Recent Trends in Biosensors for Quinolone Detection: A Comprehensive Review
Abstract
:1. Introduction
1.1. Antibiotic Pollution of the Environment—A Regulatory Perspective
1.2. A Brief History of Quinolones
1.3. How Quinolones Hijack the Enzymatic Machinery of Prokaryotes
1.4. How Prokaryotes Fight Back by Developing Resistance
1.5. Detection of Quinolones—From Classical Methods to Biosensors
2. Biosensors
2.1. Immunosensors Used for Quinolone Detection
Transducer | Target | Working Principle | LOD | Linear Range | Response Time | Medium | Reference |
---|---|---|---|---|---|---|---|
Optical | NOR | Antibody conjugated with NaYF4:Yb,Er UCNPs, and antigen-modified polystyrene particles | 10 pg/mL | 10 pg/mL–10 ng/mL | / | Milk, honey, tissue samples of animals | [101] |
Optical | NOR | Simultaneous detection of several antibiotics with SERS-based multiple immuno-nanoprobe via ICA | 0.55 pg/mL | 0.1 pg/mL–1.0 ng/mL | / | Milk | [102] |
Optical | NOR | Reusable smartphone-facilitated mobile fluorescence sensor/asymmetric Y-shaped fiber optic coupler for simultaneous transmission of light and collected fluorescence | 0.15 ng/mL | 5.6–256.8 ng/mL | 15 min | Water | [89] |
Optical | NOR | Evanescent wave fiber optics | 1.89 ng/mL | / | / | Water | [103] |
Optical | NOR | Antibody controlled isothermal chain displacement amplification | 0.04 ng/mL | 0.1–500 ng/mL | 90 min | Artificial urine, milk, chicken, water | [81] |
Optical | ENR | Near-infrared fluorescence-based multiplex ICA | 0.08 ng/mL | 0.08–2.0 ng/mL | 10 min | Milk | [104] |
Optical | ENR | MICA/QICA | 1.0 ng/mL (buffer), 5.0 µg/kg (animal tissue), 10.0 ng/mL (milk) | / | 20 min | Buffer, animal tissue, milk | [105] |
Optical | OFL | ICA based on binding of OFL to colloidal gold-labeled antibodies | 30 ng/mL | / | 10 min | Milk | [106] |
Optical | OFL | ICA for simultaneous detection of several compounds, based on multicolor QDs | 0.3 ng/mL | 1.5–200 ng/mL | 10 min | Milk | [107] |
Optical | CIPR | CIP-protein conjugate labeled with near infrared dye/fluorescent polarization emission signal | 1 ng/mL | / | / | Milk | [108] |
Optical | ENR, CIPR, NOR | FRET between FQs and labeled AuNPs for FQs Mab connected β-NaLuF4:Yb,Er,G | 0.19–0.32 ng/mL | 1–80 ng/mL | / | Water samples | [109] |
Electrochemical (EIS) | CIPR | SPCE/EDC/NHS/IgG electrode | 0.025 ng/mL | 0.01 ng/mL–1.0 µg/mL | 22 min | Wastewater | [110] |
Electrochemical (EIS) | CIPR | Polypyrrole-antibiotic model film/label-free | 0.994 pg/mL | / | / | Aqueous solution | [111] |
Electrochemical (EIS) | CIPR | Electropolymerization of pyrrole-NHS/antibody grafting | 10 pg/mL | / | / | Aqueous solution | [112] |
Electrochemical (amperometry) | CIPR | Haptenized enzyme/magnetic graphite-epoxy composite | 0.009 ng/mL | 0.043–7.38 ng/mL | / | Spiked milk | [113] |
Electrochemical (DPV) | CIPR | BSA/anti-CIPR/APTES/nLa2O3/ITO | 0.001 ng/mL | 0.001–0.5 ng/mL 1–1000 ng/mL | 12 min | Milk | [90] |
Electrochemical (CV, ACIP) | CIPR | Electrodeposited polyaniline used to immobilize biotinylated CIPR-Antibody | / | 0.1–100 ng/mL | 30 min | Milk | [114] |
Electrochemical (DPV) | NOR | Non-invasive label-free detection based on nY2O3-CH composite | 1.236 pg/mL | 0.319 pg/mL–3.193 µg/mL | 10 min | Spiked urine | [94] |
Electrochemical (DPV) | NOR | PAMAM dendrimer encapsulated gold | 0.387 ng/mL | 1.0 ng/mL–10 µg/mL | 50 min | Spiked animal derived food | [115] |
Electrochemical (CV) | OFL | Polypyrrole film-gold nanocluster as matrix for multi-enzyme-antibody functionalized gold nanorod | 0.03 ng/mL | 0.08–410 ng/mL | ~40 min | Buffer | [116] |
Electrochemical (CV) | OFL (S-OFL & R-OFL) | Dual amplification using multiwall carbon nanotubes-poly(L-lysine) for AG immobilization/multi-enzyme-labeled gold nanoflower as label | 0.15 ng/mL (S-OFL) 0.30 ng/mL (R-OFL) | 0.26–25.6 ng/mL (S-OFL) 0.37–12.8 ng/mL (R-OFL) | 60 min | Buffer | [117] |
Electrochemical | ENRO, NOR | Family selective detection using antibody functionalized CNTs | NOR: 3.2 ng/mL ENRO: 3.6 ng/mL | / | / | Antibiotic solution | [118] |
Piezoelectric | CIPR | Magnetic carbon nanocomposite | 2 ng/mL | 5–400 ng/mL | / | Milk, meat | [100] |
2.2. Aptasensors Used for Quinolone Detection
Transducer | Target | Working Principle | LOD | Linear Range | Response Time | Medium | Reference |
---|---|---|---|---|---|---|---|
Optical | ENRO | Aptamer-functionalized magnetic Fe3O4 conjugated with UCNPs | 0.06 ng/mL | 1–10 ng/mL | 30 min | Fish | [136] |
Optical | ENRO | Label-free assay based on specific aptamers GO | 1.33 ng/mL | 1.8–89.85 ng/mL | 30 min | Milk | [137] |
Optical | ENRO | Hybrid probe based on double recognition of aptamer-MIP grafted on UCNPs | 0.04 ng/mL | 0.5–10 ng/mL | / | Fish | [138] |
Optical | OFL | Colloidal dispersed gold nanoparticles | 1.229 ng/mL | 7.23–108.41 ng/mL | / | Tap water, urine | [139] |
Optical | OFL | Aggregation of gold nanoparticles and quenching of fluorescence of Rhodamine B | 0.6 ng/mL (water) 1.3 ng/mL (milk) | 7.23–108.41 ng/mL | / | Water, milk | [124] |
Optical | CIPR | Aptamer functionalized gold nanoparticles with enzyme-like activity | 0.43 ng/mL (water) 0.86 ng/mL (serum) 1.06 ng/mL (milk) | 1.33–165.67 ng/mL | 45 min | Water, serum, milk | [140] |
Electrochemical (CV, DPV) | CIPR | SPCE modified with CNTs V2O5-chitosan-composits | 0.5 ng/mL | 0.5–8 ng/mL | 3 h | Milk | [141] |
Electrochemical (DPV) | CIPR | Aptamers and SBP for access of redox probe to surface of gold electrode | 0.087 ng/mL | 0.265–132.54 ng/mL | <1 h | Milk, serum | [142] |
Electrochemical (DPV) | CIPR | Pencil graphite electrode modified with polypyrrole, SWCNTs | 1.325 ng/mL | / | / | Drugs, urine | [143] |
Electrochemical (CV, DPV) | CIPR | DNA-modified GCE | 38.77 ng/mL | 0.331–3.313 µg/mL | / | Drugs | [144] |
Electrochemical | CIPR | Reduced graphene oxide and nanogold-functionalized poly(amidoamine) dendrimer | 0.331 ng/mL | 0.331–331.346 ng/mL | 30 min | Raw milk | [129] |
Electrochemical (EIS, CV) | ENR | Novel Py-M-COF | 6.07 fg/mL | 0.01–2 ng/mL | / | Human serum | [133] |
Electrochemical (DPV) | OFL | Gold nanoparticle coated GCE | 0.361 ng/mL | 18.07 ng/mL–7.23 µg/mL | 2 h | Water, plant sewage | [145] |
Electrochemical (DPV) | CIPR, OFL | Modified gold electrode with gold-cysteine matrix | / | / | 2 h | Hospital effluent | [146] |
Electrochemical (CV) | CIPR, OFL, LEV | Double-labelled aptamer to surpass complementary strand lying flat, methylene blue as redox agent | 33.14 pg/mL (CIPR) | 0.099–149.106 ng/mL | 60 min | Human serum, milk, water | [128] |
Photoelectrochemical | ENR, CIPR | CuInS2/3DNG and Bi3+/B-TiO2/rGO on ITO electrode | 3.3 pg/mL | ENR: 0.01–10,000 ng/mL CIP: 0.01–1000 ng/mL | 40 min | Milk | [134] |
Photoelectrochemical | CIPR | Ti3C2/Bi4VO8Br/TiO2 nanocomposite | 0.099 ng/mL | 0.331–497.019 ng/mL | 40 min | Milk | [147] |
2.3. Enzymatic Biosensors for Quinolone Detection
Transducer | Target | Working Principle | LOD | Linear Range | Response Time | Medium | Reference |
---|---|---|---|---|---|---|---|
Optical | CIPR | Bienzymatic sensor (paraoxonase and laccase) immobilized on anthracene-sequestered polyamic acid films | 3.313 μg/mL | 6.63–165.67 ng/mL | 2 min | Buffer | [151] |
Electrochemical (CV) | OFL | Polypyrrole film-gold nanocluster as matrix for multi-enzyme-antibody functionalized gold nanorod | 0.03 ng/mL | 0.08–410 ng/mL | 3 h | Buffer | [116] * |
Electrochemical (V) | OFL (S-OFL & R-OFL) | Dual amplification using multiwall carbon nanotubes-poly(L-lysine) for AG immobilization/multi-enzyme-labeled gold nanoflower as the label | 0.15 ng/mL (S-OFL) 0.30 ng/mL (R-OFL) | S-OFL: 0.26–25.6 ng/mL R-OFL: 0.37–12.8 ng/mL | 2 h | Buffer | [117] * |
Electrochemical | CIPR, NOR | Biomimetic strategy—DNA Gyrase by ionic interactions attached to a SPCE | 1 ng/mL (CIPR) 9.64 ng/mL (NOR) | 10 ng/mL–0.1 mg/mL (CIPR) 9.64 ng/mL–9.65 μg/mL (NOR) | 30 min | Buffer | [154] |
Electrochemical (CV) | CIPR, NOR | Horseradish peroxidase immobilized on a rotating disk; reduction detected on GCE | 0.099 ng/mL (CIPR) 0.096 ng/mL (NOR) | 0.007–21 μg/mL (CIPR) 0.006–20.76 μg/mL (NOR) | / | Buffer | [153] |
Electrochemical | CIPR | Cu2+-modulated signal amplification/DNAzyme | 0.052 ng/mL | 0.1 ng/mL to 200 ng/mL | ~4 h | Buffer/Milk | [155] |
Electrochemical | PA | Immobilized tyrosinase enzyme on APCPG | 5.46 ng/mL | 0.006 μg/mL–21.2 μg/mL | / | Buffer | [150] |
3. Discussion and Future Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Urban-Chmiel, R.; Marek, A.; Stepien-Pysniak, D.; Wieczorek, K.; Dec, M.; Nowaczek, A.; Osek, J. Antibiotic Resistance in Bacteria—A Review. Antibiotics 2022, 11, 1079. [Google Scholar] [CrossRef]
- Pauter, K.; Szultka-Młyńska, M.; Buszewski, B. Determination and Identification of Antibiotic Drugs and Bacterial Strains in Biological Samples. Molecules 2020, 25, 2556. [Google Scholar] [CrossRef]
- Ahmed, S.; Ning, J.; Peng, D.; Chen, T.; Ahmad, I.; Ali, A.; Lei, Z.; Abu bakr Shabbir, M.; Cheng, G.; Yuan, Z. Current advances in immunoassays for the detection of antibiotics residues: A review. Food Agric. Immunol. 2020, 31, 268–290. [Google Scholar] [CrossRef]
- Zhang, Z.; Cheng, H. Recent Development in Sample Preparation and Analytical Techniques for Determination of Quinolone Residues in Food Products. Crit. Rev. Anal. Chem. 2017, 47, 223–250. [Google Scholar] [CrossRef]
- Jin, Y.; Dou, M.; Zhuo, S.; Li, Q.; Wang, F.; Li, J. Advances in microfluidic analysis of residual antibiotics in food. Food Control 2022, 136, 108885. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Rab, S. Biosensors applications in medical field: A brief review. Sens. Int. 2021, 2, 100100. [Google Scholar] [CrossRef]
- Gavrila, S.; Ștefan Ursachi, C.; Per, S.; Munteanu, F.D. Recent Trends in Biosensors for Environmental Quality Monitoring. Sensors 2022, 22, 1513. [Google Scholar] [CrossRef] [PubMed]
- Curulli, A. Electrochemical Biosensors in Food Safety: Challenges and Perspectives. Molecules 2021, 26, 2940. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, X.; Guo, J. Functionalized Carbon-Based Electrochemical Sensors for Food and Alcoholic Beverage Safety. Appl. Sci. 2022, 12, 9082. [Google Scholar] [CrossRef]
- Liu, H.; Mulholland, S.G. Appropriate antibiotic treatment of genitourinary infections in hospitalized patients. Am. J. Med. 2005, 118, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.D.M.; Ziora, Z.M.; Blaskovich, M.A.T. Quinolone antibiotics. MedChemComm 2019, 10, 1719–1739. [Google Scholar] [CrossRef] [PubMed]
- Turnidge, J. Pharmacokinetics and Pharmacodynamics of Fluoroquinolones. Drugs 1999, 58, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xue, Q.; Chen, T.; Li, J.; Liu, Y.; Shan, X.; Liu, F.; Jia, J. Recent advances in electrochemical sensors for antibiotics and their applications. Chin. Chem. Lett. 2020, 32, 609–619. [Google Scholar] [CrossRef]
- Pollap, A.; Kochana, J. Electrochemical Immunosensors for Antibiotic Detection. Biosensors 2019, 9, 61. [Google Scholar] [CrossRef]
- Mehlhorn, A.; Rahimi, P.; Joseph, Y. Aptamer-Based Biosensors for Antibiotic Detection: A Review. Biosensors 2018, 8, 54. [Google Scholar] [CrossRef]
- Jiwanti, P.K.; Wardhana, B.Y.; Sutanto, L.G.; Chanif, M.F. A Review on Carbon-based Electrodes for Electrochemical Sensor of Quinolone Antibiotics. ChemistrySelect 2022, 7, e202103997. [Google Scholar] [CrossRef]
- Majdinasab, M.; Mitsubayashi, K.; Marty, J.L. Optical and Electrochemical Sensors and Biosensors for the Detection of Quinolones. Rends Biotechnol. 2019, 37, 898–915. [Google Scholar] [CrossRef]
- Ansari, M.J.; Bokov, D.O.; Jasim, S.A.; Rudiansyah, M.; Suksatan, W.; Yasin, G.; Chupradit, S.; Alkaim, A.F.; Mustafa, Y.F.; Tarek, D.I. Emerging optical and electrochemical biosensing approaches for detection of ciprofloxacin residues in food and environment samples: A comprehensive overview. J. Mol. Liq. 2022, 354, 118895. [Google Scholar] [CrossRef]
- Liu, C.; Tan, L.; Zhang, L.; Tian, W.; Ma, L. A Review of the Distribution of Antibiotics in Water in Different Regions of China and Current Antibiotic Degradation Pathways. Front. Environ. Sci. 2021, 9, 692298. [Google Scholar] [CrossRef]
- Polianciuc, S.I.; Gurzău, A.E.; Kiss, B.; Ştefan, M.G.; Loghin, F. Antibiotics in the environment: Causes and consequences. Med. Pharm. Rep. 2020, 93, 231–240. [Google Scholar] [CrossRef]
- Antibioticsfinder. Available online: https://www.antibioticsfinder.com/antibioticsfinder (accessed on 25 August 2023).
- OIE List of Antimicrobial Agents of Veterinary Importance. Available online: https://www.woah.org/app/uploads/2021/06/a-oie-list-antimicrobials-june2021.pdf (accessed on 4 September 2023).
- Appelbaum, P.C.; Hunter, P.A. The fluoroquinolone antibacterials: Past, present and future perspectives. Int. J. Antimicrob. Agents 2000, 16, 5–15. [Google Scholar] [CrossRef]
- Emmerson, A.M. The quinolones: Decades of development and use. J. Antimicrob. Chemother. 2003, 51, 13–20. [Google Scholar] [CrossRef]
- Wagenlehner, F.M.E.; Naber, K.G. Fluoroquinolone antimicrobial agents in the treatment of prostatitis and recurrent urinary tract infections in men. Curr. Infect. Dis. Rep. 2005, 7, 9–16. [Google Scholar] [CrossRef]
- Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 2010, 17, 421–433. [Google Scholar] [CrossRef]
- Champoux, J.J. DNA Topoisomerases: Structure, Function, and Mechanism. Ann. Rev. Biochem. 2001, 70, 369–413. [Google Scholar] [CrossRef]
- Levine, C.; Hiasa, H.; Marians, K.J. DNA gyrase and topoisomerase IV: Biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim. Et Biophys. Acta (BBA) Gene Struct. Expr. 1998, 1400, 29–43. [Google Scholar] [CrossRef]
- Wang, J.C. DNA Topoisomerases. Ann. Rev. Biochem. 1985, 54, 665–697. [Google Scholar] [CrossRef] [PubMed]
- Gellert, M.; Mizuuchi, K.; O’Dea, M.H.; Nash, H.A. DNA gyrase: An enzyme that introduces superhelical turns into DNA. Proc. Natl. Acad. Sci. USA 1976, 73, 3872–3876. [Google Scholar] [CrossRef] [PubMed]
- Sutormin, D.A.; Galivondzhyan, A.K.; Polkhovskiy, A.V.; Kamalyan, S.O.; Severinov, K.V.; Dubiley, S.A. Diversity and Functions of Type II Topoisomerases. Acta Naturae 2021, 13, 59–75. [Google Scholar] [CrossRef]
- Forterre, P.; Gribaldo, S.; Gadelle, D.; Serre, M.-C. Origin and evolution of DNA topoisomerases. Biochimie 2007, 89, 427–446. [Google Scholar] [CrossRef]
- Anderson, V.; Osheroff, N. Type II Topoisomerases as Targets for Quinolone Antibacterials Turning Dr. Jekyll into Mr. Hyde. Curr. Pharm. Des. 2001, 7, 337–353. [Google Scholar] [CrossRef] [PubMed]
- Deweese, J.E.; Osheroff, N. The DNA cleavage reaction of topoisomerase II: Wolf in sheep’s clothing. Nucleic Acids Res. 2008, 37, 738–748. [Google Scholar] [CrossRef] [PubMed]
- Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of quinolone action and resistance. Biochemistry 2014, 53, 1565–1574. [Google Scholar] [CrossRef] [PubMed]
- Drlica, K.; Hiasa, H.; Kerns, R.; Malik, M.; Mustaev, A.; Zhao, X. Quinolones: Action and resistance updated. Curr. Top. Med. Chem. 2009, 9, 981–998. [Google Scholar] [CrossRef] [PubMed]
- Zaman, S.B.; Hussain, M.A.; Nye, R.; Mehta, V.; Mamun, K.T.; Hossain, N. A Review on Antibiotic Resistance: Alarm Bells are Ringing. Cureus 2017, 9, e1403. [Google Scholar] [CrossRef] [PubMed]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Deku, J.G.; Duedu, K.O.; Ativi, E.; Kpene, G.E.; Feglo, P.K. Occurrence and distribution of extended-spectrum β-lactamase in clinical Escherichia coli isolates at Ho Teaching Hospital in Ghana. Ghana Med. J. 2021, 55, 298–307. [Google Scholar] [CrossRef]
- Hooper, D.C.; Jacoby, G.A. Mechanisms of drug resistance: Quinolone resistance. Ann. N. Y. Acad. Sci. 2015, 1354, 12–31. [Google Scholar] [CrossRef]
- Yoshida, H.; Bogaki, M.; Nakamura, M.; Nakamura, S. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob. Agents Chemother. 1990, 34, 1271–1272. [Google Scholar] [CrossRef]
- Yoshida, H.; Bogaki, M.; Nakamura, M.; Yamanaka, L.M.; Nakamura, S. Quinolone resistance-determining region in the DNA gyrase gyrB gene of Escherichia coli. Antimicrob. Agents Chemother. 1991, 35, 1647–1650. [Google Scholar] [CrossRef]
- Breines, D.M.; Ouabdesselam, S.; Ng, E.Y.; Tankovic, J.; Shah, S.; Soussy, C.J.; Hooper, D.C. Quinolone resistance locus nfxD of Escherichia coli is a mutant allele of the parE gene encoding a subunit of topoisomerase IV. Antimicrob. Agents Chemother. 1997, 41, 175–179. [Google Scholar] [CrossRef] [PubMed]
- McMurry, L.; Petrucci, R.E., Jr.; Levy, S.B. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc. Natl. Acad. Sci. USA 1980, 77, 3974–3977. [Google Scholar] [CrossRef] [PubMed]
- Ball, P.R.; Shales, S.W.; Chopra, I. Plasmid-mediated tetracycline resistance in escherichia coli involves increased efflux of the antibiotic. Biochem. Biophys. Res. Commun. 1980, 93, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Poole, K. Efflux-mediated resistance to fluoroquinolones in gram-negative bacteria. Antimicrob. Agents Chemother. 2000, 44, 2233–2241. [Google Scholar] [CrossRef]
- Schindler, B.D.; Frempong-Manso, E.; DeMarco, C.; Kosmidis, C.; Matta, V.; Seo, S.; Kaatz, G. Analyses of multidrug efflux pump-like proteins encoded on the Staphylococcus aureus chromosome. Antimicrob. Agents Chemother. 2015, 59, 747–748. [Google Scholar] [CrossRef]
- Patel, K.N.; Patel, J.K.; Patel, M.P.; Rajput, G.C.; Patel, H.A. Introduction to hyphenated techniques and their applications in pharmacy. Pharm. Methods 2010, 1, 2–13. [Google Scholar] [CrossRef]
- Lombardo-Agüí, M.; Cruces-Blanco, C.; García-Campaña, A.M.; Gracia, L. Multiresidue analysis of quinolones in water by ultra-high perfomance liquid chromatography with tandem mass spectrometry using a simple and effective sample treatment. J. Sep. Sci. 2014, 37, 2145–2152. [Google Scholar] [CrossRef]
- Wei, L.; Chen, Y.; Shao, D.; Li, J. Simultaneous Determination of Nine Quinolones in Pure Milk Using PFSPE-HPLC-MS/MS with PS-PAN Nanofibers as a Sorbent. Foods 2022, 11, 1843. [Google Scholar] [CrossRef]
- Zhu, Y.; He, P.; Hu, H.; Qi, M.; Li, T.; Zhang, X.; Guo, Y.; Wu, W.; Lan, Q.; Yang, C.; et al. Determination of quinolone antibiotics in environmental water using automatic solid-phase extraction and isotope dilution ultra-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. B 2022, 1208, 123390. [Google Scholar] [CrossRef]
- Annunziata, L.; Visciano, P.; Stramenga, A.; Colagrande, M.; Campana, G.; Scortichini, G.; Migliorati, G.; Compagnone, D. Development and Validation of a Method for the Determination of Quinolones in Muscle and Eggs by Liquid Chromatography-Tandem Mass Spectrometry. Food Anal. Methods 2016, 9, 2308–2320. [Google Scholar] [CrossRef]
- Chang, C.S.; Wang, W.H.; Tsai, C.E. Simultaneous determination of 18 quinolone residues in marine and livestock products by liquid chromatography/tandem mass spectrometry. J. Food Drug Anal. 2010, 18, 87–97. [Google Scholar] [CrossRef]
- Cavazos-Rocha, N.; Carmona-Alvarado, I.; Vera-Cabrera, L.; Waksman-de-Torres, N.; Salazar-Cavazos, M.d.l.L. HPLC Method for the Simultaneous Analysis of Fluoroquinolones and Oxazolidinones in Plasma. J. Chromatogr. Sci. 2014, 52, 1281–1287. [Google Scholar] [CrossRef]
- Peris-Vicente, J.; Peris-Garcia, E.; Albiol-Chiva, J.; Durgbanshi, A.; Ochoa-Aranda, E.; Carda-Broch, S.; Bose, D.; Esteve-Romero, J. Liquid chromatography, a valuable tool in the determination of antibiotics in biological, food and environmental samples. Microchem. J. 2022, 177, 107309. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, M.; Liu, R.; Li, J.; Sang, Y.; Tang, Y.; Wang, X.; Wang, S. A broad-spectrum sensing strategy for the tetracycline family of antibiotics based on an ovalbumin-stabilized gold nanocluster and its application in a pump-free microfluidic sensing platform. Biosens. Bioelectron. 2020, 171, 112701. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Li, X.; Zhang, Y.; Wang, Y.; Wang, B.; Zheng, L.; Zhang, D.; Zhuang, S. Rapid quantitative detection of chloramphenicol in milk by microfluidic immunoassay. Food Chem. 2020, 339, 127857. [Google Scholar] [CrossRef] [PubMed]
- Sierra-Rodero, M.; Fernández-Romero, J.M.; Gómez-Hens, A. Determination of aminoglycoside antibiotics using an on-chip microfluidic device with chemiluminescence detection. Microchim. Acta 2012, 179, 185–192. [Google Scholar] [CrossRef]
- Tang, M.; Zhao, Y.; Chen, J.; Xu, D. On-line multi-residue analysis of fluoroquinolones and amantadine based on an integrated microfluidic chip coupled to triple quadrupole mass spectrometry. Anal. Methods 2020, 12, 5322–5331. [Google Scholar] [CrossRef]
- Pan, Y.; Yang, H.; Wen, K.; Ke, Y.; Shen, J.; Wang, Z. Current advances in immunoassays for quinolones in food and environmental samples. TrAC Trends Anal. Chem. 2022, 157, 116726. [Google Scholar] [CrossRef]
- Wen, K.; Nölke, G.; Schillberg, S.; Wang, Z.; Zhang, S.; Wu, C.; Jiang, H.; Meng, H.; Shen, J. Improved fluoroquinolone detection in ELISA through engineering of a broad-specific single-chain variable fragment binding simultaneously to 20 fluoroquinolones. Anal. Bioanal. Chem. 2012, 403, 2771–2783. [Google Scholar] [CrossRef]
- Huet, A.C.; Charlier, C.; Tittlemier, S.A.; Singh, G.; Benrejeb, S.; Delahaut, P. Simultaneous determination of (fluoro)quinolone antibiotics in kidney, marine products, eggs, and muscle by enzyme-linked immunosorbent assay (ELISA). J. Agric. Food Chem. 2006, 54, 2822–2827. [Google Scholar] [CrossRef]
- Yadoung, S.; Ishimatsu, R.; Xu, Z.; Sringarm, K.; Pata, S.; Thongkham, M.; Chantara, S.; Pattarawarapan, M.; Hongsibsong, S. Development of IgY-Based Indirect Competitive ELISA for the Detection of Fluoroquinolone Residues in Chicken and Pork Samples. Antibiotics 2022, 11, 1512. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Lang, Y.; Guo, B.; Cao, Z.; Cheng, J.; Cai, D.; Shentu, X.; Yu, X. Indirect Competitive Enzyme-Linked Immunosorbent Assay Based on Broad-Spectrum Antibody for Simultaneous Determination of Thirteen Fluoroquinolone Antibiotics in Rana catesbeianus. Foods 2023, 12, 2530. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, S.; Putalun, W.; Vimolmangkang, S.; Phoolcharoen, W.; Shoyama, Y.; Tanaka, H.; Morimoto, S. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J. Nat. Med. 2018, 72, 32–42. [Google Scholar] [CrossRef]
- Heineman, W.R.; Jensen, W.B. Leland C. Clark Jr. (1918–2005). Biosens. Bioelectron. 2006, 21, 1403–1404. [Google Scholar] [CrossRef]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef]
- Dellweg, H.; Dellweg, H.; Gierasch, L.M. International union of pure and applied chemistry applied chemistry division commission on biotechnology* glossary for chemists of terms used in biotechnology. Pure Appl. Chem. 1992, 64, 143–168. [Google Scholar]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef]
- Turner, A.P.F. Biosensors: Sense and sensibility. Chem. Soc. Rev. 2013, 42, 3184–3196. [Google Scholar] [CrossRef]
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to biosensors. Essays Biochem. 2016, 60, 1–8. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, A.; Ahmed, A.; Sundramoorthy, A.; Furukawa, H.; Arya, S.; Khosla, A. Recent Advances in Electrochemical Biosensors: Applications, Challenges, and Future Scope. Biosensors 2021, 11, 336. [Google Scholar] [CrossRef]
- Damborský, P.; Švitel, J.; Katrlík, J. Optical biosensors. Essays Biochem. 2016, 60, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, J. Optical biosensors: An exhaustive and comprehensive review. Analyst 2020, 145, 1605–1628. [Google Scholar] [CrossRef]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors—Sensor Principles and Architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef] [PubMed]
- Lazanas, A.C. Electrochemical Impedance Spectroscopy—A Tutorial. ACS Meas. Sci. Au 2023, 3, 162–193. [Google Scholar] [CrossRef] [PubMed]
- Randviir, E.P.; Banks, C.E. A review of electrochemical impedance spectroscopy for bioanalytical sensors. Anal. Methods 2022, 14, 4602–4624. [Google Scholar] [CrossRef]
- Venton, B.J.; DiScenza, D.J. Voltammetry; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Elgrishi, N.; Rountree, K.J.; McCarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2017, 95, 197–206. [Google Scholar] [CrossRef]
- Lutz, R.; Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 1997, 25, 1203–1210. [Google Scholar] [CrossRef]
- Liu, X.; Yang, H.; Xu, Z.; Liu, R.; Zuo, H.; Chen, Z.; Wang, X.; Xia, C.; Zhang, Y.; Ning, B.; et al. A novel biosensor based on antibody controlled isothermal strand displacement amplification (ACISDA) system. Biosens. Bioelectron. 2022, 209, 114185. [Google Scholar] [CrossRef]
- Taylor, N.D.; Garruss, A.S.; Moretti, R.; Chan, S.; Arbing, M.A.; Gascio, D.; Rogers, J.K.; Isaacs, F.J.; Kosuri, S.; Baker, D.; et al. Engineering an allosteric transcription factor to respond to new ligands. Nat. Methods 2015, 13, 177–183. [Google Scholar] [CrossRef]
- Oliveira, B.B.; Veigas, B.; Baptista, P.V. Isothermal Amplification of Nucleic Acids: The Race for the Next ‘Gold Standard’. Front. Sens. 2021, 2, 752600. [Google Scholar] [CrossRef]
- Du, Y.-C.; Jiang, H.-X.; Huo, Y.-F.; Han, G.-M.; Kong, D.-M. Optimization of strand displacement amplification-sensitized G-quadruplex DNAzyme-based sensing system and its application in activity detection of uracil-DNA glycosylase. Biosens. Bioelectron. 2016, 77, 971–977. [Google Scholar] [CrossRef]
- Wang, W.; Peng, Y.; Wu, J.; Zhang, M.; Li, Q.; Zhao, Z.; Liu, M.; Wang, J.; Cao, G.; Bai, J.; et al. Ultrasensitive Detection of 17β-Estradiol (E2) Based on Multistep Isothermal Amplification. Anal. Chem. 2021, 93, 4488–4496. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Ghuge, S.A.; Ravichandiran, V.; Ranjan, N. Spectroscopic studies of Thioflavin-T binding to c-Myc G-quadruplex DNA. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 212, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, J.; Barooah, N.; Dhamodharan, V.; Harikrishna, S.; Pradeepkumar, P.I.; Bhasikuttan, A.C. Thioflavin T as an Efficient Inducer and Selective Fluorescent Sensor for the Human Telomeric G-Quadruplex DNA. J. Am. Chem. Soc. 2012, 135, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Peng, Y.; Ning, B.; Wei, H.; Gao, Z.; Bai, J.; Guo, L. A tri-functional probe mediated exponential amplification strategy for highly sensitive detection of Dnmt1 and UDG activities at single-cell level. Anal. Chim. Acta 2019, 1103, 164–173. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, H.; Zhuo, Y.; Song, D.; Li, C.; Zhu, A.; Long, F. Reusable smartphone-facilitated mobile fluorescence biosensor for rapid and sensitive on-site quantitative detection of trace pollutants. Biosens. Bioelectron. 2021, 199, 113863. [Google Scholar] [CrossRef]
- Chaudhary, N.; Yadav, A.K.; Sharma, J.G.; Solanki, P.R. Designing and characterization of a highly sensitive and selective biosensing platform for ciprofloxacin detection utilizing lanthanum oxide nanoparticles. J. Environ. Chem. Eng. 2021, 9, 106771. [Google Scholar] [CrossRef]
- Escudero, A.; Beccero, A.; Carrillo-Carrion, C.; Nunez, N.; Zyuzin, M.; Laguna, M.; Gonzalez-Mancebo, D.; Ocana, M.; Parak, W. Rare earth based nanostructured materials: Synthesis, functionalization, properties and bioimaging and biosensing applications. Nanophotonics 2017, 6, 881–921. [Google Scholar] [CrossRef]
- Sovizi, R.; Mirzakhani, S. A chemiresistor sensor modified with lanthanum oxide nanoparticles as a highly sensitive and selective sensor for dimethylamine at room temperature. New J. Chem. 2020, 44, 4927–4934. [Google Scholar] [CrossRef]
- Zepf, V. An Overview of the Usefulness and Strategic Value of Rare Earth Metals. In Rare Earths Industry: Technological, Economic, and Environmental Implications; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 3–17. [Google Scholar] [CrossRef]
- Yadav, A.K.; Dhiman, T.K.; Lakshmi, G.B.V.S.; Berlina, A.N.; Solanki, P.R. A highly sensitive label-free amperometric biosensor for norfloxacin detection based on chitosan-yttria nanocomposite. Int. J. Biol. Macromol. 2020, 151, 566–575. [Google Scholar] [CrossRef]
- Ermolaeva, T.N.; Kalmykova, E.N. Piezoelectric immunosensors: Analytical potentials and outlooks. Russ. Chem. Rev. 2006, 75, 397–409. [Google Scholar] [CrossRef]
- Vaughan, R.D.; Guilbault, G.G. Piezoelectric Immunosensors. In Piezoelectric Sensors; Springer: Berlin/Heidelberg, Germany, 2006; pp. 237–280. [Google Scholar] [CrossRef]
- Kim, S.N.; Rusling, J.F.; Papadimitrakopoulos, F. Carbon Nanotubes for Electronic and Electrochemical Detection of Biomolecules. Adv. Mater. 2007, 19, 3214–3228. [Google Scholar] [CrossRef]
- Yang, W.; Thordarson, P.; Gooding, J.J.; Ringer, S.P.; Braet, F. Carbon nanotubes for biological and biomedical applications. Nanotechnology 2007, 18, 412001. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Y. Functionalized carbon nanotubes and nanofibers for biosensing applications. TrAC Trends Anal. Chem. 2008, 27, 619–626. [Google Scholar] [CrossRef]
- Bizina, E.V.; Farafonova, O.V.; Zolotareva, N.I.; Grazhulene, S.S.; Ermolaeva, T.N. A Piezoelectric Immunosensor Based on Magnetic Carbon Nanocomposites for the Determination of Ciprofloxacin. J. Anal. Chem. 2022, 77, 458–465. [Google Scholar] [CrossRef]
- Hu, G.; Sheng, W.; Zhang, Y.; Wu, X.; Wang, S. A novel and sensitive fluorescence immunoassay for the detection of fluoroquinolones in animal-derived foods using upconversion nanoparticles as labels. Anal. Bioanal. Chem. 2015, 407, 8487–8496. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Huang, J.; Sun, Y.; Deng, R.; Teng, M.; Li, Q.; Yang, Y.; Hu, X.; Zhang, Z.; Zhang, G. A SERS-based multiple immuno-nanoprobe for ultrasensitive detection of neomycin and quinolone antibiotics via a lateral flow assay. Microchim. Acta 2018, 185, 84. [Google Scholar] [CrossRef]
- Zhuo, Y.-X.; Xu, W.-J.; Yuan, C.; Song, D.; Xiang-Zhi, H.; Feng, L. Rapid detection of norfloxacin in water by evanescent wave fiber optic biosensor. China Environ. Sci. 2022, 42, 2283–2288. [Google Scholar]
- Chen, Y.; Chen, Q.; Han, M.; Liu, J.; Zhao, P.; He, L.; Zhang, Y.; Niu, Y.; Yang, W.; Zhang, L. Near-infrared fluorescence-based multiplex lateral flow immunoassay for the simultaneous detection of four antibiotic residue families in milk. Biosens. Bioelectron. 2016, 79, 430–434. [Google Scholar] [CrossRef]
- Sheng, W.; Li, S.; Liu, Y.; Wang, J.; Zhang, Y.; Wang, S. Visual and rapid lateral flow immunochromatographic assay for enrofloxacin using dyed polymer microspheres and quantum dots. Microchim. Acta 2017, 184, 4313–4321. [Google Scholar] [CrossRef]
- Byzova, N.A.; Smirnova, N.; Zherdev, A.; Eremin, S.; Shanin, I.; Lei, H.; Sun, Y.; Dzantiev, B. Rapid immunochromatographic assay for ofloxacin in animal original foodstuffs using native antisera labeled by colloidal gold. Talanta 2014, 119, 125–132. [Google Scholar] [CrossRef]
- Taranova, N.A.; Berlina, A.N.; Zherdev, A.V.; Dzantiev, B.B. ‘Traffic light’ immunochromatographic test based on multicolor quantum dots for the simultaneous detection of several antibiotics in milk. Biosens. Bioelectron. 2015, 63, 255–261. [Google Scholar] [CrossRef] [PubMed]
- El Kojok, H.; El Darra, N.; Khalli, M.; Capo, A.; Pennaccio, A.; Staiano, M.; Camarca, A.; D’Auria, S.; Varriale, A. Fluorescence polarization assay to detect the presence of traces of ciprofloxacin. Sci. Rep. 2020, 10, 4550. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, M.; WU, X.; Chang, Z.; Lee, Y.; Huy, B.; Sakthivel, K.; Liu, J.; Jiang, G. Upconversion fluorescence resonance energy transfer—A novel approach for sensitive detection of fluoroquinolones in water samples. Microchem. J. 2015, 124, 181–187. [Google Scholar] [CrossRef]
- Lamarca, R.S.; de Faria, R.A.D.; Zanoni, M.V.B.; Nalin, M.; de Lima Gomes, P.C.F.; Messaddeq, Y. Simple, fast and environmentally friendly method to determine ciprofloxacin in wastewater samples based on an impedimetric immunosensor. RSC Adv. 2020, 10, 1838–1847. [Google Scholar] [CrossRef]
- Giroud, F.; Gorgy, K.; Gondran, C.; Cosnier, S.; Pinacho, D.; Marco, M.-P.; Sánchez-Baeza, F. Impedimetric Immunosensor Based on a Polypyrrole−Antibiotic Model Film for the Label-Free Picomolar Detection of Ciprofloxacin. Anal. Chem. 2009, 81, 8405–8409. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, R.E.; Jaffrezic-Renault, N.; Bouffier, L.; Gondran, C.; Cosnier, S.; Pinacho, D.; Marco, M.-P.; Sánchez-Baeza, F.; Healy, T.; Martelet, C. Impedimetric immunosensor for the specific label free detection of ciprofloxacin antibiotic. Biosens. Bioelectron. 2007, 23, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Pinacho, D.G.; Sánchez-Baeza, F.; Pividori, M.-I.; Marco, M.-P. Electrochemical detection of fluoroquinolone antibiotics in milk using a magneto immunosensor. Sensors 2014, 14, 15965–15980. [Google Scholar] [CrossRef] [PubMed]
- Tsekenis, G.; Garifallou, G.; Davis, F.; Millner, P.; Pinacho, D.; Sánchez-Baeza, F.; Marco, M.-P.; Gibson, T.; Higson, S. Detection of Fluoroquinolone Antibiotics in Milk via a Labeless Immunoassay Based upon an Alternating Current Impedance Protocol. Anal. Chem. 2008, 80, 9233–9239. [Google Scholar] [CrossRef]
- Liu, B.; Li, M.; Zhao, Y.; Pan, M.; Gu, Y.; Sheng, W.; Fang, G.; Wang, S. A Sensitive Electrochemical Immunosensor Based on PAMAM Dendrimer-Encapsulated Au for Detection of Norfloxacin in Animal-Derived Foods. Sensors 2018, 18, 1946. [Google Scholar] [CrossRef]
- Zang, S.; Liu, Y.; Lin, M.; Kang, J.; Sun, Y.; Lei, H. A dual amplified electrochemical immunosensor for ofloxacin: Polypyrrole film-Au nanocluster as the matrix and multi-enzyme-antibody functionalized gold nanorod as the label. Electrochim. Acta 2013, 90, 246–253. [Google Scholar] [CrossRef]
- He, Z.; Zang, S.; Liu, Y.; He, Y.; Lei, H. A multi-walled carbon nanotubes-poly(l-lysine) modified enantioselective immunosensor for ofloxacin by using multi-enzyme-labeled gold nanoflower as signal enhancer. Biosens. Bioelectron. 2015, 73, 85–92. [Google Scholar] [CrossRef]
- Kim, B.; Lim, D.; Jin, H.; Lee, H.; Namgung, S.; Ko, Y.; Park, S.; Hong, S. Family-selective detection of antibiotics using antibody-functionalized carbon nanotube sensors. Sens. Actuators B Chem. 2012, 166–167, 193–199. [Google Scholar] [CrossRef]
- Adachi, T.; Nakamura, Y. Aptamers: A Review of Their Chemical Properties and Modifications for Therapeutic Application. Molecules 2019, 24, 4229. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Rossi, J. Aptamers as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug Discov. 2017, 16, 181–202. [Google Scholar] [CrossRef]
- Arshavsky-Graham, S.; Heuer, C.; Jiang, X.; Segal, E. Aptasensors versus immunosensors—Which will prevail? Eng. Life Sci. 2022, 22, 319–333. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, X.; Zhou, Y.; Ma, M.; Wang, M.; Ying, B. Systematic Evolution of Ligands by Exponential Enrichment Technologies and Aptamer-Based Applications: Recent Progress and Challenges in Precision Medicine of Infectious Diseases. Front. Bioeng. Biotechnol. 2021, 9, 704077. [Google Scholar] [CrossRef]
- Tuerk, C.; Gold, L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, L.; Zhou, X.; Yan, R.; Zhang, D.; Wang, S.; Su, L.; Zhou, S. Fluorescent aptasensor for ofloxacin detection based on the aggregation of gold nanoparticles and its effect on quenching the fluorescence of Rhodamine, B. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 221, 117203. [Google Scholar] [CrossRef]
- Hammami, I.; Alabdallah, N.M.; Al Jomaa, A.; Kamoun, M. Gold nanoparticles: Synthesis properties and applications. J. King Saud Univ. Sci. 2021, 33, 101560. [Google Scholar] [CrossRef]
- Zhan, S.; Wu, Y.; He, L.; Wang, F.; Zhan, X.; Zhou, P.; Qiu, S. A silver-specific DNA-based bio-assay for Ag(i) detection via the aggregation of unmodified gold nanoparticles in aqueous solution coupled with resonance Rayleigh scattering. Anal. Methods 2012, 4, 3997. [Google Scholar] [CrossRef]
- Beija, M.; Afonso, C.A.M.; Martinho, J.M.G. Synthesis and applications of Rhodamine derivatives as fluorescent probes. Chem. Soc. Rev. 2009, 38, 2410. [Google Scholar] [CrossRef]
- Heidarian, S.M.T.; Sani, A.T.; Danesh, N.M.; Ramezani, M.; Alibolandi, M.; Gerayelou, G.; Abnous, K.; Tagghdisi, S.M. A novel electrochemical approach for the ultrasensitive detection of fluoroquinolones based on a double-labelled aptamer to surpass complementary strands of aptamer lying flat. Sens. Actuators B Chem. 2021, 334, 129632. [Google Scholar] [CrossRef]
- Mahmoudpour, M.; Kholafazad-kordasht, H.; Dolatabadi, J.E.N.; Hasanzadeh, M.; Rad, A.H.; Torbati, M. Sensitive aptasensing of ciprofloxacin residues in raw milk samples using reduced graphene oxide and nanogold-functionalized poly(amidoamine) dendrimer: An innovative apta-platform towards electroanalysis of antibiotics. Anal. Chim. Acta 2021, 1174, 338736. [Google Scholar] [CrossRef]
- Javed, R.; Zia, M.; Naz, S.; Aisida, S.O.; Ain, N.U.; Ao, Q. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: Recent trends and future prospects. J Nanobiotechnol. 2020, 18, 172. [Google Scholar] [CrossRef]
- Niu, Z.; Li, Y. Removal and Utilization of Capping Agents in Nanocatalysis. Chem. Mater. 2013, 26, 72–83. [Google Scholar] [CrossRef]
- Abbasi, E.; Aval, S.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.; Joo, S.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett. 2014, 9, 247. [Google Scholar] [CrossRef]
- Wang, M.; Hu, M.; Liu, J.; Guo, C.; Peng, D.; Jia, Q.; He, L.; Zhang, Z.; Du, M. Covalent organic framework-based electrochemical aptasensors for the ultrasensitive detection of antibiotics. Biosens. Bioelectron. 2019, 132, 8–16. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Q.; Zhang, M.; You, F.; Hao, N.; Ding, C.; Wang, K. Simultaneous detection of enrofloxacin and ciprofloxacin in milk using a bias potentials controlling-based photoelectrochemical aptasensor. J. Hazard. Mater. 2021, 416, 125988. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, M.; Xu, Y.; Wen, Z.; Ding, C.; Guo, Y.; Hao, N.; Wang, K. Bi3+ engineered black anatase titania coupled with graphene for effective tobramycin photoelectrochemical detection. Sens. Actuators B Chem. 2020, 321, 128464. [Google Scholar] [CrossRef]
- Liu, X.; Su, L.; Zhu, L.; Gao, X.; Wang, Y.; Bai, F.; Tang, Y.; Li, J. Hybrid material for enrofloxacin sensing based on aptamer-functionalized magnetic nanoparticle conjugated with upconversion nanoprobes. Sens. Actuators B Chem. 2016, 233, 394–401. [Google Scholar] [CrossRef]
- Dolati, S.; Ramezani, M.; Nabavinia, M.S.; Soheili, V.; Abnous, K.; Taghdisi, S.M. Selection of specific aptamer against enrofloxacin and fabrication of graphene oxide based label-free fluorescent assay. Anal. Biochem. 2018, 549, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ren, J.; Su, L.; Gao, X.; Tang, Y.; Ma, T.; Zhu, L.; Li, J. Novel hybrid probe based on double recognition of aptamer-molecularly imprinted polymer grafted on upconversion nanoparticles for enrofloxacin sensing. Biosens. Bioelectron. 2017, 87, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, L.; Shen, G.; Zhang, D.; Xie, J.; Mamut, A.; Huang, W.; Zhou, S. Colorimetric determination of ofloxacin using unmodified aptamers and the aggregation of gold nanoparticles. Microchim. Acta 2018, 185, 355. [Google Scholar] [CrossRef]
- Lavaee, P.; Danesh, N.M.; Ramezani, M.; Abnous, K.; Taghdisi, S.M. Colorimetric aptamer based assay for the determination of fluoroquinolones by triggering the reduction-catalyzing activity of gold nanoparticles. Microchim. Acta 2017, 184, 2039–2045. [Google Scholar] [CrossRef]
- Hu, X.; Goud, K.; Kumar, V.; Catanante, G.; Li, Z.; Zhu, Z.; Marty, J. Disposable electrochemical aptasensor based on carbon nanotubes- V2O5-chitosan nanocomposite for detection of ciprofloxacin. Sens. Actuators B Chem. 2018, 268, 278–286. [Google Scholar] [CrossRef]
- Abnous, K.; Danesh, N.M.; Alibolandi, M.; Ramezani, M.; Taghdisi, S.M.; Emrani, A.S. A novel electrochemical aptasensor for ultrasensitive detection of fluoroquinolones based on single-stranded DNA-binding protein. Sens. Actuators B Chem. 2017, 240, 100–106. [Google Scholar] [CrossRef]
- Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H.; Faghih-Mirzaei, E. A nanostructure label-free DNA biosensor for ciprofloxacin analysis as a chemotherapeutic agent: An experimental and theoretical investigation. New J. Chem. 2017, 41, 4985–4989. [Google Scholar] [CrossRef]
- Diab, N.; Abu-Shqair, I.; Salim, R.; Al-Subu, M. The Behavior of Ciprofloxacin at a DNA Modified Glassy Carbon Electrodes. Int. J. Electrochem. Sci. 2014, 9, 1771–1783. [Google Scholar] [CrossRef]
- Pilehvar, S.; Reinemann, C.; Bottari, F.; Vanderleyden, E.; Van Vlierberghe, S.; Blust, R.; Strehlitz, B.; De Wael, K. A joint action of aptamers and gold nanoparticles chemically trapped on a glassy carbon support for the electrochemical sensing of ofloxacin. Sens. Actuators B Chem. 2017, 240, 1024–1035. [Google Scholar] [CrossRef]
- Bekir, K.; Beltifa, A.; Maatouk, F.; Khdary, N.H.; Barhoumi, H.; Mansour, H.B. DNA as a Next-Generation Biomonitoring Tool of Hospital Effluent Contamination. Sustainability 2022, 14, 2440. [Google Scholar] [CrossRef]
- You, F.; Wen, Z.; Yuan, R.; Ding, L.; Wei, J.; Qian, J.; Long, L.; Wang, K. Selective and ultrasensitive detection of ciprofloxacin in milk using a photoelectrochemical aptasensor based on Ti3C2/Bi4VO8Br/TiO2 nanocomposite. J. Electroanal. Chem. 2022, 914, 116285. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Lee, S.H.; Lee, U.J.; Fermin, C.D.; Kim, M. Immobilized Enzymes in Biosensor Applications. Materials 2019, 12, 121. [Google Scholar] [CrossRef] [PubMed]
- Rebollar-Pérez, G.; Campos-Terán, J.; Ornelas-Soto, N.; Méndez-Albores, A.; Torres, E. Biosensors based on oxidative enzymes for detection of environmental pollutants. Biocatalysis 2016, 1, 118–129. [Google Scholar] [CrossRef]
- Bertolino, F.A.; De Vito, I.E.; Messina, G.A.; Fernández, H.; Raba, J. Microfluidic-enzymatic biosensor with immobilized tyrosinase for electrochemical detection of pipemidic acid in pharmaceutical samples. J. Electroanal. Chem. 2011, 651, 204–210. [Google Scholar] [CrossRef]
- Esen, E.; Yazgan, İ.; Demirkol, D.O. Bienzymatic fluorescence detection based on paraoxonase and laccase on anthracene-sequestered polyamic acid films: A novel approach for inhibition-based sensors. Mater. Today Commun. 2020, 25, 101672. [Google Scholar] [CrossRef]
- Furlong, C.E.; Marsillach, J.; Jarvik, G.P.; Costa, L.G. Paraoxonases-1, -2 and -3: What are their functions? Chem. Interact. 2016, 259, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Torriero, A.A.J.; Salinas, E.; Raba, J.; Silber, J.J. Sensitive determination of ciprofloxacin and norfloxacin in biological fluids using an enzymatic rotating biosensor. Biosens. Bioelectron. 2006, 22, 109–115. [Google Scholar] [CrossRef]
- Cardoso, A.R.; Carneiro, L.P.T.; Cabral-Miranda, G.; Bachmann, M.F.; Sales, M.G.F. Employing bacteria machinery for antibiotic detection: Using DNA gyrase for ciprofloxacin detection. Chem. Eng. J. 2020, 409, 128135. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, F.; Wang, Q.; Huang, Y. A sensitive electrochemical biosensor for quinolones detection based on Cu2+-modulated signal amplification. Microchem. J. 2023, 190, 108636. [Google Scholar] [CrossRef]
- Uivarosi, V. Metal complexes of quinolone antibiotics and their applications: An update. Molecules 2013, 18, 11153–11197. [Google Scholar] [CrossRef]
- Arshavsky-Graham, S.; Urmann, K.; Salama, R.; Massad-Ivanir, N.; Walter, J.; Scheper, T.; Segal, E. Aptamers vs. antibodies as capture probes in optical porous silicon biosensors. Analyst 2020, 145, 4991–5003. [Google Scholar] [CrossRef]
- Thurner, F.; Alatraktchi, F.A.A. Recent advances in electrochemical biosensing of aflatoxin M1 in milk—A mini review. Microchem. J. 2023, 190, 108594. [Google Scholar] [CrossRef]
- Peng, Z.; Xie, X.; Tan, Q.; Kang, H.; Cui, J.; Zhang, X.; Li, W.; Feng, G. Blood glucose sensors and recent advances: A review. J. Innov. Opt. Heal. Sci. 2022, 15, 2230003. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Xu, X.; Yang, X. Specifically colorimetric recognition of calcium, strontium, and barium ions using 2-mercaptosuccinic acid-functionalized gold nanoparticles and its use in reliable detection of calcium ion in water. Analyst 2011, 136, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Bozzano, L. Handbook of Milk Composition; Academic Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Parthasarathy, R.; Monette, C.E.; Bracero, S.; Saha, M.S. Methods for field measurement of antibiotic concentrations: Limitations and outlook. FEMS Microbiol. Ecol. 2018, 94, 105. [Google Scholar] [CrossRef]
- Campisi, S.; Schiavoni, M.; Chan-Thaw, C.; Villa, A. Untangling the Role of the Capping Agent in Nanocatalysis: Recent Advances and Perspectives. Catalysts 2016, 6, 185. [Google Scholar] [CrossRef]
- Mao, Y.; Dang, M.; Zhang, J.; Huang, X.; Qiao, M.; Song, L.; Zhao, Q.; Ding, M.; Wang, Y.; Li, Z.; et al. Peptide amphiphile inspired self-assembled, ordered gold nanocomposites for improved sensitivity of electrochemical immunosensor: Applications in determining the total aflatoxin amount in food stuffs. Talanta 2022, 247, 123532. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Dutta, T.; Kim, K.-H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnol. 2018, 16, 84. [Google Scholar] [CrossRef]
- Makarov, V.V.; Love, A.; Sinitsyna, O.; Makarova, S.; Yaminsky, I.; Taliansky, M.; Kalinina, N. ‘Green’ Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants. Acta Naturae 2014, 6, 35–44. [Google Scholar] [CrossRef]
Antibiotic | MRL (ppb) | MRL (mol) |
---|---|---|
Ciprofloxacin | 100 | 302 nM |
Danofloxacin | 30 | 84 nM |
Difloxacin | Not allowed | Not allowed |
Enrofloxacin | 100 | 278 nM |
Flumequin | 50 | 191 nM |
Marbofloxacin | 75 | 207 nM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thurner, F.; Alatraktchi, F.A. Recent Trends in Biosensors for Quinolone Detection: A Comprehensive Review. Chemosensors 2023, 11, 493. https://doi.org/10.3390/chemosensors11090493
Thurner F, Alatraktchi FA. Recent Trends in Biosensors for Quinolone Detection: A Comprehensive Review. Chemosensors. 2023; 11(9):493. https://doi.org/10.3390/chemosensors11090493
Chicago/Turabian StyleThurner, Fabian, and Fatima AlZahra’a Alatraktchi. 2023. "Recent Trends in Biosensors for Quinolone Detection: A Comprehensive Review" Chemosensors 11, no. 9: 493. https://doi.org/10.3390/chemosensors11090493
APA StyleThurner, F., & Alatraktchi, F. A. (2023). Recent Trends in Biosensors for Quinolone Detection: A Comprehensive Review. Chemosensors, 11(9), 493. https://doi.org/10.3390/chemosensors11090493