Impact of Coffee Roasting and Grind Size on Acidity and Bitterness: Sensory Evaluation Using Electronic Tongue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coffee Bean Data
2.2. Roasting Data
2.3. Grinding and Extraction Samples
2.4. Taste Sensing System/Electronic Tongue
3. Results and Discussion
3.1. Influence of Grind Size and Roast Level on TDS and E
3.2. Quantifying Acidity and Bitterness: The Role of Roast Level and Grind Size
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sunarharum, W.B.; Williams, D.J.; Smyth, H.E. Complexity of Coffee Flavor: A Compositional and Sensory Perspective. Food Res. Int. 2014, 62, 315–325. [Google Scholar] [CrossRef]
- Spencer, M.; Sage, E.; Velez, M.; Guinard, J. Using Single Free Sorting and Multivariate Exploratory Methods to Design a New Coffee Taster’s Flavor Wheel. J. Food Sci. 2016, 81, S2997–S3005. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Alduenda, M.; Ionescu, K.E.; Giuliano, P.; Rugolo, J.; Delrue, R.; Apostolopoulos, Y. A System to Assess Coffee Value; Specialty Coffee Association: Irvine, CA, USA, 2024. [Google Scholar]
- Coffee Value Assessment. Available online: https://sca.coffee/value-assessment (accessed on 16 July 2024).
- Cordoba, N.; Fernandez-Alduenda, M.; Moreno, F.L.; Ruiz, Y. Coffee Extraction: A Review of Parameters and Their Influence on the Physicochemical Characteristics and Flavour of Coffee Brews. Trends Food Sci. Technol. 2020, 96, 45–60. [Google Scholar] [CrossRef]
- Lingle, T.R. The Coffee Brewing Handbook; Specialty Coffee Association of America: Irvine, CA, USA, 2011. [Google Scholar]
- Liang, J.; Chan, K.C.; Ristenpart, W.D. An Equilibrium Desorption Model for the Strength and Extraction Yield of Full Immersion Brewed Coffee. Sci. Rep. 2021, 11, 6904. [Google Scholar] [CrossRef] [PubMed]
- Frost, S.C.; Ristenpart, W.D.; Guinard, J. Effects of Brew Strength, Brew Yield, and Roast on the Sensory Quality of Drip Brewed Coffee. J. Food Sci. 2020, 85, 2530–2543. [Google Scholar] [CrossRef] [PubMed]
- Towards a New Brewing Chart|25, Issue 13. Available online: https://sca.coffee/sca-news/25/issue-13/towards-a-new-brewing-chart (accessed on 17 September 2024).
- Kobayashi, Y.; Habara, M.; Ikezazki, H.; Chen, R.; Naito, Y.; Toko, K. Advanced Taste Sensors Based on Artificial Lipids with Global Selectivity to Basic Taste Qualities and High Correlation to Sensory Scores. Sensors 2010, 10, 3411–3443. [Google Scholar] [CrossRef] [PubMed]
- Toko, K.; Tahara, Y.; Habara, M.; Ikezaki, H. Potentiometric Electronic Tongue Using Lipid/Polymer Membrane. In Electronic Tongues: Fundamentals and Recent Advances (IOP Series in Sensors and Sensor Systems); Shimizu, F.M., Braunger, M.L., Riul, A., Jr., Eds.; IOP Publishing: Bristol, UK, 2021; pp. 2-1–2-26. [Google Scholar]
- Bhumiratana, N.; Adhikari, K.; Chambers, E. Evolution of Sensory Aroma Attributes from Coffee Beans to Brewed Coffee. LWT—Food Sci. Technol. 2011, 44, 2185–2192. [Google Scholar] [CrossRef]
- Baggenstoss, J.; Poisson, L.; Kaegi, R.; Perren, R.; Escher, F. Coffee Roasting and Aroma Formation: Application of Different Time−Temperature Conditions. J. Agric. Food Chem. 2008, 56, 5836–5846. [Google Scholar] [CrossRef] [PubMed]
- The Sixth Sense. Global Coffee Report January/February 2021, 12 January 2021; 40–41.
- Toko, K.; Tahara, Y.; Habara, M.; Kobayashi, Y.; Ikezaki, H. Taste Sensor: Electronic tongue with Global selectivity. In Essentials of Machine Olfaction and Taste; Nakamoto, T., Ed.; Wiley: Singapore, 2016; pp. 87–174. ISBN 978-1-118-76848-8. [Google Scholar]
- Hayashi, N.; Chen, R.; Ikezaki, H.; Yamaguchi, S.; Maruyama, D.; Yamaguchi, Y.; Ujihara, T.; Kohata, K. Techniques for Universal Evaluation of Astringency of Green Tea Infusion by the Use of a Taste Sensor System. Biosci. Biotechnol. Biochem. 2006, 70, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Ikezaki, H. Advanced Taste Sensors Based on Artificial Lipid Membrane. In Biochemical Sensors, Mimicking Gustatery and Olfactory Senses; Toko, K., Ed.; Jenny Stanford Publishing: Singapore, 2013; pp. 5–44. [Google Scholar]
- Ishiwaki, T.; Ikezaki, H. Application of Taste Sensor to Blending of Coffee. In Biochemical Sensors, Mimicking Gustatery and Olfactory Senses; Toko, K., Ed.; Jenny Stanford Publishing: Singapore, 2013; pp. 83–90. [Google Scholar]
- Taguchi, M.; Tanbe, Y. Equation for Taste of Coffee; NHK Publishing: Tokyo, Japan, 2014; pp. 162–163. ISBN 978-4-14-033282-5. [Google Scholar]
- Frank, O.; Blumberg, S.; Kunert, C.; Zehentbauer, G.; Hofmann, T. Structure Determination and Sensory Analysis of Bitter-Tasting 4-Vinylcatechol Oligomers and Their Identification in Roasted Coffee by Means of LC-MS/MS. J. Agric. Food Chem. 2007, 55, 1945–1954. [Google Scholar] [CrossRef] [PubMed]
- Frank, O.; Zehentbauer, G.; Hofmann, T. Bioresponse-Guided Decomposition of Roast Coffee Beverage and Identification of Key Bitter Taste Compounds. Eur. Food Res. Technol. 2006, 222, 492–508. [Google Scholar] [CrossRef]
- Andueza, S.; de Peña, M.P.; Cid, C. Chemical and Sensorial Characteristics of Espresso Coffee as Affected by Grinding and Torrefacto Roast. J. Agric. Food Chem. 2003, 51, 7034–7039. [Google Scholar] [CrossRef] [PubMed]
- Kornman, C.; Becker, E. An Evaluation of Consistency, Cupping Settings, and the Impact of Roast Degree. Roast Magazine May/June 2021, 2021; 46–67. [Google Scholar]
Roasting | Grind Setting | TDS (%) | E (%) |
---|---|---|---|
Light (L* 25) | 1.5 (600 μm) | 1.264 | 20.1 |
Roasting stop: near the end of the first crack peak | 3 (796 μm) | 1.185 | 19.2 |
Roasting time: 10:50 | 4.5 (1055 μm) | 1.106 | 18.0 |
Yield/300 g: 262 g | 6 (1400 μm) | 1.106 | 18.0 |
Medium (L* 22.5) | 1.5 (600 μm) | 1.185 | 18.9 |
Roasting stop: 5 s after the end of the first crack | 3 (796 μm) | 1.185 | 19.0 |
Roasting time: 11:36 | 4.5 (1055 μm) | 1.106 | 18.0 |
Yield/300 g: 259 g | 6 (1400 μm) | 1.027 | 16.6 |
City (L* 19.5) | 1.5 (600 μm) | 1.264 | 20.1 |
Roasting stop: at the start of the second crack | 3 (796 μm) | 1.185 | 19.0 |
Roasting time: 12:45 | 4.5 (1055 μm) | 1.106 | 17.7 |
Yield/300 g: 247 g | 6 (1400 μm) | 1.027 | 16.6 |
French (L* 17) | 1.5 (600 μm) | 1.264 | 20.1 |
Roasting stop: at the peak of the second crack | 3 (796 μm) | 1.185 | 19.0 |
Roasting time: 12:59 | 4.5 (1055 μm) | 1.106 | 17.6 |
Yield/300 g: 243 g | 6 (1400 μm) | 1.027 | 16.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habara, M.; Horiguchi, T. Impact of Coffee Roasting and Grind Size on Acidity and Bitterness: Sensory Evaluation Using Electronic Tongue. Chemosensors 2024, 12, 196. https://doi.org/10.3390/chemosensors12090196
Habara M, Horiguchi T. Impact of Coffee Roasting and Grind Size on Acidity and Bitterness: Sensory Evaluation Using Electronic Tongue. Chemosensors. 2024; 12(9):196. https://doi.org/10.3390/chemosensors12090196
Chicago/Turabian StyleHabara, Masaaki, and Toshihide Horiguchi. 2024. "Impact of Coffee Roasting and Grind Size on Acidity and Bitterness: Sensory Evaluation Using Electronic Tongue" Chemosensors 12, no. 9: 196. https://doi.org/10.3390/chemosensors12090196