Advanced Chemosensors for Gas Detection
1. Introduction
2. The Special Issue
Acknowledgments
Conflicts of Interest
References
- Feng, S.B.; Farha, F.; Li, Q.J.; Wan, Y.L.; Xu, Y.; Zhang, T.; Ning, H.S. Review on smart gas sensing technology. Sensors 2019, 19, 3760. [Google Scholar] [CrossRef]
- Alrammouz, R.; Podlecki, J.; Abboud, P.; Sorli, B.; Habchi, R. A review on flexible gas sensors: From materials to devices. Sens. Actuators A Phys. 2018, 284, 209–231. [Google Scholar] [CrossRef]
- Qiu, P.L.; Liu, H.J.; Hu, C.Q.; Liu, J.Q.; Fu, C.; Qin, Y.X. Advances in memristive gas sensors: A review. Talanta 2025, 293, 128058. [Google Scholar] [CrossRef]
- Chowdhury, A.Z.; Oehlschlaeger, M.A. Artificial intelligence in gas sensing: A review. ACS Sens. 2025, 10, 1538–1563. [Google Scholar] [CrossRef]
- Chitaranjan, M. Recent advances in medical gas sensing with artificial intelligence-enabled technology. Med. Gas Res. 2025, 15, 318–326. [Google Scholar]
- Humayun, M.; Bououdina, M.; Usman, M.; Khan, A.; Luo, W.; Wang, C.D. Designing state-of-the-art gas sensors: From fundamentals to applications. Chem. Rec. 2024, 24, e202300350. [Google Scholar] [CrossRef] [PubMed]
- Kou, Y.J.; Hua, L.; Chen, W.J.; Xu, X.X.; Song, L.Z.; Yu, S.J.; Lu, Z.Q. Material design and application progress of flexible chemiresistive gas sensors. J. Mater. Chem. A 2024, 12, 21583–21604. [Google Scholar] [CrossRef]
- Kanan, S.; Obeideen, K.; Moyet, M.; Abed, H.; Khan, D.; Shabnam, A.; El-Sayed, Y.; Arooj, M.; Mohamed, A.A. Recent advances on metal oxide based sensors for environmental gas pollutants detection. Crit. Rev. Anal. Chem. 2025, 55, 911–944. [Google Scholar] [CrossRef]
- Ahmad, K.; Oh, T.H. Recent progress in MOFs and MOF-derived materials for gas sensing applications. Chemosensors 2025, 13, 100. [Google Scholar] [CrossRef]
- Prakash, C.; Yadav, A.K.; Sharma, M.; Singh, V.K.; Dixit, A. Recent developments on 2D-materials for gas sensing application. J. Phys. Condens. Matter 2025, 37, 193004. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.F.; Sun, R.J.; Bao, X.; Liu, J.J.; Ng, J.W.; Tang, B.J.; Liu, Z. Enhancing selectivity of two-dimensional materials-based gas sensors. Adv. Funct. Mater. 2025, 35, 2420393. [Google Scholar] [CrossRef]
- Harun-Or-Rashid, M.; Mirzaei, S.; Nasiri, N. Nanomaterial innovations and machine learning in gas sensing technologies for real-time health diagnostics. ACS Sens. 2025, 10, 1620–1640. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.W.; Jia, X.H.; Zhang, J.X.; Yang, W.C.; Song, H.J. Recent advances in different materials for moisture resistance of metal oxide-based gas sensors: A review. Chem. Eng. J. 2025, 505, 159639. [Google Scholar] [CrossRef]
- Vaishag, P.V.; Noh, J.S. A comparative review of graphene and MXene-based composites towards gas sensing. Molecules 2024, 29, 4558. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.J.; Xin, R.F.; Li, S.X. Metal oxide heterostructures for improving gas sensing properties: A review. Materials 2023, 16, 263. [Google Scholar] [CrossRef]
- Liu, Y.N.; Xiao, S.; Du, K. Chemiresistive gas sensors based on hollow heterojunction: A review. Adv. Mater. Interfaces 2021, 8, 2002122. [Google Scholar] [CrossRef]
- Zhao, J.H.; Wang, H.Q.; Cai, Y.H.; Zhao, J.J.; Gao, Z.D.; Song, Y.Y. The challenges and opportunities for TiO2 nanostructures in gas sensing. ACS Sens. 2024, 9, 1644–1655. [Google Scholar] [CrossRef]
- Panigrahi, P.K.; Chandu, B.; Puvvada, N. Recent advances in nanostructured materials for application as gas sensors. ACS Omega 2024, 9, 3092–3122. [Google Scholar] [CrossRef]
- Wu, H.; Wang, X.B.; Chen, Y.X.; Wang, X.F. Enhanced triethylamine-sensing characteristics of SnS2/LaFeO3 composite. Chemosensors 2025, 13, 228. [Google Scholar] [CrossRef]
- Wang, D.H.; Hu, J.W.; Xu, H.; Wang, D.; Li, G.S. Construction of 2D TiO2@MoS2 heterojunction nanosheets for efficient toluene gas detection. Chemosensors 2025, 13, 154. [Google Scholar] [CrossRef]
- Egger, L.; Sosada-Ludwikowska, F.; Steinhauer, S.; Singh, V.; Grammatikopoulos, P.; Köck, A. SnO2-based CMOS-integrated gas sensor optimized by mono-, bi-, and trimetallic nanoparticles. Chemosensors 2025, 13, 59. [Google Scholar] [CrossRef]
- Hyodo, T.; Matsuura, Y.; Inao, G.; Sasahara, T.; Shimizu, Y.; Ueda, T. Effects of base materials (α-alumina and/or γ-alumina) on volatile organic compounds (VOCs)-sensing properties of adsorption/combustion-type microsensors. Chemosensors 2025, 13, 9. [Google Scholar] [CrossRef]
- Alouani, M.A.; Casanova-Chafer, J.; de Bernardi-Martín, S.; García-Gómez, A.; Salehnia, F.; Santos-Ceballos, J.C.; Santos-Betancourt, A.; Vilanova, X.; Llobet, E. The effect of doping rGO with nanosized MnO2 on its gas sensing properties. Chemosensors 2024, 12, 256. [Google Scholar] [CrossRef]
- Stanoiu, A.; Iacoban, A.C.; Mihalcea, C.G.; Dinu, I.V.; Florea, O.G.; Vlaicu, I.D.; Simion, C.E. CO2 interaction mechanism of SnO2-based sensors with respect to the Pt interdigital electrodes gap. Chemosensors 2024, 12, 238. [Google Scholar] [CrossRef]
- Zhou, P.; Tsang, J.-H.; Blackman, C.; Shen, Y.; Liang, J.; Covington, J.A.; Saffell, J.; Danesh, E. A novel mechanism based on oxygen vacancies to describe isobutylene and ammonia sensing of p-type Cr2O3 and Ti-doped Cr2O3 thin films. Chemosensors 2024, 12, 218. [Google Scholar] [CrossRef]
- Jacob, M.-B.; Héctor, G.-B.; Lucia, I.J.-A.; Alex, G.-B.; Verónica-María, R.-B.; Jorge, A.R.-O.; José, T.G.-B.; María de la, L.O.-A. Synthesis, characterization, and evaluation of photocatalytic and gas sensing properties of ZnSb2O6 pellets. Chemosensors 2025, 13, 329. [Google Scholar]
- Raza, W.; Ahmad, K.; Oh, T.H. Progress in layered double hydroxide-based materials for gas and electrochemical sensing applications. Chemosensors 2025, 13, 115. [Google Scholar] [CrossRef]
- Dong, R.Q.; Yang, M.N.; Zuo, Y.X.; Liang, L.S.; Xing, H.K.; Duan, X.M.; Chen, S. Conducting polymers-based gas sensors: Principles, materials, and applications. Sensors 2025, 25, 2724. [Google Scholar] [CrossRef] [PubMed]
- Brinza, M.; Schwäke, L.; Zimoch, L.; Strunskus, T.; Pauporté, T.; Viana, B.; Ameri, T.; Adelung, R.; Faupel, F.; Schröder, S.; et al. Influence of P(V3D3-co-TFE) copolymer coverage on hydrogen detection performance of a TiO2 sensor at different relative humidity for industrial and biomedical applications. Chemosensors 2025, 13, 150. [Google Scholar] [CrossRef]
- Ghaffar, A.; Mehdi, R.; Mehdi, I.; Das, B.; Kumar, V.; Hussain, S.; Sher, G.; Memon, K.A.; Ali, S.; Mehdi, M.; et al. An intensity-variation RI sensor for multi-variant alcohol detection with twisted structure using polymer optical fiber. Chemosensors 2024, 12, 252. [Google Scholar] [CrossRef]
- Tang, B.L.; Shi, Y.B.; Liu, J.J.; Zheng, C.D.; Zhao, K.; Zhang, J.H.; Feng, Q.H. Low-drift NO2 sensor based on polyaniline/black phosphorus composites at room temperature. Chemosensors 2024, 12, 181. [Google Scholar] [CrossRef]
- Suriano, D.; Abulude, F.O.; Penza, M. The use of low-cost gas sensors for air quality monitoring with smartphone technology: A preliminary study. Chemosensors 2025, 13, 189. [Google Scholar] [CrossRef]
- Nicolae, I.; Viespe, C. Modeling the frequency–amplitude characteristics of a tunable SAW oscillator. Chemosensors 2025, 13, 240. [Google Scholar] [CrossRef]
- Verma, G.; Gupta, A. Next-generation chemiresistive wearable breath sensors for non-invasive healthcare monitoring: Advances in composite and hybrid materials. Small 2025, 21, 2411495. [Google Scholar] [CrossRef]
- Alenezy, E.K.; Kandjani, A.E.; Shaibani, M.; Trinchi, A.; Bhargava, S.K.; Ippolito, S.J.; Sabri, Y. Human breath analysis; clinical application and measurement: An overview. Biosens. Bioelectron. 2025, 278, 117094. [Google Scholar] [CrossRef] [PubMed]
- Heng, W.Z.; Yin, S.K.; Chen, Y.L.; Gao, W. Exhaled breath analysis: From laboratory test to wearable sensing. IEEE Rev. Biomed. Eng. 2024, 18, 50–73. [Google Scholar] [CrossRef]
- Yuan, R.; Yang, Y.X.; Zou, B.S.; Zhang, Y.B. MXene-enabled gas sensors for wearable breath monitoring. Chem. Eng. J. 2025, 510, 161414. [Google Scholar] [CrossRef]
- Chen, H.; Huo, D.X.; Zhang, J.L. Gas recognition in e-nose system: A review. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 169–184. [Google Scholar] [CrossRef]
- Sun, J.; Shi, D.X.; Wang, L.; Yu, X.L.; Song, B.H.; Li, W.X.; Zhu, J.K.; Yang, Y.; Cao, B.Q.; Jiang, C.Y. CRDS technology-based integrated breath gas detection system for breath acetone real-time accurate detection application. Chemosensors 2024, 12, 261. [Google Scholar] [CrossRef]
- Freddi, S.; Vaghi, L.; Penoni, A.; Scapinello, L.; Sangaletti, L. A minimal electronic nose based on graphene functionalized with metalated pyrazinoporphyrazines and phthalocyanines for ammonia, benzene, and hydrogen sulfide discrimination. Chemosensors 2025, 13, 165. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Xuan, W.F.; Chen, S.; Yang, M.N.; Xing, H.K. The screening and diagnosis technologies towards pneumoconiosis: From imaging analysis to e-noses. Chemosensors 2025, 13, 102. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S. Advanced Chemosensors for Gas Detection. Chemosensors 2025, 13, 333. https://doi.org/10.3390/chemosensors13090333
Chen S. Advanced Chemosensors for Gas Detection. Chemosensors. 2025; 13(9):333. https://doi.org/10.3390/chemosensors13090333
Chicago/Turabian StyleChen, Shuai. 2025. "Advanced Chemosensors for Gas Detection" Chemosensors 13, no. 9: 333. https://doi.org/10.3390/chemosensors13090333
APA StyleChen, S. (2025). Advanced Chemosensors for Gas Detection. Chemosensors, 13(9), 333. https://doi.org/10.3390/chemosensors13090333