Principal Component Analysis of Transient Potential Signals from Ion-Selective Electrodes for the Identification and Quantification of Different Ions
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Solutions
2.2. Apparatus and Electrodes
2.3. Membranes Preparation
2.4. Measurement Procedure
2.5. Data Processing
3. Results and Discussion
3.1. Influence of the Composition of the Membrane and the Ion Concentration on the Transient Potential Signals
3.2. Principal Component Analysis of the Transient Potential Signals
3.2.1. Individual Principal Component Analysis for Each ISE
3.2.2. Principal Component Analysis for a Multi-Electrode System of All ISEs (Electronic Tongue)
3.2.3. Application of the Transient Signals to Quantitative Analysis
3.2.4. Reconstruction of the Transient Signals of the Electronic Tongue from PCA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mathis, D.E.; Stover, F.S.; Buck, R.P. Ion Transport in Free and Supported Nitrobenzene Aliquat Nitrate Liquid Membrane Ion-Selective Electrodes. J. Memb. Sci. 1978, 4, 395–413. [Google Scholar] [CrossRef]
- Karlberg, B. The Transient Characteristics of the Two-Ion Response of Hydrogen Selective Glass Electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1973, 42, 115–126. [Google Scholar] [CrossRef]
- Rechnitz, G.A.; Kugler, G.C. Transient Phenomena at Glass Electrodes. Anal. Chem. 1967, 39, 1682–1688. [Google Scholar] [CrossRef]
- Ortuño, J.A.; Sánchez-Pedreño, C.; de Bobadilla, R.F. Transient Signals with an Antimony(V) Ion-Selective Electrode: The Relative Signal Return Rate as a Selectivity Parameter. Talanta 1994, 41, 627–630. [Google Scholar] [CrossRef]
- Bagg, J.; Vinen, R. Response of a Calcium-Selective Electrode in Acid Solutions. Anal. Chem. 1972, 44, 1773–1777. [Google Scholar] [CrossRef]
- Mikhelson, K.N. Ion-Selective Electrodes; Lecture Notes in Chemistry; Springer: Berlin/Heidelberg, Germany, 2013; Volume 81, ISBN 978-3-642-36885-1. [Google Scholar]
- González-Franco, J.A.; Ruiz, A.; Ortuño, J.A. Dynamic Potentiometry with an Ion-Selective Electrode: A Tool for Qualitative and Quantitative Analysis of Inorganic and Organic Cations. Chemosensors 2022, 10, 116. [Google Scholar] [CrossRef]
- Egorov, V.V.; Novakovskii, A.D.; Zdrachek, E.A. An Interface Equilibria-Triggered Time-Dependent Diffusion Model of the Boundary Potential and Its Application for the Numerical Simulation of the Ion-Selective Electrode Response in Real Systems. Anal. Chem. 2018, 90, 1309–1316. [Google Scholar] [CrossRef] [PubMed]
- Hambly, B.; Guzinski, M.; Pendley, B.; Lindner, E. Kinetic Description of the Membrane-Solution Interface for Ion-Selective Electrodes. ACS Sens. 2020, 5, 2146–2154. [Google Scholar] [CrossRef]
- Ortuño, J.A.; Sánchez-Pedreño, C.; Martinez, D. Nonmonotonic Transient Potential Signals with an 18-Crown-6 Based Ion-Selective Electrode in a Flow-Injection System. Electroanalysis 2003, 15, 1536–1540. [Google Scholar] [CrossRef]
- Morf, W.E.; Lindner, E.; Simon, W. Theoretical Treatment of the Dynamic Response of Ion-Selective Membrane Electrodes. Anal. Chem. 1975, 47, 1596–1601. [Google Scholar] [CrossRef]
- Egorov, V.V.; Novakovskii, A.D. Application of the Interface Equilibria-Triggered Dynamic Diffusion Model of the Boundary Potential for the Numerical Simulation of Neutral Carrier-Based Ion-Selective Electrodes Response. Anal. Chim. Acta 2018, 1043, 20–27. [Google Scholar] [CrossRef]
- Egorov, V.V.; Novakovskii, A.D.; Zdrachek, E.A. Modeling of the Effect of Diffusion Processes on the Response of Ion-Selective Electrodes by the Finite Difference Technique: Comparison of Theory with Experiment and Critical Evaluation. J. Anal. Chem. 2017, 72, 793–802. [Google Scholar] [CrossRef]
- Bakker, E.; Bühlmann, P.; Pretsch, E. The Phase-Boundary Potential Model. Talanta 2004, 63, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Olmos, J.M.; González-Franco, J.A.; Molina, A.; Ortuño, J.Á.; Laborda, E. OFF–ON Stirring Potentiometry with Solvent Polymeric Membrane Ion-Selective Electrodes: A Theory-Guided Approach to Foreign Ions. J. Electroanal. Chem. 2025, 977, 118828. [Google Scholar] [CrossRef]
- Morf, W.E.; Pretsch, E.; de Rooij, N.F. Theory and computer simulation of the time-dependent selectivity behavior of polymeric membrane ion-selective electrodes. J. Electroanal. Chem. 2008, 614, 15–23. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lingenfelter, P.; Sokalski, T.; Lewenstam, A. Numerical Solution of the Coupled Nernst-Planck and Poisson Equations for Ion-Selective Membrane Potentials. MRS Proc. 2002, 752, AA8-11. [Google Scholar] [CrossRef]
- Sokalski, T.; Lingelfelter, P.; Lewenstam, A. Numerical Solution of the Coupled Nernst-Planck and Poisson Equations for Liquid Junction and Ion Selective Membrane Potentials. J. Phys. Chem. B 2003, 107, 2443–2452. [Google Scholar] [CrossRef]
- Lingenfelter, P.; Bedlechowicz-Sliwakowska, I.; Sokalski, T.; Maj-Zurawska, M.; Lewenstam, A. Time-Dependent Phenomena in the Potential Response of Ion-Selective Electrodes Treated by the Nernst-Planck-Poisson Model. 1. Intramembrane Processes and Selectivity. Anal. Chem. 2006, 78, 6783–6791. [Google Scholar] [CrossRef]
- Sokalski, T.; Kucza, W.; Danielewski, M.; Lewenstam, A. Time-Dependent Phenomena in the Potential Response of Ion-Selective Electrodes Treated by the Nernst-Planck-Poisson Model. Part 2: Transmembrane Processes and Detection Limit. Anal. Chem. 2009, 81, 5016–5022. [Google Scholar] [CrossRef]
- Vlasov, Y.; Legin, A.; Rudnitskaya, A.; Di Natale, C.; D’Amico, A. Nonspecific Sensor Arrays (“electronic Tongue”) for Chemical Analysis of Liquids (IUPAC Technical Report). Pure Appl. Chem. 2005, 77, 1965–1983. [Google Scholar] [CrossRef]
- Vlasov, Y.; Legin, A.; Rudnitskaya, A.; D’Amico, A.; Di Natale, C. “Electronic Tongue”—New Analytical Tool for Liquid Analysis on the Basis of Non-Specific Sensors and Methods of Pattern Recognition. Sens. Actuators B Chem. 2000, 65, 235–236. [Google Scholar] [CrossRef]
- Hayashi, K.; Yamanaka, M.; Toko, K.; Yamafuji, K. Multichannel Taste Sensor Using Lipid Membranes. Sens. Actuators B Chem. 1990, 2, 205–213. [Google Scholar] [CrossRef]
- Pereira, T.S.; Facure, M.H.M.; Mercante, L.A.; Gonçalves de Souza, M.H.; Braunger, M.L.; Riul, A., Jr.; Correa, D.S. Electronic Tongues: Basics, Materials, and Applications. In Nature-Inspired Sensors; Elsevier: Amsterdam, The Netherlands, 2025; pp. 451–465. [Google Scholar]
- Vlasov, Y.; Legin, A.; Rudnitskaya, A. Electronic Tongues and Their Analytical Application. Anal. Bioanal. Chem. 2002, 373, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Ciosek, P.; Wróblewski, W. Potentiometric Electronic Tongues for Foodstuff and Biosample Recognition—An Overview. Sensors 2011, 11, 4688–4701. [Google Scholar] [CrossRef]
- Tahara, Y.; Toko, K. Electronic Tongues—A Review. IEEE Sens. J. 2013, 13, 3001–3011. [Google Scholar] [CrossRef]
- Vahdatiyekta, P.; Zniber, M.; Bobacka, J.; Huynh, T.-P. A Review on Conjugated Polymer-Based Electronic Tongues. Anal. Chim. Acta 2022, 1221, 340114. [Google Scholar] [CrossRef] [PubMed]
- Vanaraj, R.; IP, B.; Mayakrishnan, G.; Kim, I.S.; Kim, S.-C. A Systematic Review of the Applications of Electronic Nose and Electronic Tongue in Food Quality Assessment and Safety. Chemosensors 2025, 13, 161. [Google Scholar] [CrossRef]
- Rodrigues, D.R.; de Oliveira, D.S.; Pontes, M.J.; Lemos, S.G. Voltammetric e-tongue based on a single sensor and variable selection for the classification of teas. Food Anal. Methods 2018, 11, 1958–1968. [Google Scholar] [CrossRef]
- Cortina, M.; Duran, A.; Alegret, S.; del Valle, M. A Sequential Injection Electronic Tongue Employing the Transient Response from Potentiometric Sensors for Anion Multidetermination. Anal. Bioanal. Chem. 2006, 385, 1186–1194. [Google Scholar] [CrossRef] [PubMed]
- Legin, A.; Rudnitskaya, A.; Vlasov, Y. Electronic Tongues: New Analytical Perspective for Chemical Sensors. In Comprehensive Analytical Chemistry XXXIX; Alegret, S., Ed.; Elsevier Science: Amsterdam, The Netherlands, 2003; pp. 437–486. [Google Scholar]
- Mimendia, A.; Gutiérrez, J.M.; Leija, L.; Hernández, P.R.; Favari, L.; Muñoz, R.; del Valle, M. A Review of the Use of the Potentiometric Electronic Tongue in the Monitoring of Environmental Systems. Environ. Model. Softw. 2010, 25, 1023–1030. [Google Scholar] [CrossRef]
- Cuartero, M.; Ruiz, A.; Oliva, D.J.; Ortuño, J.A. Multianalyte Detection Using Potentiometric Ionophore-Based Ion-Selective Electrodes. Sens. Actuators B Chem. 2017, 243, 144–151. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning; Information Science and Statistics; Springer: New York, NY, USA, 2006; ISBN 978-0-387-31073-2. [Google Scholar]
- Armstrong, R.D.; Horvai, G. Properties of PVC Based Membranes Used in Ion-Selective Electrodes. Electrochim. Acta 1990, 35, 1–7. [Google Scholar] [CrossRef]
- Marcus, Y. Thermodynamics of Solvation of Ions. Part 5.—Gibbs Free Energy of Hydration at 298.15 K. J. Chem. Soc. Faraday Trans. 1991, 87, 2995–2999. [Google Scholar] [CrossRef]
- Sakaki, T.; Harada, T.; Kawahara, Y.; Shinkai, S. On the Selection of the Optimal Plasticizer for Calix[n]Arene-Based Ion-Selective Electrodes: Possible Correlation between the Ion Selectivity and the ‘Softness’ of the Plasticizer. J. Incl. Phenom. Mol. Recognit. Chem. 1994, 17, 377–392. [Google Scholar] [CrossRef]
- Rais, J.; Okada, T.; Alexová, J. Gibbs Energies of Transfer of Alkali Metal. Cations between Mutually Saturated Water-Solvent Systems Determined from Extraction Experiments with Radiotracer 137Cs. J. Phys. Chem. B 2006, 110, 8432–8440. [Google Scholar] [CrossRef]
- Osakai, T.; Ebina, K. Non-Bornian theory of the Gibbs energy of ion transfer between two immiscible liquids. J. Phys. Chem. B 1998, 102, 5691–5698. [Google Scholar] [CrossRef]
- Yamashoji, Y.; Tanaka, M.; Nagamune, S.; Ouchi, M.; Hakushi, T.; Shono, T. Polymer Membrane Thallium(I)-Selective Electrodes Based on Dibenzo-Crown-6 Ethers. Anal. Sci. 1991, 7, 485–486. [Google Scholar] [CrossRef]
- Mikhelson, K.N. Electrochemical Sensors Based on Ionophores: Current State, Trends, and Prospects. Russ. J. Gen. Chem. 2008, 78, 2445–2454. [Google Scholar] [CrossRef]
- Mittal, S. PVC-Based Dicyclohexano-18-Crown-6 Sensor for La(III) Ions. Talanta 2004, 62, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, Y.; Sakamoto, Y. Complex formation of alkali metal ions with 18-crown-6 and its derivatives in 1, 2-dichloroethane. Anal. Chim. Acta 2000, 403, 325–332. [Google Scholar] [CrossRef]
- Leon-Medina, J.X.; Anaya, M.; Tibaduiza, D.A. Yogurt Classification Using an Electronic Tongue System and Machine Learning Techniques. Intell. Syst. Appl. 2022, 16, 200143. [Google Scholar] [CrossRef]
- Gabrieli, G.; Muszynski, M.; Thomas, E.; Labbe, D.; Ruch, P.W. Accelerated Estimation of Coffee Sensory Profiles Using an AI-Assisted Electronic Tongue. Innov. Food Sci. Emerg. Technol. 2022, 82, 103205. [Google Scholar] [CrossRef]
- Gabrieli, G.; Muszynski, M.; Ruch, P.W. A Reconfigurable Integrated Electronic Tongue and Its Use in Accelerated Analysis of Juices and Wines. In Proceedings of the 2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), Aveiro, Portugal, 29 May 2022; pp. 1–3. [Google Scholar]
- Archibald, R.; Gelb, A. Reducing the Effects of Noise in Image Reconstruction. J. Sci. Comput. 2002, 17, 167–180. [Google Scholar] [CrossRef]
- Stanković, S.; Orović, I.; Stanković, L. An automated signal reconstruction method based on analysis of compressive sensed signals in noisy environment. Signal Process. 2014, 104, 43–50. [Google Scholar] [CrossRef]
Components | |||||
---|---|---|---|---|---|
PVC | Plasticizer | Ion Exchanger | Ionophore | ISE | |
(wt.%) | Compound | (wt.%) | KTClPB (wt.%) | DB18C6 (wt.%) | |
32.8 | NPOE | 66.7 | 0.5 | 0.0 | 1 |
33.2 | NPOE | 66.1 | 0.0 | 0.7 | 2 |
32.2 | NPOE | 66.6 | 0.5 | 0.7 | 3 |
33.1 | DEHS | 66.3 | 0.5 | 0.0 | 4 |
32.8 | DEHS | 66.5 | 0.0 | 0.7 | 5 |
32.9 | DEHS | 65.9 | 0.5 | 0.7 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Franco, J.A.; Olmos, J.M.; Ruiz, A.; Ortuño, J.Á. Principal Component Analysis of Transient Potential Signals from Ion-Selective Electrodes for the Identification and Quantification of Different Ions. Chemosensors 2025, 13, 305. https://doi.org/10.3390/chemosensors13080305
González-Franco JA, Olmos JM, Ruiz A, Ortuño JÁ. Principal Component Analysis of Transient Potential Signals from Ion-Selective Electrodes for the Identification and Quantification of Different Ions. Chemosensors. 2025; 13(8):305. https://doi.org/10.3390/chemosensors13080305
Chicago/Turabian StyleGonzález-Franco, José Antonio, José Manuel Olmos, Alberto Ruiz, and Joaquín Ángel Ortuño. 2025. "Principal Component Analysis of Transient Potential Signals from Ion-Selective Electrodes for the Identification and Quantification of Different Ions" Chemosensors 13, no. 8: 305. https://doi.org/10.3390/chemosensors13080305
APA StyleGonzález-Franco, J. A., Olmos, J. M., Ruiz, A., & Ortuño, J. Á. (2025). Principal Component Analysis of Transient Potential Signals from Ion-Selective Electrodes for the Identification and Quantification of Different Ions. Chemosensors, 13(8), 305. https://doi.org/10.3390/chemosensors13080305