Profiling of Australian Stingless Bee Honey Using Multivariate Data Analysis of High-Performance Thin-Layer Chromatography Fingerprints
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Stingless Bee Honey Samples
2.3. HPTLC Fingerprinting
2.4. Multivariate Data Analysis
2.4.1. Data Pre-Processing
2.4.2. Multivariate Analysis Approach
3. Results and Discussion
3.1. HPTLC Fingerprints
3.2. Multivariate Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mandal, M.D.; Mandal, S. Honey: Its medicinal property and antibacterial activity. Asian Pac. J. Trop. Biomed. 2011, 1, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Erejuwa, O.O.; Sulaiman, S.A.; Ab Wahab, M.S. Honey: A novel antioxidant. Molecules 2012, 17, 4400–4423. [Google Scholar] [CrossRef] [PubMed]
- Perichon, S.; Heard, T.A.; Schouten, C. Perceptions of keepers of stingless bees (Tetragonula, Austroplebeia) regarding Aboriginal beliefs and practices in Australia. J. Apic. Res. 2021, 60, 665–677. [Google Scholar] [CrossRef]
- Fijn, N.; Baynes-Rock, M. A social ecology of stingless bees. Hum. Ecol. 2018, 46, 207–216. [Google Scholar] [CrossRef]
- Ávila, S.; Beux, M.R.; Ribani, R.H.; Zambiazi, R.C. Stingless bee honey: Quality parameters, bioactive compounds, health-promotion properties and modification detection strategies. Trends Food Sci. Technol. 2018, 81, 37–50. [Google Scholar] [CrossRef]
- Al-Hatamleh, M.A.I.; Boer, J.C.; Wilson, K.L.; Plebanski, M.; Mohamud, R.; Mustafa, M.Z. Antioxidant-Based Medicinal Properties of Stingless Bee Products: Recent Progress and Future Directions. Biomolecules 2020, 10, 923. [Google Scholar] [CrossRef]
- Pimentel, T.C.; Rosset, M.; de Sousa, J.M.B.; de Oliveira, L.I.G.; Mafaldo, I.M.; Pintado, M.M.E.; de Souza, E.L.; Magnani, M. Stingless bee honey: An overview of health benefits and main market challenges. J. Food Biochem. 2022, 46, e13883. [Google Scholar] [CrossRef]
- Schvezov, N.; Pucciarelli, A.B.; Valdes, B.; Dallagnol, A.M. Characterization of yateí (Tetragonisca fiebrigi) honey and preservation treatments: Dehumidification, pasteurization and refrigeration. Food Control 2020, 111, 107080. [Google Scholar] [CrossRef]
- Nordin, A.; Sainik, N.Q.A.V.; Chowdhury, S.R.; Saim, A.B.; Idrus, R.B.H. Physicochemical properties of stingless bee honey from around the globe: A comprehensive review. J. Food Compos. Anal. 2018, 73, 91–102. [Google Scholar] [CrossRef]
- Chuttong, B.; Chanbang, Y.; Sringarm, K.; Burgett, M. Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand). Food Chem. 2016, 192, 149–155. [Google Scholar] [CrossRef]
- Mustafa, M.Z.; Yaacob, N.S.; Sulaiman, S.A. Reinventing the honey industry: Opportunities of the stingless bee. Malays. J. Med. Sci. 2018, 25, 1–5. [Google Scholar] [CrossRef]
- Mohammed, M.E.A. Factors affecting the physicochemical properties and chemical composition of bee’s honey. Food Rev. Int. 2022, 38, 1330–1341. [Google Scholar] [CrossRef]
- Martinello, M.; Stella, R.; Baggio, A.; Biancotto, G.; Mutinelli, F. LC-HRMS-Based Non-Targeted Metabolomics for the Assessment of Honey Adulteration with Sugar Syrups: A Preliminary Study. Metabolites 2022, 12, 985. [Google Scholar] [CrossRef] [PubMed]
- Tsagkaris, A.S.; Koulis, G.A.; Danezis, G.P.; Martakos, I.; Dasenaki, M.; Georgiou, C.A.; Thomaidis, N.S. Honey authenticity: Analytical techniques, state of the art and challenges. RSC Adv. 2021, 11, 11273–11294. [Google Scholar] [CrossRef] [PubMed]
- Amirvaresi, A.; Rashidi, M.; Kamyar, M.; Amirahmadi, M.; Daraei, B.; Parastar, H. Combining multivariate image analysis with high-performance thin-layer chromatography for development of a reliable tool for saffron authentication and adulteration detection. J. Chromatogr. A 2020, 1628, 461461. [Google Scholar] [CrossRef] [PubMed]
- Esslinger, S.; Riedl, J.; Fauhl-Hassek, C. Potential and limitations of non-targeted fingerprinting for authentication of food in official control. Food Res. Int. 2014, 60, 189–204. [Google Scholar] [CrossRef]
- Pătruică, S.; Alexa, E.; Obiștioiu, D.; Cocan, I.; Radulov, I.; Berbecea, A.; Lazăr, R.N.; Simiz, E.; Vicar, N.M.; Hulea, A.; et al. Chemical Composition, Antioxidant and Antimicrobial Activity of Some Types of Honey from Banat Region, Romania. Molecules 2022, 27, 4179. [Google Scholar] [CrossRef]
- da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Tistaert, C.; Dejaegher, B.; Vander Heyden, Y. Chromatographic separation techniques and data handling methods for herbal fingerprints: A review. Anal. Chim. Acta 2011, 690, 148–161. [Google Scholar] [CrossRef]
- Goodarzi, M.; Russell, P.J.; Vander Heyden, Y. Similarity analyses of chromatographic herbal fingerprints: A review. Anal. Chim. Acta 2013, 804, 16–28. [Google Scholar] [CrossRef]
- Islam, M.K.; Vinsen, K.; Sostaric, T.; Lim, L.Y.; Locher, C. Detection of syrup adulterants in manuka and jarrah honey using HPTLC-multivariate data analysis. PeerJ 2021, 9, e12186. [Google Scholar] [CrossRef] [PubMed]
- Ristivojević, P.; Andrić, F.L.; Trifković, J.Đ.; Vovk, I.; Stanisavljević, L.Ž.; Tešić, Ž.L.; Milojković-Opsenica, D.M. Pattern recognition methods and multivariate image analysis in HPTLC fingerprinting of propolis extracts. J. Chemom. 2014, 28, 301–310. [Google Scholar] [CrossRef]
- Nicoletti, M.; Petitto, V.; Gallo, F.R.; Multari, G.; Federici, E.; Palazzino, G. The modern analytical determination of botanicals and similar novel natural products by the HPTLC fingerprint approach. In Studies in Natural Products Chemistry Volume 37; Elsevier: Amsterdam, The Netherlands, 2012; pp. 217–258. ISBN 9780444595140. [Google Scholar]
- Wen, Y.-Q.; Zhang, J.; Li, Y.; Chen, L.; Zhao, W.; Zhou, J.; Jin, Y. Characterization of chinese unifloral honeys based on proline and phenolic content as markers of botanical origin, using multivariate analysis. Molecules 2017, 22, 735. [Google Scholar] [CrossRef]
- Rodríguez-Flores, M.S.; Escuredo, O.; Míguez, M.; Seijo, M.C. Differentiation of oak honeydew and chestnut honeys from the same geographical origin using chemometric methods. Food Chem. 2019, 297, 124979. [Google Scholar] [CrossRef]
- Dżugan, M.; Tomczyk, M.; Sowa, P.; Grabek-Lejko, D. Antioxidant activity as biomarker of honey variety. Molecules 2018, 23, 2069. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.K.; Sostaric, T.; Lim, L.Y.; Hammer, K.; Locher, C. Development of an HPTLC-based dynamic reference standard for the analysis of complex natural products using Jarrah honey as test sample. PLoS ONE 2021, 16, e0254857. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.K.; Lawag, I.L.; Sostaric, T.; Ulrich, E.; Ulrich, D.; Dewar, T.; Lim, L.Y.; Locher, C. Australian Honeypot Ant (Camponotus inflatus) Honey-A Comprehensive Analysis of the Physiochemical Characteristics, Bioactivity, and HPTLC Profile of a Traditional Indigenous Australian Food. Molecules 2022, 27, 2154. [Google Scholar] [CrossRef]
- McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv 2018, arXiv:1802.03426. [Google Scholar] [CrossRef]
- Zhang, X.-H.; Gu, H.-W.; Liu, R.-J.; Qing, X.-D.; Nie, J.-F. A comprehensive review of the current trends and recent advancements on the authenticity of honey. Food Chem. X 2023, 19, 100850. [Google Scholar] [CrossRef]
- Valverde, S.; Ares, A.M.; Stephen Elmore, J.; Bernal, J. Recent trends in the analysis of honey constituents. Food Chem. 2022, 387, 132920. [Google Scholar] [CrossRef]
- Reich, E.; Schibli, A. (Eds.) High-Performance Thin-Layer Chromatography for the Analysis of Medicinal Plants; Illustrated ed.; Thieme: New York, NY, USA, 2011; ISBN 9781604065275. [Google Scholar]
- Lazarowych, N.J.; Pekos, P. Use of fingerprinting and marker compounds for identification and standardization of botanical drugs: Strategies for applying pharmaceutical HPLC analysis to herbal products. Drug Inf. J. 1998, 32, 497–512. [Google Scholar] [CrossRef]
- Ruiz, G.G.; Nelson, E.O.; Kozin, A.F.; Turner, T.C.; Waters, R.F.; Langland, J.O. A lack of bioactive predictability for marker compounds commonly used for herbal medicine standardization. PLoS ONE 2016, 11, e0159857. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Xie, P.; Chan, K. Quality control of herbal medicines. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004, 812, 53–70. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Chau, F.; Chan, H.; Cheung, C.; Lau, T.; Wei, S.; Mok, D.K.; Chan, C.; Liang, Y. Recent advances in the compound-oriented and pattern-oriented approaches to the quality control of herbal medicines. Chin. Med. 2008, 3, 9. [Google Scholar] [CrossRef]
- Cieśla, Ł.; Moaddel, R. Comparison of analytical techniques for the identification of bioactive compounds from natural products. Nat. Prod. Rep. 2016, 33, 1131–1145. [Google Scholar] [CrossRef]
- Noviana, E.; Indrayanto, G.; Rohman, A. Advances in fingerprint analysis for standardization and quality control of herbal medicines. Front. Pharmacol. 2022, 13, 853023. [Google Scholar] [CrossRef]
- Broeckling, C.D.; Beger, R.D.; Cheng, L.L.; Cumeras, R.; Cuthbertson, D.J.; Dasari, S.; Davis, W.C.; Dunn, W.B.; Evans, A.M.; Fernández-Ochoa, A.; et al. Current Practices in LC-MS Untargeted Metabolomics: A Scoping Review on the Use of Pooled Quality Control Samples. Anal. Chem. 2023, 95, 18645–18654. [Google Scholar] [CrossRef]
- Ghosh, S.; Kumar, S. Comparative Analysis of K-Means and Fuzzy C-Means Algorithms. Int. J. Adv. Comput. Sci. Appl. 2013, 4, 35–39. [Google Scholar] [CrossRef]
- Likas, A.; Vlassis, N.; Verbeek, J.J. The global k-means clustering algorithm. Pattern Recognit. 2003, 36, 451–461. [Google Scholar] [CrossRef]
- Bilandžić, N.; Sedak, M.; Đokić, M.; Bošković, A.G.; Florijančić, T.; Bošković, I.; Kovačić, M.; Puškadija, Z.; Hruškar, M. Element content in ten Croatian honey types from different geographical regions during three seasons. J. Food Compos. Anal. 2019, 84, 103305. [Google Scholar] [CrossRef]
- Wu, M.-C.; Wu, C.-Y.; Klaithin, K.; Tiong, K.K.; Peng, C.-C. Effect of harvest time span on physicochemical properties, antioxidant, antimicrobial, and anti-inflammatory activities of Meliponinae honey. J. Sci. Food Agric. 2022, 102, 5750–5758. [Google Scholar] [CrossRef] [PubMed]
- Malagnini, V.; Cappellari, A.; Marini, L.; Zanotelli, L.; Zorer, R.; Angeli, G.; Ioriatti, C.; Fontana, P. Seasonality and landscape composition drive the diversity of pollen collected by managed honey bees. Front. Sustain. Food Syst. 2022, 6, 865368. [Google Scholar] [CrossRef]
- Shutaywi, M.; Kachouie, N.N. Silhouette Analysis for Performance Evaluation in Machine Learning with Applications to Clustering. Entropy 2021, 23, 759. [Google Scholar] [CrossRef] [PubMed]
Bee Species | Sample | Harvest Date |
---|---|---|
Tetragonula carbonaria | TC-01 | May 2022 |
TC-02 | ||
TC-03 | ||
TC-04 | ||
TC-05 | ||
TC-06 | ||
TC-07 | ||
TC-08 | ||
TC-09 | ||
TC-10 | ||
Tetragonula hockingsi | TH-01 | May 2022 |
TH-02 | ||
Tetragonula carbonaria | TC-13 | September 2022 |
TC-14 | ||
TC-15 | ||
TC-16 | ||
TC-17 | ||
TC-18 | ||
TC-19 | ||
TC-20 | ||
Tetragonula hockingsi | TH-05 | September 2022 |
TH-06 | ||
Tetragonula carbonaria | TC-21 | November 2022 |
TC-22 | ||
TC-23 | ||
TC-24 | ||
TC-25 | ||
TC-26 | ||
TC-27 | ||
TC-28 | ||
Tetragonula hockingsi | TH-07 | November 2022 |
TH-08 |
Rf | Colour | Visualisation | Spray Reagent |
---|---|---|---|
0.259 | 254 nm | NA (after development) | |
0.290 | 254 nm | NA (after development) | |
0.389 | 254 nm | NA (after development) | |
0.443 | 254 nm | NA (after development) | |
0.720 | 254 nm | NA (after development) | |
0.104 | 366 nm | NA (after development) | |
0.292 | 366 nm | NA (after development) | |
0.213 | White light | VSA | |
0.251 | White light | VSA | |
0.341 | White light | VSA | |
0.384 | White light | VSA | |
0.677 | White light | VSA | |
0.082 | 366 nm | VSA | |
0.292 | 366 nm | VSA | |
0.328 | 366 nm | VSA | |
0.341 | 366 nm | VSA | |
0.407 | 366 nm | VSA | |
0.664 | 366 nm | VSA | |
0.100 | 366 nm | NP-PEG | |
0.302 | 366 nm | NP-PEG | |
0.371 | 366 nm | NP-PEG | |
0.384 | 366 nm | NP-PEG | |
0.394 | 366 nm | NP-PEG | |
0.501 | 366 nm | NP-PEG | |
0.651 | 366 nm | NP-PEG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mello dos Santos, M.; Jacobs, C.; Vinsen, K.; Islam, M.K.; Sostaric, T.; Lim, L.Y.; Locher, C. Profiling of Australian Stingless Bee Honey Using Multivariate Data Analysis of High-Performance Thin-Layer Chromatography Fingerprints. Chemosensors 2025, 13, 30. https://doi.org/10.3390/chemosensors13020030
Mello dos Santos M, Jacobs C, Vinsen K, Islam MK, Sostaric T, Lim LY, Locher C. Profiling of Australian Stingless Bee Honey Using Multivariate Data Analysis of High-Performance Thin-Layer Chromatography Fingerprints. Chemosensors. 2025; 13(2):30. https://doi.org/10.3390/chemosensors13020030
Chicago/Turabian StyleMello dos Santos, Mariana, Christina Jacobs, Kevin Vinsen, Md Khairul Islam, Tomislav Sostaric, Lee Yong Lim, and Cornelia Locher. 2025. "Profiling of Australian Stingless Bee Honey Using Multivariate Data Analysis of High-Performance Thin-Layer Chromatography Fingerprints" Chemosensors 13, no. 2: 30. https://doi.org/10.3390/chemosensors13020030
APA StyleMello dos Santos, M., Jacobs, C., Vinsen, K., Islam, M. K., Sostaric, T., Lim, L. Y., & Locher, C. (2025). Profiling of Australian Stingless Bee Honey Using Multivariate Data Analysis of High-Performance Thin-Layer Chromatography Fingerprints. Chemosensors, 13(2), 30. https://doi.org/10.3390/chemosensors13020030