Electrochemical Biosensors for the Determination of Toxic Substances Related to Food Safety Developed in South America: Mycotoxins and Herbicides
Abstract
:1. Introduction
2. Mycotoxins
2.1. Ochratoxin A
2.2. Citrinin
2.3. Zearalenone
2.4. Zeranol
2.5. Sterigmatocystin
3. Herbicides
3.1. Diclofop
3.2. Molinate
3.3. Glyphosate
3.4. Atrazine
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Grumezescu, A.M. (Ed.) Nanobiosensors. In Nanotechnology in the Agri-Food Industry; Academic Press: London, UK, 2017; Volume 8. [Google Scholar]
- Escarpa, A.; González, M.C.; López, M.A. (Eds.) Agricultural and Food Electroanalysis; John Wiley and Sons: Chichester, UK, 2015. [Google Scholar]
- Berthiller, F.; Brera, C.; Iha, M.H.; Krska, R.; Lattanzio, V.M.T.; MacDonald, S.; Malone, R.J.; Maragos, C.; Solfrizzo, M.; Stranska-Zachariasova, M.; et al. Developments in mycotoxin analysis: An update for 2015–2016. World Mycotoxin J. 2017, 10, 5–29. [Google Scholar] [CrossRef]
- Hanning, I.B.; Bryan, C.A.O.; Crandall, P.G.; Ricke, S.C. Food safety and food security. Nat. Educ. Knowl. 2012, 3, 9–11. [Google Scholar]
- Gorton, L. (Ed.) Biosensors and Modern Biospecific Analytical Techniques; Comprehensive Analytical Chemistry; Elsevier V.B.: Amsterdam, The Netherlands, 2005; Volume 44. [Google Scholar]
- Wang, J. Analytical Electrochemistry, 3rd ed.; WILEY-VCH: New York, NY, USA, 2006. [Google Scholar]
- Reverté, L.; Prieto-Simón, B.; Campás, M. New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems: A review. Anal. Chim. Acta 2016, 908, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Maragos, C. Multiplexed Biosensors for Mycotoxins. J. AOAC Int. 2016, 99, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Omrani, N.M.; Hayat, A.; Korri-Youssoufi, H.; Marty, J.L. Electrochemical Biosensors for Food Security: Mycotoxins Detection. In Biosensors for Security and Bioterrorism Applications; Nikolelis, D.P., Nikoleli, G.-P., Eds.; Springer: Basel, Switzerland, 2016; pp. 469–490. [Google Scholar]
- Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M. Electrochemical Affinity Biosensors in Food Safety. Chemosensors 2017, 5, 8. [Google Scholar] [CrossRef]
- Viswanathan, S.; Radecka, H.; Radecki, J. Electrochemical biosensors for food analysis. Monat. Chem. 2009, 140, 891–899. [Google Scholar]
- Kumar, H.; Neelam, R. Enzyme-based electrochemical biosensors for food safety: A review. Nanobiosens. Dis. Diagn. 2016, 5, 29–39. [Google Scholar] [CrossRef]
- Viswanathan, S. Electrochemical Biosensors for Food-Borne Pathogens. In Microbial Food Safety and Preservation Techniques; Rai, R., Bai, J.A., Eds.; CRC Press: Boca Raton, FL, USA, 2015; Chapter 12; pp. 215–232. [Google Scholar]
- Bülbül, G.; Hayat, A.; Andreescu, S. Portable Nanoparticle-Based Sensors for Food Safety Assessment. Sensors 2015, 15, 30736–30758. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Zhu, Z.; Du, D.; Lin, Y. Nanomaterial-based electrochemical biosensors for food safety. J. Electroanal. Chem. 2016, 781, 147–154. [Google Scholar] [CrossRef]
- Singh, A.; Poshtiban, S.; Evoy, S. Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors 2013, 13, 1763–1786. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Ramasamy, R.P. Phage-Based Electrochemical Biosensors for Detection of Pathogenic Bacteria. ECS Trans. 2015, 69, 1–8. [Google Scholar] [CrossRef]
- Evtugyn, G.A.; Shamagsumova, R.V.; Hianik, T. Biosensors for detection mycotoxins and pathogenic bacteria in food. In Nanobiosensors; Grumezescu, A.M., Ed.; Academic Press: London, UK, 2017; Volume 8, Chapter 2; pp. 35–92. [Google Scholar]
- Plotan, M.; Devlin, J.; Porter, R.; El Ouard Benchikh, M.; Rodríguez, M.L.; Mcconnell, R.I.; Fitzgerald, S.P. The Use of biochip array technology for rapid multimycotoxin screening. J. AOAC Int. 2016, 99, 878–889. [Google Scholar] [CrossRef] [PubMed]
- Vidal, J.C.; Bonel, L.; Ezquerra, A.; Hernández, S.; Bertolín, J.R.; Cubel, C.; Castillo, J.R. Electrochemical affinity biosensors for detection of mycotoxins: A review. Biosens. Bioelectron. 2013, 49, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Catanante, G.; Rhouati, A.; Hayat, A.; Marty, J.L. An overview of recent electrochemical immunosensing strategies for mycotoxins detection. Electroanalysis 2016, 28, 1750–1763. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Z.; Zhang, Q.; Li, P. Mycotoxin determination in foods using advanced sensors based on antibodies or aptamers. Toxins 2016, 8, 239. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, R.; Singh, J.; Sachdev, T.; Basu, T.; Malhotra, B.D. Recent advances in mycotoxins detection. Biosens. Bioelectron. 2016, 81, 532–545. [Google Scholar] [CrossRef] [PubMed]
- Scognamiglio, V.; Arduini, F.; Palleschi, G.; Rea, G. Biosensing technology for sustainable food safety. Trends Anal. Chem. 2014, 62, 1–10. [Google Scholar] [CrossRef]
- Soriano del Castillo, J.M. Micotoxinas en Alimentos; Díaz de Santos: Valencia, Spain, 2007. (In Spanish) [Google Scholar]
- Sharma, A.; Yugender Goud, K.; Hayat, A.; Bhand, S.; Marty, J.L. Recent advances in electrochemical-based sensing platforms for aflatoxins detection. Chemosensors 2017, 5, 1. [Google Scholar] [CrossRef]
- Yugender Goud, K.; Hayat, A.; Catanante, G.; Satyanarayana, M.; Vengatajalabathy Gobi, K.; Marty, J.L. An electrochemical aptasensor based on functionalized graphene oxide assisted electrocatalytic signal amplification of methylene blue for aflatoxin B1 detection. Electrochim. Acta 2017, 244, 96–103. [Google Scholar] [CrossRef]
- Abnousa, K.; Daneshc, N.M.; Alibolandia, M.; Ramezanic, M.; Sarreshtehdar Emranie, A.; Zolfagharif, R.; Taghdisig, S.M. A new amplified π-shape electrochemical aptasensor for ultrasensitive detection of aflatoxin B1. Biosens. Bioelectron. 2017, 94, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, C.-R.; Wang, W.-C.; Xue, J.; Huang, Y.-L.; Yang, X.-X.; Tan, B.; Zhou, X.-P.; Shao, C.; Ding, S.-J.; et al. A novel electrochemical immunosensor for highly sensitive detection of aflatoxin B1 in corn using single-walled carbon nanotubes/chitosan. Food Chem. 2016, 192, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, Y.; Chu, Y.; Mab, H.; Li, Y.; Wu, D.; Du, B.; Wei, Q. Disposable competitive-type immunoassay for determination of aflatoxin B1 via detection of copper ions released from Cu-apatite. Talanta 2016, 147, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Huang, Y.; Liu, H.; Zhang, C.; Tang, D. Homogeneous electrochemical immunoassay of aflatoxin B1 in foodstuff using proximity-hybridization-induced omega-like DNA junctions and exonuclease III-triggered isothermal cycling signal amplification. Anal. Bioanal. Chem. 2016, 408, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Tang, D. Proximity Ligation Assay-induced Structure-switching Hairpin DNA toward Development of Electrochemical Immunosensor. Electroanalysis 2016, 28, 1–7. [Google Scholar] [CrossRef]
- Gutiérrez, R.A.V.; Hedström, M.; Mattiasson, B. Bioimprinting as a tool for the detection of aflatoxin B1 using a capacitive biosensor. Biotechnol. Rep. 2016, 11, 12–17. [Google Scholar]
- Lou, X.; Zhu, A.; Wang, H.; Wu, J.; Zhou, L.; Long, F. Direct and ultrasensitive optofluidic-based immunosensing assay of aflatoxin M1 in dairy products using organic solvent extraction. Anal. Chim. Acta 2016, 940, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Karczmarczyk, A.; Dubiak-Szepietowska, M.; Vorobii, M.; Rodriguez-Emmenegger, C.; Dostálek, J.; Feller, K.-H. Sensitive and rapid detection of aflatoxin M1 in milk utilizing enhanced SPR and p(HEMA) brushes. Biosens. Bioelectron. 2016, 81, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Istamboulié, G.; Paniel, N.; Zara, L.; Reguillo Granados, L.; Barthelmebs, L.; Noguer, T. Development of an impedimetric aptasensor for the determination of aflatoxin M1 in milk. Talanta 2016, 146, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Guider, R.; Gandolfi, D.; Chalyan, T.; Pasquardini, L.; Samusenko, A.; Pucker, G.; Pederzolli, C.; Pavesi, L. Design and Optimization of SiON Ring Resonator-Based Biosensors for Aflatoxin M1 Detection. Sensors 2015, 15, 17300–17312. [Google Scholar] [CrossRef] [PubMed]
- Atar, N.; Eren, T.; Yola, M.L. A molecular imprinted SPR biosensor for sensitive determination of citrinin in red yeast rice. Food Chem. 2015, 184, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.-W.; Tsai, W.-C. A study on the development of a citrinin piezoelectric immunosensor. Taiwan J. Agric. Chem. Food Sci. 2008, 46, 265–272. [Google Scholar]
- Yao, D.-S.; Cao, H.; Wen, S.; Liu, D.-L.; Bai, Y.; Zheng, W.-J. A novel biosensor for sterigmatocystin constructed by multi-walled carbon nanotubes (MWNT) modified with aflatoxin–detoxifizyme (ADTZ). Bioelectrochemistry 2006, 68, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, D.; Li, S.; Yao, D. Development of an amperometric enzyme electrode biosensor for sterigmatocystin detection. Enzyme Microb. Technol. 2010, 47, 119–126. [Google Scholar] [CrossRef]
- Liu, D.L.; Tan, H.Y.; Chen, J.H.; Wong, A.H.H.; Fong, M.I.; Xie, C.F.; Li, S.C.; Cao, H.; Yao, D.S. Enzymatic sensor for sterigmatocystin detection and feasibility investigation of predicting aflatoxin B1 contamination by indicator. In Aflatoxins-Detection, Measurement and Control; Torres-Pacheco, I., Ed.; InTech: Rijeka, Croatia, 2011; Chapter 10; pp. 161–182. [Google Scholar]
- Lin, X.; Guo, X. Advances in biosensors, chemosensors and assays for the determination of fusarium mycotoxins. Toxins 2016, 8, 161. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K.; Hayat, A.; Catanante, G.; Ocaña, C. A label free aptasensor for Ochratoxin A detection in cocoa beans: An application to chocolate industries. Anal. Chim. Acta 2015, 889, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Malvano, F.; Albanese, D.; Pilleton, R.; Di Matteo, M. A highly sensitive impedimetric label free immunosensor for ochratoxin measurement in cocoa beans. Food Chem. 2016, 212, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Catanante, G.; Mishra, R.K.; Hayat, A.; Marty, J.-L. Sensitive analytical performance of folding based biosensor using methylene blue tagged aptamers. Talanta 2016, 153, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K.; Hayat, A.; Catanante, G.; Istamboulie, G.; Marty, J.-L. Sensitive quantitation of Ochratoxin A in cocoa beans using differential pulse voltammetry based aptasensor. Food Chem. 2016, 192, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Karczmarczyk, A.; Baeumner, A.J.; Feller, K.-H. Rapid and sensitive inhibition-based assay for the electrochemical detection of Ochratoxin A and Aflatoxin M1 in red wine and milk. Electrochim. Acta 2017, 243, 82–89. [Google Scholar] [CrossRef]
- Fogel, R.; Limson, J. Developing Biosensors in Developing Countries: South Africa as a Case Study. Biosensors 2016, 6, 5. [Google Scholar] [CrossRef] [PubMed]
- Fernández, H.; Zon, M.A.; Molina, P.G.; Moressi, M.B.; Vettorazzi, N.R.; Arévalo, A.H.; Arévalo, F.J.; Granero, A.M.; Ramírez, E.A.; Perrotta, P.; et al. Electroanalytical properties of mycotoxins and their determinations in the agroalimentary system. In Mycotoxins: Properties, Applications and Hazards; Melborn, B.J., Greene, J.C., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2012; pp. 85–108. [Google Scholar]
- Fernández, H.; Molina, P.G.; Arévalo, F.J.; Zon, M.A. Micotoxinas: Su rol en el sistema agroalimentario. Determinaciones electroanalíticas y por inmunoelectroanálisis. In Residuos Urbanos e Industriales ¿fuente de Problemas o de Oportunidades? Vázquez, M.V., Montoya Restrepo, J., Eds.; RIARTAS, Tecnológico de Antioquia: Medellín, Colombia, 2012; pp. 175–188. (In Spanish) [Google Scholar]
- Fernández, H. Mycotoxins Quantification in the Food System: Is there Any Contribution from Electrochemical Biosensors? Editorial. J. Biosens. Bioelectron. 2013, 4, 1–2. [Google Scholar] [CrossRef]
- Vettorazzi, N.R.; Zon, M.A.; Molina, P.G.; Granero, A.M.; Arévalo, F.J.; Robledo, S.N.; Díaz Toro, P.C.; Díaz Nieto, C.H.; Fernández, H. Métodos de análisis de contaminantes. In Métodos de Análisis de Contaminantes; Red Iberoamericana de Aprovechamiento de Aguas y Suelos Contaminados (RIARTAS) -Programa Iberoamericano-CYTED: Medellín, Colombia, 2014; pp. 1–32. [Google Scholar]
- Zon, M.A.; Vettorazzi, N.R.; Moressi, M.B.; Molina, P.G.; Granero, A.M.; Arévalo, F.J.; Robledo, S.N.; Fernández, H. Voltammetric techniques applied on organic compounds. Applications to some compounds related to agroalimentary and health systems. In Voltammetry: Theory, Types and Applications; Saito, Y., Kikuchi, T., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2014; pp. 85–108. [Google Scholar]
- Visconti, A.; Perrone, G.; Cozzi, G.; Solfrizzo, M. Managing ochratoxin A risk in the grape-wine food chain. Food Addit. Contamin. 2008, 25, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EC) No. 1881/2006 of 19th December 2006. Available online: http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:en:pdf (accessed on 20 December 2006).
- Fernández-Baldo, M.A.; Bertolino, F.A.; Messina, G.A.; Sanz, M.I.; Raba, J. Modified magnetic nanoparticles in an electrochemical method for the ochratoxin A determination in Vitis vinifera red grapes tissues. Talanta 2010, 83, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Korkut, S.; Keskinler, B.; Erhan, E. An amperometric biosensor based on multiwalled carbon nanotube-poly(pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives. Talanta 2008, 76, 1147–1152. [Google Scholar] [CrossRef] [PubMed]
- Ibarra-Escutia, P.; Juarez Gómez, J.; Calas-Blanchard, C.; Mary, J.L.; Ramírez-Silva, M.T. Amperometric biosensor based on a high resolution photopolymer deposited onto a screen-printed electrode for phenolic compounds monitoring in tea infusions. Talanta 2010, 81, 1636–1642. [Google Scholar] [CrossRef] [PubMed]
- Granero, A.M.; Fernández, H.; Agostini, E.; Zón, M.A. An amperometric biosensor for trans-resveratrol determination in aqueous solutions by mean of carbon paste electrodes modified with peroxidase basic isoenzymes from Brassica napus. Electroanalysis 2008, 20, 858–864. [Google Scholar] [CrossRef]
- Santhosh, P.; Manesh, K.M.; Gopalan, A.; Lee, K.P. Novel amperometric carbon monoxide sensor based on multi-wall carbon nanotubes grafted with polydiphenylamine—Fabrication and performance. Sens. Actuators B Chem. 2007, 125, 92–99. [Google Scholar] [CrossRef]
- Granero, A.M.; Fernández, H.; Agostini, E.; Zon, M.A. An amperometric biosensor based on peroxidases from Brassica napus for the determination of the total polyphenolic content in wine and tea samples. Talanta 2010, 83, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Zachetti, V.G.L.; Granero, A.M.; Robledo, S.N.; Zon, M.A.; Fernández, H. Development of an amperometric biosensor based on peroxidases to quantify citrinin in rice samples. Bioelectrochemistry 2013, 91, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Lawal, A.T. Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors. Mater. Res. Bull. 2016, 73, 308–350. [Google Scholar] [CrossRef]
- Ray, S.C.; Jana, N.R. Application of Carbon-Based Nanomaterials as Biosensor. In Carbon Nanomaterials for Biological and Medical Applications; Elsevier: Amsterdan, The Netherlands, 2017; Chapter 3; pp. 87–127. [Google Scholar]
- Ramírez, E.A. Estudios Sobre el Comportamiento Electroquímico de la Micotoxina Ocratoxina A. Implementación de Técnicas Electroanalíticas Para Su Detección y Cuantificación en Alimentos. Ph.D. Thesis, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina, 26 June 2010. (In Spanish). [Google Scholar]
- Ramírez, E.A.; Granero, A.M.; Zon, M.A.; Fernández, H. Development of an amperometric biosensor based on peroxidases from Brassica napus for the determination of ochratoxin A content in peanut samples. J. Biosens. Bioelectron. 2011, S3, 1–6. [Google Scholar] [CrossRef]
- Deshpande, S.S. Enzyme Immunoassays, from Concept to Product Development; Chapman & Hall: New York, NY, USA, 1996; pp. 231–235. [Google Scholar]
- Fernández-Baldo, M.A.; Bertolino, F.A.; Fernández, G.; Messina, G.A.; Sanz, M.I.; Raba, J. Determination of Ochratoxin A in apples contaminated with Aspergillus ochraceus by using a microfluidic competitive immunosensor with magnetic nanoparticles. Analyst 2011, 136, 2756–2762. [Google Scholar] [CrossRef] [PubMed]
- Perrota, P.R. Estudios de Las Propiedades Electroanalíticas y Desarrollo de Dispositivos Nanotecnológicos Para la Cuantificación de Ocratoxina A (OTA) en Uvas y Subproductos. Ph.D. Thesis, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina, 8 June 2012. [Google Scholar]
- Perrotta, P.R.; Vettorazzi, N.R.; Arévalo, F.J.; Zon, M.A.; Fernández, H. Development of a very sensitive electrochemical magneto immunosesor for direct determination of ochratoxin A in red wine. Sens. Actuators B Chem. 2012, 162, 327–333. [Google Scholar] [CrossRef]
- Xu, B.; Jia, X.; Gu, L.; Sung, C. Review on the qualitative and quantitative analysis of the mycotoxin citrinina. Food Control. 2006, 17, 271. [Google Scholar] [CrossRef]
- Zachetti, V.G.L.; Granero, A.M.; Robledo, S.N.; Zon, M.A.; DaRocha Rosa, C.A.; Fernández, H. Electrochemical reduction of the mycotoxin citrinin at bare glassy carbon electrodes and modified with multi-walled carbon nanotubes in a non-aqueous reaction medium. J. Braz. Chem. Soc. 2012, 23, 1131–1139. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). 2006. Available online: http://www.iarc.fr (accessed on 23 February 2017).
- Arévalo, F.J.; Granero, A.M.; Fernández, H.; Raba, J.; Zón, M.A. Citrinin (CIT) determination in rice samples using a micro fluidic electrochemical immunosensor. Talanta 2011, 83, 966–973. [Google Scholar] [CrossRef] [PubMed]
- Zachetti, V.G.L. Comportamiento Electroquímico de la Micotoxina Citrinina. Desarrollo de Biosensores. Ph.D. Thesis, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina, 12 December 2012. (In Spanish). [Google Scholar]
- Waśkiewicz, A. Mycotoxins: Natural Occurrence of Mycotoxins in Food, Encyclopedia of Food Microbiology; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: Oxford, UK, 2014; Volume 2, pp. 880–886. [Google Scholar]
- Pepeljnjak, S.; Šegvć, M. An Overview of Mycotoxins and Toxigenic Fungi in Croatia. In An Overview on Toxigenic Fungi and Mycotoxins in Europe; Logrieco, A., Visconti, A., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 33–50. [Google Scholar]
- Bräse, S.; Gläser, F.; Kramer, C.S.; Lindner, S.; Linsenmeier, A.M.; Masters, K.S.; Meister, A.C.; Ruff, B.M.; Zhong, S. The Chemistry of Mycotoxins. In Progress in the Chemistry of Organic Natural Products; Kinghorn, A.D., Falk, H., Kobayashi, J., Eds.; Springer: London, UK, 2013; Volume 97. [Google Scholar]
- Worldwide Regulations for Mycotoxins in Food and Feed in 2003, FAO Food and Nutrition Paper, Food and Agriculture Organization of Unites Nations (FAO), Volume 81, 2003. Available online: http://www.fao.org/publications/card/en/c/3c32b78f-9fc9-5b78-8e43-0a82a7bd772b/ (accessed on 12 July 2017).
- Latreite, M.S. Protocolo de Calidad Para la Harina de Maíz o Sémola de Maíz de Cocción Rápida Para Preparar Polenta, Res. SAGPyA N° 302/2007, Ministerio de Agroindustria, Secretaría de Agregado de Valor; Subsecretaría de Alimentos y Bebidas: Buenos Aires, Argentina, 2007. (In Spanish)
- Panini, N.V.; Bertolino, F.A.; Salinas, E.; Messina, G.A.; Raba, J. Zearalenone determination in corn silage samples using an immunosensor in a continuous-flow/stopped-flow systems. Biochem. Eng. J. 2010, 51, 7–13. [Google Scholar] [CrossRef]
- Panini, N.V.; Salinas, E.; Messina, G.A.; Raba, J. Modified paramagnetic beads in a microfluidic system for the determination of zearalenone in feedstuffs samples. Food Chem. 2011, 125, 791–796. [Google Scholar] [CrossRef]
- Riberi, W.I.; Arévalo, F.J.; Zon, M.A.; Fernández, H. Desarrollo de un inmunosensor electroquímico para la determinación de la micotoxina zearalenona en ausencia de mediador rédox. In Proceedings of the VIII Congreso Argentino de Química Analítica, La Plata, Argentina, 3–6 November 2015. (In Spanish). [Google Scholar]
- Riberi, W.I.; Tarditto, L.V.; Zon, M.A.; Arévalo, F.J.; Fernández, H. Development of a very sensitive electrochemical immunosensor to determine zearalenone in maize samples. Sens. Actuators B Chem. 2017, in press. [Google Scholar]
- Kleinova, M.; Zollner, P.; Kahlbacher, H.; Hochsteiner, W.; Lindner, W. Metabolic Ppofiles of the mycotoxin zearalenone and of the growth promoter zeranol in urine, liver, and muscle of heifers. J. Agric. Food Chem. 2002, 50, 4769–4776. [Google Scholar] [CrossRef] [PubMed]
- Blokland, M.H.; Sterk, S.S.; Stephany, R.W.; Launay, F.M.; Kennedy, D.G.; Van Ginkel, L.A. Determination of resorcylic acid lactones in biological samples by GC-MS. Discrimination between illegal use and contamination with fusarium toxins. Anal. Bioanal. Chem. 2006, 384, 1221–1227. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela-Grijalva, N.V.; González-Ríos, H.; Islava, T.Y.; Valenzuela, M.; Torrescano, G.; Camou, J.P.; Nuñez-González, F.A. Changes in intramuscular fat, fatty acid profile and cholesterol content induced by zeranol implantation strategy in hair lambs. J. Sci. Food Agric. 2012, 92, 1362–1367. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Kim, B.; Lee, S.G.; Kim, J. An optimized method for the accurate determination of zeranol and diethylstilbestrol in animal tissues using isotope dilution-liquid chromatography/mass spectrometry. Food Chem. 2013, 140, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Prouillac, C.; Koraichi, F.; Videmann, B.; Mazallon, M.; Rodríguez, F.; Baltas, M.; Lecoeur, S. In vitro toxicological effects of estrogenic mycotoxins on human placental cells: Structure activity relationships. Toxicol. Appl. Pharmacol. 2012, 259, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Regiart, M.; Pereira, S.V.; Spotorno, V.G.; Bertolino, F.A.; Raba, J. Food safety control of zeranol through voltammetric immunosensing on Au–Pt bimetallic nanoparticle surfaces. Analyst 2014, 139, 4702–4709. [Google Scholar] [CrossRef] [PubMed]
- Regiart, M.; Seia, M.A.; Messina, G.A.; Bertolino, F.A.; Raba, J. Electrochemical immunosensing using a nanostructured functional platform for determination of α-zearalanol. Microchim. Acta 2015, 182, 531–538. [Google Scholar] [CrossRef]
- Betina, V. Mycotoxins: Chemical, Biology and Environmental Aspects; Elsevier: Amsterdam, The Netherlands, 1989; Volume 9. [Google Scholar]
- Bianchini, A.; Bullerman, L.B. Mycotoxins: Classification, Encyclopedia of Food Microbiology; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: Oxford, UK, 2014; Volume 2, pp. 854–861. [Google Scholar]
- Versilovskis, A.; De Saeger, S. Sterigmatocystin: Occurrence in foodstuffs and analytical methods: An overview. Mol. Nutr. Food Res. 2010, 54, 136–147. [Google Scholar] [CrossRef] [PubMed]
- EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Scientific Opinion on the risk for public and animal health related to the presence of sterigmatocystin in food and feed. EFSA J. 2013, 11, 3254–3335. [Google Scholar] [CrossRef]
- Pfeiffer, E.; Fleck, S.C.; Metzler, M. Catechol Formation: A novel pathway in the metabolism of sterigmatocystin and 11-methoxysterigmatocystin. Chem. Res. Toxicol. 2014, 27, 2093–2099. [Google Scholar] [CrossRef] [PubMed]
- Purchase, I.F.H.; Van der Watt, J.J. Carcinogenicity of sterigmatocystin to rat skin. Toxicol. Appl. Pharmacol. 1973, 26, 274–281. [Google Scholar] [CrossRef]
- Díaz Nieto, C.H.; Granero, A.M.; Zon, M.A.; Fernández, H. Biosensor de tercera generación para la determinación de peróxido de hidrógeno basado en la enzima peroxidasa de soja y óxido de grafeno reducido químicamente. In Proceedings of the VI Congreso Iberoamericano de Química Analítica y Encuentro de Química Ambiental, Cancún, México, 15–18 November 2016. (In Spanish). [Google Scholar]
- Díaz Nieto, C.H.; Granero, A.M.; Pierini, G.D.; Levin, G.J.; Fernández, H.; Zon, M.A. Development of a third generation biosensor to determine hydrogen peroxide based on a composite of soybean peroxidase/chemically reduced graphene oxide deposited on glassy carbon electrodes. Sens. Actuators B Chem. 2017, in press. [Google Scholar]
- Díaz Nieto, C.H.; Granero, A.M.; Fernández, H.; Zon, M.A. Biosensor amperométrico basado en peroxidasas de soja y óxido de grafeno reducido para la detección de la micotoxina esterigmatocistina. In Proceedings of the VIII Congreso Argentino de Química Analítica, La Plata, Argentina, 3–6 November 2015. (In Spanish). [Google Scholar]
- Díaz Nieto, C.H. Comportamiento Electroquímico de la Micotoxina Esterigmatocistina. Desarrollo de Metodologías Electroanalíticas Para su Cuantificación. Ph.D. Thesis, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina, 20 March 2017. [Google Scholar]
- Mostafa, G.A.E. Electrochemical Biosensors for the Detection of Pesticides. Open Electrochem. J. 2010, 2, 22–42. [Google Scholar] [CrossRef]
- Franca, E.F.; Leite, F.L.; Cunha, R.A.; Oliveira, O.N., Jr.; Freitas, L.C.G. Designing an enzyme-based nanobiosensor using molecular modeling techniques. Phys. Chem. Chem. Phys. 2011, 13, 8894–8899. [Google Scholar] [CrossRef] [PubMed]
- Arévalo, F.J.; González-Techera, A.; Zón, M.A.; González-Sapienza, G.; Fernández, H. Ultra-sensitive electrochemical immunosensor using analyte peptidomimetics selected from phage display peptide libraries. Biosens. Bioelectron. 2012, 32, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, T.I.S.; Oliveira, M.; Viswanathan, S.; Barroso, M.F.; Barreiros, L.; Nunes, O.C.; Rodrigues, J.A.; de Lima-Neto, P.; Mazzetto, S.E.; Morais, S.; et al. Molinate quantification in environmental water by a glutathione-S-transferase based biosensor. Talanta 2013, 106, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.C.; Moccelini, S.K.; Castilho, M.; Terezo, A.J.; Possavatz, J.; Magalhaes, M.R.L.; Dores, E.F.G.C. Biosensor based on atemoya peroxidase immobilized on modified nanoclay for glyphosate biomonitoring. Talanta 2012, 98, 130–136. [Google Scholar] [CrossRef] [PubMed]
- González-Techera, A.; Zon, M.A.; Molina, P.G.; Fernández, H.; González-Sapienza, G.; Arévalo, F.J. Development of a highly sensitive noncompetitive electrochemical immunosensor for the detection of atrazine by phage anti-immunocomplex assay. Biosens. Bioelectron. 2015, 64, 650–656. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández, H.; Arévalo, F.J.; Granero, A.M.; Robledo, S.N.; Nieto, C.H.D.; Riberi, W.I.; Zon, M.A. Electrochemical Biosensors for the Determination of Toxic Substances Related to Food Safety Developed in South America: Mycotoxins and Herbicides. Chemosensors 2017, 5, 23. https://doi.org/10.3390/chemosensors5030023
Fernández H, Arévalo FJ, Granero AM, Robledo SN, Nieto CHD, Riberi WI, Zon MA. Electrochemical Biosensors for the Determination of Toxic Substances Related to Food Safety Developed in South America: Mycotoxins and Herbicides. Chemosensors. 2017; 5(3):23. https://doi.org/10.3390/chemosensors5030023
Chicago/Turabian StyleFernández, Héctor, Fernando J. Arévalo, Adrian M. Granero, Sebastián N. Robledo, César H. Díaz Nieto, Walter I. Riberi, and María A. Zon. 2017. "Electrochemical Biosensors for the Determination of Toxic Substances Related to Food Safety Developed in South America: Mycotoxins and Herbicides" Chemosensors 5, no. 3: 23. https://doi.org/10.3390/chemosensors5030023
APA StyleFernández, H., Arévalo, F. J., Granero, A. M., Robledo, S. N., Nieto, C. H. D., Riberi, W. I., & Zon, M. A. (2017). Electrochemical Biosensors for the Determination of Toxic Substances Related to Food Safety Developed in South America: Mycotoxins and Herbicides. Chemosensors, 5(3), 23. https://doi.org/10.3390/chemosensors5030023