Biosensor-Based Assessment of Pesticides and Mineral Fertilizers’ Influence on Ecotoxicological Parameters of Soils under Soya, Sunflower and Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Bacteria Strains
2.3. Assessment of Soil Ecotoxicity Using Bacterial Lux-Biosensors
2.4. Statistical Processing
3. Results
3.1. Integral Toxicity Determined Using the V. aquamarinus VKPM B-11245 Strain
3.2. Genotoxicity of Agricultural Soils
3.3. Pro-oxidant Properties of Agricultural Soils
3.4. Protein- and Membrane-Damaging Properties of Soils
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Appendix A
№ | Designation | Crop | Agrochemical Treatment | Sampling Time | Forecrop |
---|---|---|---|---|---|
Sampling before pesticide application | |||||
1 | Gc | soya | control | 14.06.2022 | – |
2 | Gf | soya | fertilizers | 14.06.2022 | – |
3 | Gp | soya | pesticides | 14.06.2022 | – |
4 | Gf + p | soya | fertilizers + pesticides | 14.06.2022 | – |
5 | Hc | sunflower | control | 14.06.2022 | – |
6 | Hf | sunflower | fertilizers | 14.06.2022 | – |
7 | Hp | sunflower | pesticides | 14.06.2022 | – |
8 | Hf + p | sunflower | fertilizers + pesticides | 14.06.2022 | – |
9 | T(g)c | winter wheat | control | 15.05.2023 | soya |
10 | T(g)f | winter wheat | fertilizers | 15.05.2023 | soya |
11 | T(g)p | winter wheat | pesticides | 15.05.2023 | soya |
12 | T(g)f + p | winter wheat | fertilizers + pesticides | 15.05.2023 | soya |
13 | T(h)c | winter wheat | control | 15.05.2023 | sunflower |
14 | T(h)f | winter wheat | fertilizers | 15.05.2023 | sunflower |
15 | T(h)p | winter wheat | pesticides | 15.05.2023 | sunflower |
16 | T(h)f + p | winter wheat | fertilizers + pesticides | 15.05.2023 | sunflower |
Sampling after pesticide application | |||||
17 | Gc | soya | control | 07.07.2022 | – |
18 | Gf | soya | fertilizers | 07.07.2022 | – |
19 | Gp | soya | pesticides | 07.07.2022 | – |
20 | Gf + p | soya | fertilizers + pesticides | 07.07.2022 | – |
21 | Hc | sunflower | control | 22.09.2022 | – |
22 | Hf | sunflower | fertilizers | 22.09.2022 | – |
23 | Hp | sunflower | pesticides | 22.09.2022 | – |
24 | Hf + p | sunflower | fertilizers + pesticides | 22.09.2022 | – |
25 | T(g)c | winter wheat | control | 04.07.2023 | soya |
26 | T(g)f | winter wheat | fertilizers | 04.07.2023 | soya |
27 | T(g)p | winter wheat | pesticides | 04.07.2023 | soya |
28 | T(g)f + p | winter wheat | fertilizers + pesticides | 04.07.2023 | soya |
29 | T(h)c | winter wheat | control | 04.07.2023 | sunflower |
30 | T(h)f | winter wheat | fertilizers | 04.07.2023 | sunflower |
31 | T(h)p | winter wheat | pesticides | 04.07.2023 | sunflower |
32 | T(h)f + p | winter wheat | fertilizers + pesticides | 04.07.2023 | sunflower |
Plant-Protecting Agent | Trade Name | Composition | Application | Dose (L ha−1) | Treatment Method | Crop |
---|---|---|---|---|---|---|
Herbicides | Gardo Gold | 312.5 g L−1 c-metolachlor 187.5 g L−1 terbutylazine | SE | 4.0 | application to the soil before sowing | soya |
3.0 | sunflower | |||||
Benito | 300 g L−1 bentazone | CC | 2.0 | during vegetation | soya | |
Reglon Super | 150 g L−1 diquat | WS | 2.0 | before harvesting (desiccant) | sunflower | |
Fungicides | Maxim | 25 g L−1 fludioxonil | SC | 5.0 | pre-sowing seed treatment (protectant) | sunflower |
Optimo | 200 g L−1 pyraclostrobin | EC | 1.0 | during growing season | sunflower | |
Ceriax Plus | 66.6 g L−1 pyraclostrobin + 41.6 g L−1 fluxapyroxad + 41.6 g L−1 epoxiconazole | EC | 0.4 | during growing season | winter wheat | |
Insecticides | Cruiser | 350 g L−1 thiamethoxam | SC | 0.5 | pre-sowing seed treatment (seed dresser) | sunflower |
Ampligo | 50 g L−1 lambda-cyhalothrin; 100 g L−1 chlorantraniliprole | MS | 0.2 | during growing season | sunflower | |
Fascord | 100 g L−1 alpha-cypermethrin | EC | 0.15 | during growing season | winter wheat |
Crop | Sampling Time | Abbreviation | Response of Lux-Biosensor Strains | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
V. aquamarinus VKPM B-11245 | E. coli MG1655 (pRecA-lux) | E. coli MG1655 (pDinB-lux) | E. coli MG1655 (pColD-lux) | E. coli MG1655 (pAlkA-lux) | E. coli MG1655 (pKatG-lux) | E. coli MG1655 (pOxyR-lux) | E. coli MG1655 (pSoxS-lux) | E. coli MG1655 (pGrpE-lux) | E. coli MG1655 (pFabA-lux) | |||
Soya | before | Gc | 12.60 ± 1.20 | 1.24 ± 0.04 | 1.05 ± 0.03 | 1.14 ± 0.05 | 1.5 ± 0.18 | 1.16 ± 0.01 | 1.14 ± 0.08 | 1.12 ± 0.01 | 1.09 ± 0.03 | 1.05 ± 0.04 |
Gf | 11.50 ± 0.90 | 1.22 ± 0.02 | 1.03 ± 0.03 | 1.13 ± 0.20 | 1.41 ± 0.12 | 1.13 ± 0.04 | 1.11 ± 0.04 | 1.15 ± 0.07 | 1.09 ± 0.05 | 1.07 ± 0.02 | ||
Gp | 13.45 ± 2.00 | 1.48 ± 0.06 | 1.31 ± 0.02 | 1.19 ± 0.03 | 1.13 ± 0.04 | 1.16 ± 0.03 | 1.28 ± 0.05 | 1.32 ± 0.06 | 1.09 ± 0.04 | 1.32 ± 0.02 | ||
Gf + p | 10.05 ± 0.40 | 1.31 ± 0.07 | 1.28 ± 0.12 | 1.3 ± 0.10 | 1.16 ± 0.04 | 1.11 ± 0.08 | 1.27 ± 0.11 | 1.21 ± 0.09 | 1.12 ± 0.08 | 1.33 ± 0.10 | ||
after | Gc | 15.11 ± 1.10 | 1.19 ± 0.04 | 1.13 ± 0.02 | 1.25 ± 0.05 | 1.3 ± 0.02 | 1.17 ± 0.10 | 1.3 ± 0.03 | 1.19 ± 0.13 | 1.12 ± 0.05 | 1.17 ± 0.08 | |
Gf | 18.40 * ± 2.50 | 1.25 ± 0.06 | 1.17 ± 0.08 | 1.32 ± 0.20 | 1.64 * ± 0.13 | 1.11 ± 0.04 | 1.38 ± 0.04 | 1.25 ± 0.06 | 1.13 ± 0.01 | 1.26 ± 0.11 | ||
Gp | 17.24 * ± 1.20 | 1.95 * ± 0.11 | 1.38 ± 0.07 | 1.26 ± 0.06 | 2.53 * ± 0.06 | 1.47 ± 0.13 | 1.64 * ± 0.03 | 1.29 ± 0.06 | 1.1 ± 0.05 | 1.76 * ± 0.19 | ||
Gf + p | 29.05 * ± 4.30 | 1.76 * ± 0.19 | 1.27 ± 0.09 | 1.81 * ± 0.27 | 2.47 * ± 0.46 | 1.43 ± 0.12 | 1.48 ± 0.12 | 1.35 ± 0.10 | 1.26 ± 0.13 | 1.78 * ± 0.18 | ||
Sunflower | before | Hc | 15.6 ± 2.00 | 1.43 ± 0.05 | 1.28 ± 0.11 | 1.09 ± 0.04 | 1.01 ± 0.03 | 1.27 ± 0.05 | 1.12 ± 0.09 | 1.39 ± 0.12 | 1.26 ± 0.03 | 1.16 ± 0.01 |
Hf | 10.7 ± 1.50 | 1.37 ± 0.12 | 1.34 ± 0.05 | 1.45 ± 0.16 | 1.13 ± 0.04 | 1.18 ± 0.13 | 1.23 ± 0.03 | 1.17 ± 0.06 | 1.09 ± 0.07 | 1.28 ± 0.09 | ||
Hp | 11.2 ± 2.30 | 1.4 ± 0.07 | 1.04 ± 0.01 | 1.28 ± 0.06 | 1.02 ± 0.03 | 1.26 ± 0.06 | 1.02 ± 0.02 | 1.36 ± 0.12 | 1.05 ± 0.02 | 1.23 ± 0.02 | ||
Hf + p | 10.9 ± 0.80 | 1.39 ± 0.12 | 1.11 ± 0.09 | 1.4 ± 0.05 | 1.17 ± 0.05 | 1.06 ± 0.12 | 1.17 ± 0.03 | 1.09 ± 0.04 | 1.18 ± 0.06 | 1.17 ± 0.03 | ||
after | Hc | 17.05 ± 2.00 | 1.17 ± 0.01 | 1.34 ± 0.04 | 1.44 ± 0.1 | 1.12 ± 0.1 | 1.33 ± 0.02 | 1.26 ± 0.02 | 1.29 ± 0.04 | 1.14 ± 0.02 | 1.21 ± 0.08 | |
Hf | 35.1 *1 ± 5.00 | 1.47 ± 0.04 | 1.40 ± 0.07 | 1.48 ± 0.09 | 1.94 * ± 0.31 | 1.36 ± 0.03 | 1.33 ± 0.04 | 1.47 ± 0.04 | 1.05 ± 0.06 | 1.79 * ± 0.06 | ||
Hp | 25.88 * ± 4.10 | 1.96 * ± 0.03 | 1.48 ± 0.03 | 2.11 * ± 0.07 | 2.59 * ± 0.07 | 1.57 * ± 0.04 | 1.28 ± 0.02 | 1.37 ± 0.04 | 1.29 ± 0.07 | 1.47 ± 0.07 | ||
Hf + p | 71.88 * ± 5.80 | 1.55 * ± 0.06 | 1.91 * ± 0.02 | 1.87 * ± 0.11 | 2.60 * ± 0.14 | 1.24 ± 0.07 | 1.21 ± 0.02 | 1.59 * ± 0.04 | 1.5 ± 0.04 | 1.65 * ± 0.06 | ||
Wheat grown after soya | before | T(g)c | 6.72 ± 0.60 | 1.41 ± 0.02 | 1.15 ± 0.02 | 1.27 ± 0.08 | 1.29 ± 0.1 | 0.98 ± 0.01 | 1.35 ± 0.02 | 1.13 ± 0.06 | 1.29 ± 0.07 | 1.1 ± 0.05 |
T(g)f | 9.54 ± 0.07 | 1.39 ± 0.04 | 1.18 ± 0.18 | 1.49 ± 0.16 | 2.1 * ± 0.46 | 1.07 ± 0.03 | 1.38 ± 0.03 | 1.12 ± 0.15 | 1.26 ± 0.04 | 1.28 ± 0.05 | ||
T(g)p | 4.36 ± 0.04 | 1.41 ± 0.10 | 1.28 ± 0.04 | 1.52 * ± 0.03 | 1.85 * ± 0.42 | 1.26 ± 0.08 | 1.45 ± 0.04 | 1.21 ± 0.03 | 1.27 ± 0.09 | 1.34 ± 0.06 | ||
T(g)f + p | 8.76 ± 0.11 | 1.41 ± 0.06 | 1.19 ± 0.07 | 1.4 ± 0.12 | 2.15 * ± 0.13 | 1.11 ± 0.04 | 1.39 ± 0.05 | 1.15 ± 0.05 | 1.34 ± 0.05 | 1.29 ± 0.05 | ||
after | T(g)c | 15.8 * ± 1.00 | 1.14 ± 0.06 | 1.43 ± 0.06 | 1.31 ± 0.03 | 1.73 * ± 0.57 | 1.03 ± 0.06 | 1.11 ± 0.04 | 1.13 ± 0.06 | 1.07 ± 0.04 | 1.14 ± 0.02 | |
T(g)f | 64.29 * ± 4.00 | 1.28 ± 0.05 | 1.58 * ± 0.06 | 1.58 * ± 0.07 | 4.28 * ± 0.13 | 1.1 ± 0.04 | 1.16 ± 0.06 | 2.11 * ± 0.10 | 1.56 * ± 0.12 | 1.48 ± 0.08 | ||
T(g)p | 59.87 * ± 2.00 | 1.23 ± 0.05 | 1.88 * ± 0.06 | 1.81 * ± 0.13 | 2.93 * ± 0.66 | 1.27 ± 0.04 | 1.32 ± 0.07 | 2.46 * ± 0.09 | 1.94 * ± 0.08 | 1.45 ± 0.18 | ||
T(g)f + p | 76.87 * ± 3.00 | 1.10 ± 0.03 | 1.58 * ± 0.08 | 1.64 * ± 0.11 | 4.88 * ± 0.92 | 1.16 ± 0.05 | 1.31 ± 0.11 | 2.19 * ± 0.13 | 1.66 * ± 0.09 | 1.53 * ± 0.15 | ||
Wheat grown after sunflower | before | T(h)c | 19.24 * ± 0.10 | 1.48 ± 0.05 | 1.3 ± 0.05 | 1.49 ± 0.06 | 1.58 * ± 0.17 | 1.11 ± 0.05 | 1.45 ± 0.04 | 1.19 ± 0.04 | 1.37 ± 0.09 | 1.42 ± 0.06 |
T(h)f | 20.23 * ± 0.30 | 1.62 * ± 0.07 | 1.25 ± 0.06 | 1.54 * ± 0.12 | 2.17 * ± 0.19 | 1.19 ± 0.06 | 1.47 ± 0.05 | 1.3 ± 0.08 | 1.42 ± 0.10 | 1.63 * ± 0.06 | ||
T(h)p | 14.55 * ± 0.10 | 1.62 * ± 0.07 | 1.24 ± 0.06 | 1.52 * ± 0.16 | 1.18 ± 0.06 | 1.2 ± 0.11 | 1.32 ± 0.06 | 1.37 ± 0.04 | 1.25 ± 0.11 | 1.86 * ± 0.08 | ||
T(h)f + p | 35.29 * ± 0.90 | 1.45 ± 0.07 | 1.2 ± 0.09 | 1.78 * ± 0.14 | 2.05 * ± 0.16 | 1.17 ± 0.09 | 1.37 ± 0.07 | 1.3 ± 0.05 | 1.6 * ± 0.07 | 1.64 * ± 0.14 | ||
after | T(h)c | 20.65 * ± 2.00 | 1.12 ± 0.03 | 1.49 ± 0.08 | 1.5 ± 0.10 | 1.8 * ± 0.27 | 1.21 ± 0.07 | 1.51 * ± 0.03 | 1.44 ± 0.09 | 1.28 ± 0.08 | 1.34 ± 0.18 | |
T(h)f | 86.34 * ± 6.00 | 1.34 ± 0.08 | 1.53 * ± 0.09 | 1.52 * ± 0.09 | 2.75 * ± 0.23 | 1.31 ± 0.06 | 1.54 * ± 0.09 | 1.63 * ± 0.11 | 1.29 ± 0.05 | 1.42 ± 0.05 | ||
T(h)p | 27.34 * ± 2.00 | 1.34 ± 0.03 | 1.71 * ± 0.02 | 2.08 * ± 0.12 | 2.5 * ± 0.57 | 1.28 ± 0.02 | 1.54 * ± 0.04 | 1.66 * ± 0.04 | 1.63 * ± 0.02 | 1.67 * ± 0.03 | ||
T(h)f + p | 23.8 * ± 3.00 | 1.04 ± 0.06 | 1.40 ± 0.05 | 1.88 * ± 0.14 | 3.95 * ± 0.20 | 1.32 ± 0.07 | 1.43 ± 0.10 | 1.88 * ± 0.09 | 1.51 * ± 0.06 | 1.37 ± 0.07 |
References
- Negatu, B.; Kromhout, H.; Mekonnen, Y.; Vermeulen, R. Use of Chemical Pesticides in Ethiopia: A Cross-Sectional Comparative Study on Knowledge, Attitude and Practice of Farmers and Farm Workers in Three Farming Systems. Ann. Occup. Hyg. 2016, 60, 551–566. [Google Scholar] [CrossRef] [PubMed]
- Asghar, U.; Malik, M.F.; Javed, A. Pesticide exposure and human health: Review. J. Ecosys. Ecograph. 2016, s5, 1–2. [Google Scholar] [CrossRef]
- Chai, M.K.; Tan, G.H. Validation of a headspace solid-phase microextraction procedure with gas chromatography-electron capture detection of pesticide residues in fruits and vegetables. Food Chem. 2009, 117, 561–567. [Google Scholar] [CrossRef]
- Huo, F.; Tang, H.; Wu, X.; Chen, D.; Zhao, T.; Liu, P.; Li, L. Utilizing a novel sorbent in the solid phase extraction for simultaneous determination of 15 pesticide residues in green tea by GC/MS. J. Chromatogr. B. 2016, 1023–1024, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Kumar, N.; Mehra, R.; Kumar, H.; Singh, V.P. Progress and challenges in the detection of residual pesticides using nanotechnology based colorimetric techniques. Trends Environ. Anal. Chem. 2020, 26, e00086. [Google Scholar] [CrossRef]
- Yagi, K. Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl. Microbiol. Biotechnol. 2007, 73, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.Y.; Zhao, Y.; He, Y.; Wang, Y.; Zhao, Y.Y.; Zheng, Y.; Wei, X.; Zhang, L.T.; Li, Y.Z.; Jin, T.; et al. Characterization and modeling of transcriptional cross-regulation in Acinetobacter baylyi ADP1. ACS Synth. Biol. 2012, 1, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Belkin, S. Microbial whole-cell sensing systems of environmental pollutants. Curr. Opin. Microbiol. 2003, 6, 206–212. [Google Scholar] [CrossRef]
- Su, L.; Jia, W.; Hou, C.; Lei, Y. Microbial biosensors: A review. Biosens. Bioelectron. 2011, 26, 1788–1799. [Google Scholar] [CrossRef]
- Rampley, C.P.N.; Whitehead, P.G.; Softley, L.; Hossain, M.A.; Jin, L.; David, J.; Shawal, S.; Das, P.; Thompson, I.P.; Huang, W.E.; et al. River toxicity assessment using molecular biosensors: Heavy metal contamination in the Turag-Balu-Buriganga river systems, Dhaka, Bangladesh. Sci. Total Environ. 2020, 703, 134760. [Google Scholar] [CrossRef]
- Cui, Z.; Luan, X.; Jiang, H.; Li, Q.; Xu, G.; Sun, C.; Zheng, L.; Song, Y.; Davison, P.A.; Huang, W.E. Application of a bacterial whole cell biosensor for the rapid detection of cytotoxicity in heavy metal contaminated seawater. Chemosphere. 2018, 200, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Li, G.; Thornton, S.F.; Thompson, I.P.; Banwart, S.A.; Lerner, D.N.; Huang, W.E. Optimization of Bacterial Whole Cell Bioreporters for Toxicity Assay of Environmental Samples. Environ. Sci. Technol. 2009, 43, 7931–7938. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, X.; Wang, X.; Ding, A.; Zhang, D. Application of whole-cell bioreporters for ecological risk assessment and bioremediation potential evaluation after a benzene exceedance accident in groundwater in Lanzhou, China. Sci. Total Environ. 2024, 906, 167846. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Li, G.; Xing, Y.; Zhang, D.; Jia, J.; Cui, Z.; Luan, X.; Tang, H. A whole-cell bioreporter assay for quantitative genotoxicity evaluation of environmental samples. Chemosphere 2017, 184, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Sazykina, M.A.; Chistyakov, V.A.; Sazykin, I.S. Genotoxicity of Don River Bottom Sediments (2001–2007). Water Res. 2012, 39, 118–124. [Google Scholar] [CrossRef]
- Sazykin, I.S.; Sazykina, M.A.; Khmelevtsova, L.E.; Mirina, E.A.; Kudeevskaya, E.M.; Rogulin, E.A.; Rakin, A.V. Biosensor-based comparison of the ecotoxicological contamination of the wastewaters of Southern Russia and Southern Germany. Int. J. Environ. Sci. Technol. 2016, 13, 945–954. [Google Scholar] [CrossRef]
- Sazykina, M.; Barabashin, T.; Konstantinova, E.; Al-Rammahi, A.A.K.; Pavlenko, L.; Khmelevtsova, L.; Karchava, S.; Klimova, M.; Mkhitaryan, I.; Khammami, M.; et al. Non-corresponding contaminants in marine surface sediments as a factor of ARGs spread in the Sea of Azov. Mar. Pollut. Bull. 2022, 184, 114196. [Google Scholar] [CrossRef] [PubMed]
- Azhogina, T.; Sazykina, M.; Konstantinova, E.; Khmelevtsova, L.; Minkina, T.; Antonenko, E.; Sushkova, S.; Khammami, M.; Mandzhieva, S.; Sazykin, I. Bioaccessible PAH influence on distribution of antibiotic resistance genes and soil toxicity of different types of land use. Environ. Sci. Pollut. Res. 2023, 30, 12695–12713. [Google Scholar] [CrossRef] [PubMed]
- Bazhenov, S.V.; Novoyatlova, U.S.; Scheglova, E.S.; Prazdnova, E.V.; Mazanko, M.S.; Kessenikh, A.G.; Kononchuk, O.V.; Gnuchikh, E.Y.; Liu, Y.; Al Ebrahim, R.; et al. Bacterial lux-biosensors: Constructing, applications, and prospects. Biosens. Bioelectron. X 2023, 13, 100323. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, B.; Tian, S.; Tang, H.; Liu, Z.; Li, C.; Jia, J.; Huang, W.E.; Zhang, X.; Li, G. A whole-cell bioreporter approach for the genotoxicity assessment of bioavailability of toxic compounds in contaminated soil in China. Environ. Pollut. 2014, 195, 178–184. [Google Scholar] [CrossRef]
- Zhang, D.; Ding, A.; Cui, S.; Hu, C.; Thornton, S.F.; Dou, J.; Sun, Y.; Huang, W.E. Whole cell bioreporter application for rapid detection and evaluation of crude oil spill in seawater caused by Dalian oil tank explosion. Water Res. 2013, 47, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Li, Y.; Lu, Z.; Pan, J.; Li, M. A novel biosensor-based method for the detection of p-nitrophenol in agricultural soil. Chemosphere 2023, 313, 137306. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Sun, G.; Zhu, Y.; Paton, G.I. Quantification of the bioreactive Hg fraction in Chinese soils using luminescence-based biosensors. Environ. Technol. Innov. 2016, 5, 267–276. [Google Scholar] [CrossRef]
- Sazykin, I.S.; Sazykina, M.A.; Kudeevskaya, E.M.; Sazykina, M.I. The Strain Vibrio Aquamarinus, a Method for Determining the Toxicity of Samples with It and Test Culture to determine the Toxicity of Samples. Patent RU 2534819, 10 December 2014. IPC C12N1/20, C12R1/63, C12Q1/02. Bulletin No. 34. [Google Scholar]
- Zavilgelsky, G.B.; Kotova, V.Y.; Manukhov, I.V. Action of 1,1–dimethylhydrazine on bacterial cells is determined by hydrogen peroxide. Mutat. Res. 2007, 634, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Gu, M. A whole cell bioluminescent biosensor for the detection of membrane-damaging toxicity. Biotechnol. Bioprocess. Eng. 1999, 4, 59–62. [Google Scholar] [CrossRef]
- Maniatis, T.; Fritsch, E.F.; Sambrook, J. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory: New York, NY, USA, 1982; ISBN 0879691360. [Google Scholar]
- Sazykina, M.A.; Chistyakov, V.A.; Voinova, N.V. Method to Detect Genotoxicity of Chemical Substances. Patent RU 2179581, 20 February 2002. IPC C12Q1/02, C12Q1/66. Bulletin No. 5. [Google Scholar]
- Determination of the Integral Soil Toxicity Using the Ecolum Biotest. Methodological Recommendations N 01.019-07 (Approved by Rospotrebnadzor, Moscow, 15 June 2007). Available online: https://docs.cntd.ru/document/1200058483 (accessed on 10 April 2024).
- Besser, H.; Redhaounia, B.; Bedoui, S.; Ayadi, Y.; Khelifi, F.; Hamed, Y. Geochemical, isotopic and statistical monitoring of groundwater quality: Assessment of the potential environmental impacts of the highly polluted CI water in Southwestern Tunisia. J. Afr. Earth Sci. 2019, 153, 144–155. [Google Scholar] [CrossRef]
- Yang, Q.; Li, G.; Jin, N.; Zhang, D. Synergistic/antagonistic toxicity characterization and source-apportionment of heavy metals and organophosphorus pesticides by the biospectroscopy-bioreporter-coupling approach. Sci. Total Environ. 2023, 905, 167057. [Google Scholar] [CrossRef]
- Sazykin, I.S.; Sazykina, M.A.; Khammami, M.I.; Kostina, N.V.; Khmelevtsova, L.E.; Trubnik, R.G. Distribution of polycyclic aromatic hydrocarbons in surface sediments of lower reaches of the Don River (Russia) and their ecotoxicologic assessment by bacterial lux-biosensors. Environ. Monit. Assess. 2015, 187, 277. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Eslava, J.; Gómez-Arroyo, S.; Arenas-Huertero, F.; Flores-Maya, S.; Díaz-Hernández, M.E.; Calderón-Segura, M.E.; Valencia-Quintana, R.; Espinosa-Aguirre, J.J.; Villalobos-Pietrini, R. The role of plant metabolism in the mutagenic and cytotoxic effects of four organophosphorus insecticides in Salmonella typhimurium and in human cell lines. Chemosphere 2013, 92, 1117–1125. [Google Scholar] [CrossRef]
- Zeyad, M.T.; Khan, S.; Malik, A. Genotoxic hazard and oxidative stress induced by wastewater irrigated soil with special reference to pesticides and heavy metal pollution. Heliyon 2022, 8, e10534. [Google Scholar] [CrossRef]
- Anjum, R.; Krakat, N. Genotoxicity assessments of alluvial soil irrigated with wastewater from a pesticide manufacturing industry. Environ. Monit. Assess. 2015, 187, 638. [Google Scholar] [CrossRef] [PubMed]
- Mostafalou, S.; Abdollahi, M.; Eghbal, M.A.; Kouzehkonani, N.S. Protective effect of NAC against malathion-induced oxidative stress in freshly isolated rat hepatocytes. Adv. Pharm. Bull. 2012, 2, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Sazykin, I.; Naumova, E.; Azhogina, T.; Klimova, M.; Karchava, S.; Khmelevtsova, L.; Chernyshenko, E.; Litsevich, A.; Khammami, M.; Sazykina, M. Glyphosate effect on biofilms formation, mutagenesis and stress response of E. coli. J. Hazard. Mater. 2024, 461, 132574. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Cheng, Y.; Cai, Y.; Ren, T.; Zhang, B.; Chen, N.; Wang, J. A H2O2-specific fluorescent probe for evaluating oxidative stress in pesticides-treated cells, rice roots and zebrafish. J. Hazard. Mater. 2024, 465, 133426. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Zhong, G.; Zhou, J.; Liu, Y.; Pang, Y.; Cai, H.; Wu, Z. Separate and combined effects of glyphosate and copper on growth and antioxidative enzymes in Salvinia natans (L.) All. Sci. Total Environ. 2019, 655, 1448–1456. [Google Scholar] [CrossRef] [PubMed]
- Odetti, L.M.; López González, E.C.; Siroski, P.A.; Simoniello, M.F.; Poletta, G.L. How the exposure to environmentally relevant pesticide formulations affects the expression of stress response genes and its relation to oxidative damage and genotoxicity in Caiman latirostris. Environ. Toxicol. Pharmacol. 2023, 97, 104014. [Google Scholar] [CrossRef]
- Wang, R.; Yang, X.; Wang, T.; Kou, R.; Liu, P.; Huang, Y.; Chen, C. Synergistic effects on oxidative stress, apoptosis and necrosis resulting from combined toxicity of three commonly used pesticides on HepG2 cells. Ecotoxicol. Environ. Saf. 2023, 263, 115237. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khmelevtsova, L.; Klimova, M.; Karchava, S.; Azhogina, T.; Polienko, E.; Litsevich, A.; Chernyshenko, E.; Khammami, M.; Sazykin, I.; Sazykina, M. Biosensor-Based Assessment of Pesticides and Mineral Fertilizers’ Influence on Ecotoxicological Parameters of Soils under Soya, Sunflower and Wheat. Chemosensors 2024, 12, 73. https://doi.org/10.3390/chemosensors12050073
Khmelevtsova L, Klimova M, Karchava S, Azhogina T, Polienko E, Litsevich A, Chernyshenko E, Khammami M, Sazykin I, Sazykina M. Biosensor-Based Assessment of Pesticides and Mineral Fertilizers’ Influence on Ecotoxicological Parameters of Soils under Soya, Sunflower and Wheat. Chemosensors. 2024; 12(5):73. https://doi.org/10.3390/chemosensors12050073
Chicago/Turabian StyleKhmelevtsova, Ludmila, Maria Klimova, Shorena Karchava, Tatiana Azhogina, Elena Polienko, Alla Litsevich, Elena Chernyshenko, Margarita Khammami, Ivan Sazykin, and Marina Sazykina. 2024. "Biosensor-Based Assessment of Pesticides and Mineral Fertilizers’ Influence on Ecotoxicological Parameters of Soils under Soya, Sunflower and Wheat" Chemosensors 12, no. 5: 73. https://doi.org/10.3390/chemosensors12050073
APA StyleKhmelevtsova, L., Klimova, M., Karchava, S., Azhogina, T., Polienko, E., Litsevich, A., Chernyshenko, E., Khammami, M., Sazykin, I., & Sazykina, M. (2024). Biosensor-Based Assessment of Pesticides and Mineral Fertilizers’ Influence on Ecotoxicological Parameters of Soils under Soya, Sunflower and Wheat. Chemosensors, 12(5), 73. https://doi.org/10.3390/chemosensors12050073