.; Song, H.; Jeong, S.; Park, J.Y. 3D Printed Smart Glove with Pyramidal MXene/Ecoflex Composite-Based Toroidal Triboelectric Nanogenerators for Wearable Human-Machine Interaction Applications. Nano Energy 2023, 106, 108110. [Google Scholar] [CrossRef]
- Chang, L.; Xiao, X. The Review of MXenes for Osmotic Energy Harvesting: Synthesis and Properties. Diam. Relat. Mater. 2023, 136, 109971. [Google Scholar] [CrossRef]
- Luo, X.; Zhu, L.; Wang, Y.; Li, J.; Nie, J.; Wang, Z.L. A Flexible Multifunctional Triboelectric Nanogenerator Based on MXene/PVA Hydrogel. Adv. Funct. Mater. 2021, 31, 2104928. [Google Scholar] [CrossRef]
- Cao, W.; Ouyang, H.; Xin, W.; Chao, S.; Ma, C.; Li, Z.; Chen, F.; Ma, M. A Stretchable Highoutput Triboelectric Nanogenerator Improved by MXene Liquid Electrode with High Electronegativity. Adv. Funct. Mater. 2020, 30, 2004181. [Google Scholar] [CrossRef]
- Kim, K.N.; Kim, S.Y.; Choi, S.H.; Lee, M.; Song, W.; Lim, J.; Lee, S.S.; Myung, S. All-Printed Wearable Triboelectric Nanogenerator with Ultra-Charged Electron Accumulation Polymers Based on MXene Nanoflakes. Adv. Electron. Mater. 2022, 8, 2200819. [Google Scholar] [CrossRef]
- Rana, S.M.S.; Rahman, M.T.; Salauddin, M.; Sharma, S.; Maharjan, P.; Bhatta, T.; Cho, H.; Park, C.; Park, J.Y. Electrospun PVDF-TrFE/MXene Nanofiber Mat-Based Triboelectric Nanogenerator for Smart Home Appliances. ACS Appl. Mater. Interfaces 2021, 13, 4955–4967. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.; Sun, N.; Chen, L.; Bu, J.; Jiang, C. Piezoelectricity in Monolayer and Multilayer Ti3C2Tx MXenes: Implications for Piezoelectric Devices. ACS Appl. Nano Mater. 2021, 5, 1034–1046. [Google Scholar] [CrossRef]
- Cao, V.A.; Kim, M.; Lee, S.; Kim, C.G.; Cao Van, P.; Thi, T.N.; Jeong, J.-R.; Nah, J. Enhanced Output Performance of a Flexible Piezoelectric Nanogenerator Realized by Lithium-Doped Zinc Oxide Nanowires Decorated on MXene. ACS Appl. Mater. Interfaces 2022, 14, 26824–26832. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Zhang, H.; Chen, Q.; Li, T.; Kong, L.; Zhao, H.; He, L. A Directional Piezoelectric Sensor Based on Anisotropic PVDF/MXene Hybrid Foam Enabled by Unidirectional Freezing. Chem. Eng. J. 2022, 450, 138280. [Google Scholar] [CrossRef]
- Auliya, R.Z.; Ooi, P.C.; Sadri, R.; Talik, N.A.; Yau, Z.Y.; Mohammad Haniff, M.A.S.; Goh, B.T.; Dee, C.F.; Aslfattahi, N.; Al-Bati, S. Exploration of 2D Ti3C2 MXene for All Solution Processed Piezoelectric Nanogenerator Applications. Sci. Rep. 2021, 11, 17432. [Google Scholar] [CrossRef]
- Chang, W.-L.; Sun, Z.-Q.; Zhang, Z.-M.; Wei, X.-P.; Tao, X. Thermoelectric Properties of Two-Dimensional Double Transition Metal MXenes: ScYCT2 (T = F, OH). J. Phys. Chem. Solids 2023, 176, 111210. [Google Scholar] [CrossRef]
- Bark, H.; Thangavel, G.; Liu, R.J.; Chua, D.H.C.; Lee, P.S. Effective Surface Modification of 2D MXene toward Thermal Energy Conversion and Management. Small Methods 2023, 7, 2300077. [Google Scholar] [CrossRef]
- Fei, J.; Koh, S.W.; Tu, W.; Ge, J.; Rezaeyan, H.; Hou, S.; Duan, H.; Lam, Y.C.; Li, H. Functionalized MXene Enabled Sustainable Water Harvesting and Desalination. Adv. Sustain. Syst. 2020, 4, 2000102. [Google Scholar] [CrossRef]
- Zhao, K.; Lee, J.W.; Yu, Z.G.; Jiang, W.; Oh, J.W.; Kim, G.; Han, H.; Kim, Y.; Lee, K.; Lee, S. Humidity-Tolerant Moisture-Driven Energy Generator with MXene Aerogel–Organohydrogel Bilayer. ACS Nano 2023, 17, 5472–5485. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Kim, M.S.; Oh, T.; Suh, B.L.; Yun, T.G.; Lee, S.; Hur, K.; Gogotsi, Y.; Koo, C.M.; Kim, I.-D. Towards Watt-Scale Hydroelectric Energy Harvesting by Ti3C2Tx-Based Transpiration-Driven Electrokinetic Power Generators. Energy Environ. Sci. 2022, 15, 123–135. [Google Scholar] [CrossRef]
- Li, P.; Su, N.; Wang, Z.; Qiu, J. A Ti3C2Tx MXene-Based Energy-Harvesting Soft Actuator with Self-Powered Humidity Sensing and Real-Time Motion Tracking Capability. ACS Nano 2021, 15, 16811–16818. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Lee, J.-W.; Jung, H.S.; Shin, H.; Park, N.-G. High-Efficiency Perovskite Solar Cells. Chem. Rev. 2020, 120, 7867–7918. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Gao, L.; Xu, Z.; Teo, S.; Zhang, C.; Kamata, Y.; Hayase, S.; Ma, T. High Electrical Conductivity 2D MXene Serves as Additive of Perovskite for Efficient Solar Cells. Small 2018, 14, 1802738. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Y.; Niu, B.; Ge, R.; Lei, Y.; Yan, L.; Si, J.; Zhong, P.; Ma, X. Controlling the Defect Density of Perovskite Films by MXene/SnO2 Hybrid Electron Transport Layers for Efficient and Stable Photovoltaics. J. Phys. Chem. C 2021, 125, 15210–15222. [Google Scholar] [CrossRef]
- Wang, Y.; Xiang, P.; Ren, A.; Lai, H.; Zhang, Z.; Xuan, Z.; Wan, Z.; Zhang, J.; Hao, X.; Wu, L. MXene-Modulated Electrode/SnO2 Interface Boosting Charge Transport in Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 53973–53983. [Google Scholar] [CrossRef]
- Shin, E.-Y.; Choi, S.B.; Lee, J.H.; Yoo, B.; Han, C.J.; Park, S.H.; Noh, J.H.; Kim, J.-W.; Son, H.J. An Inverted Layer-by-Layer Process to Enable Ultrasmooth MXene–Ag Nanowire Hybrid Electrode for Organic Photovoltaics. Sol. RRL 2023, 7, 2201130. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, D.; Lin, Y.; Zou, X.; Xie, T. In Suit Growth of CuSe Nanoparticles on MXene (Ti3C2) Nanosheets as an Efficient Counter Electrode for Quantum Dot-Sensitized Solar Cells. Electrochim. Acta 2019, 316, 248–256. [Google Scholar] [CrossRef]
- Aryal, U.K.; Pazniak, H.; Kumari, T.; Weber, M.; Johansson, F.O.L.; Vannucchi, N.; Witkowski, N.; Turkovic, V.; Di Carlo, A.; Madsen, M. 2D MXene-Based Electron Transport Layers for Nonhalogenated Solvent-Processed Stable Organic Solar Cells. ACS Appl. Energy Mater. 2023, 6, 4549–4558. [Google Scholar] [CrossRef]
Materials | Gas | Temperature (°C) | Concentration (ppm) | Response (%) | tRes/tRec (s) | Reference |
---|---|---|---|---|---|---|
Ti3C2Tx | Acetone | RT | 5 | 3.7 | 91/103 | [98] |
Ti3C2Tx | NH3 | RT | 100 | 28.88 | 1/201 | [99] |
Ti3C2Tx/CuO | Toluene | 250 | 50 | 11.5 | 270/10 | [100] |
Ti3C2Tx@TiO2@MoS2 | NO2 | RT | 50 | 55.1 | 1.8/70 | [101] |
Ti3C2Tx/SnO2 | NH3 | RT | 50 | 41 | 36/45 | [102] |
Ti3C2Tx/MoS2 | NO2 | RT | 10 | 25.1 | 530/140 | [103] |
Ti3C2Tx/MoS2 | NO2 | RT | 20 | 40.1 | 525/155 | [103] |
Ti3C2Tx/Co3O4 | HCHO | RT | 10 | 9.3 | 84/6 | [104] |
Ti3C2Tx/ZnO | NO2 | RT | 20 | 22.3 | 34/103 | [105] |
Ti3C2Tx/WO3 | NH3 | RT | 1 | 22.4 | 120/229 | [106] |
Ti3C2Tx/PANI | Ethanol | RT | 200 | 42 | 0.4/0.5 | [107] |
Ti3C2Tx/W18O49 | Acetone | 300 | 0.18 | 1.4 | 5.7/7 | [108] |
Ti3C2Tx/PEDOT:PSS | NH3 | RT | 100 | 37 | 117/40 | [109] |
Ti3C2Tx/In2O3 | Methane | RT | 5 | 30 | 6.6/4 | [110] |
Ti3C2Tx/SnS2 | NO2 | RT | 1000 | 116 | 65/10 | [111] |
Ti3C2Tx/WSe2 | Ethanol | RT | 40 | 25 | 10/6 | [112] |
Ti3C2Tx/GO | NH3 | RT | 100 | 8 | -/- | [113] |
Ti3C2Tx/Co3O4/PEI | NOx | RT | 100 | 30 | 2/74 | [114] |
Ti3C2Tx/Fe2(MnO4)3 | N-butane | RT | 100 | 44 | 19/25 | [115] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ta, Q.T.H.; Thakur, D.; Noh, J.-S. Design of Functional Ti3C2Tx MXene for Gas Sensors and Energy Harvesting: A Review. Chemosensors 2023, 11, 477. https://doi.org/10.3390/chemosensors11090477
Ta QTH, Thakur D, Noh J-S. Design of Functional Ti3C2Tx MXene for Gas Sensors and Energy Harvesting: A Review. Chemosensors. 2023; 11(9):477. https://doi.org/10.3390/chemosensors11090477
Chicago/Turabian StyleTa, Qui Thanh Hoai, Deepika Thakur, and Jin-Seo Noh. 2023. "Design of Functional Ti3C2Tx MXene for Gas Sensors and Energy Harvesting: A Review" Chemosensors 11, no. 9: 477. https://doi.org/10.3390/chemosensors11090477
APA StyleTa, Q. T. H., Thakur, D., & Noh, J. -S. (2023). Design of Functional Ti3C2Tx MXene for Gas Sensors and Energy Harvesting: A Review. Chemosensors, 11(9), 477. https://doi.org/10.3390/chemosensors11090477