Recent Progress on the Evolution of Pourbaix Sensors: Molecular Logic Gates for Protons and Oxidants
Abstract
:1. Introduction
2. Background
3. Results
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- 6th International Conference on Molecular Sensors and Molecular Logic Gates. Available online: http://msmlg2018.dlut.edu.cn/meeting/index_en.asp?id=2636 (accessed on 5 September 2018).
- Wu, D.; Sedgwick, A.C.; Gunnlaugsson, T.; Akkaya, E.U.; Yoon, J.; James, T.D. Fluorescent chemosensors: The past, present and future. Chem. Soc. Rev. 2017, 46, 7105–7123. [Google Scholar] [CrossRef] [PubMed]
- Erbas-Cakmak, S.; Gunnlaugsson, T.; Kolemen, S.; James, T.D.; Sedgwick, A.C.; Yoon, J.; Akkaya, E.U. Molecular logic gates: The past, present and future. Chem. Soc. Rev. 2018, 47, 2228–2248. [Google Scholar] [CrossRef] [PubMed]
- Czarnik, A.W. Fluorescent Chemosensors for Ion and Molecule Recognition; American Chemical Company: Washington, DC, USA, 1993. [Google Scholar]
- Wolfbeis, O.S. Probes, sensors, and labels: Why is real progress slow? Angew. Chem. Int. Ed. 2013, 52, 9864–9865. [Google Scholar] [CrossRef] [PubMed]
- Desvergne, J.P.; Czarnik, A.W. Fluorescent Chemosensors of Ion and Molecule Recognition; Springer Science & Business Media: Dordrecht, The Netherlands, 1997. [Google Scholar]
- de Silva, A.P.; Gunaratne, H.Q.N.; McCoy, C.P. A molecular photoionic AND gated based on fluorescence signaling. Nature 1993, 364, 42–43. [Google Scholar] [CrossRef]
- de Silva, A.P. Molecular Logic-based Computation; The Royal Society of Chemistry: Cambridge, UK, 2013. [Google Scholar]
- Farrugia, T.J.; Magri, D.C. ‘Pourbaix sensors’: A new class of fluorescent pE–pH molecular AND logic gates based on photoinduced electron transfer. New J. Chem. 2013, 37, 148–151. [Google Scholar] [CrossRef]
- Magri, D.C. A fluorescent AND logic gate driven by electrons and protons. New J. Chem. 2009, 33, 457–461. [Google Scholar] [CrossRef]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions; Pergamon Press: Oxford, UK, 1966. [Google Scholar]
- Huang, X. Iron overload and its association with cancer risk in humans: Evidence for iron as a carcinogenic metal. Mutat. Res. 2003, 533, 153–171. [Google Scholar] [CrossRef] [PubMed]
- Aisen, P.; Leibman, A.; Zweier, J. Stoichiometric and site characteristics of the binding of iron to human transferrin. J. Biol. Chem. 1978, 253, 1930–1937. [Google Scholar] [PubMed]
- Erbas-Cakmak, S.; Pir Cakmak, F.; Demirel Topel, S.; Bilal Uya, T.; Akkaya, E.U. Selective photosensitization through an AND logic response: Optimization of the pH and glutathione response of activatable photosensitizers. Chem. Commun. 2015, 51, 12258–12261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, I.; Spence, M.T.Z. The Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies, 11th ed.; Life Technologies Corporation: Carlsbad, CA, USA, 2010. [Google Scholar]
- de Silva, A.P.; Moody, T.S.; Wright, G.D. Fluorescent PET (Photoinduced Electron Transfer) sensors as potent analytical tools. Analyst 2009, 134, 2385–2393. [Google Scholar] [CrossRef] [PubMed]
- Magri, D.C. Photoinduced electron transfer as a design concept for luminescent redox indicators. Analyst 2015, 140, 7487–7495. [Google Scholar] [CrossRef] [PubMed]
- Magri, D.C. Correction: Photoinduced electron transfer as a design concept for luminescent redox indicators. Analyst 2017, 142, 676. [Google Scholar] [CrossRef] [PubMed]
- Magri, D.C. ‘Pourbaix sensors’: Fluorescent molecular logic gates for pE and pH. Supramol. Chem. 2017, 20, 741–747. [Google Scholar] [CrossRef]
- Magri, D.C.; Johnson, A.D.; Spiteri, J.C. Fluorescent photoinduced electron transfer (PET) logic gates for acidity (pH) and redox potential (pE). J. Fluoresc. 2017, 27, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.J.; Li, C.Y.; Fu, X.F.; Yue, Y.F.; Yan, C.H. Redox-active fluorescent molecular switch to realize AND logic function. Chinese J. Inorg. Chem. 2008, 24, 1832–1836. [Google Scholar]
- Magri, D.C.; Camilleri Fava, M.; Mallia, C.J. A sodium-enabled ‘Pourbaix sensor’: A three-input AND logic gate as a ‘lab-on-a-molecule’ for monitoring Na+, pH and pE. Chem. Commun. 2014, 50, 1009–1011. [Google Scholar] [CrossRef] [PubMed]
- Magri, D.C.; Brown, G.J.; McClean, G.D.; de Silva, A.P. Communicating chemical congregation: A molecular AND logic gate with three chemical inputs as a “Lab-on-a-Molecule” prototype. J. Am. Chem. Soc. 2006, 128, 4950–4951. [Google Scholar] [CrossRef] [PubMed]
- Daly, B.; Ling, J.; de Silva, A.P. Information gathering and processing with fluorescent molecules. Front. Chem. Sci. Eng. 2014, 8, 240–251. [Google Scholar] [CrossRef] [Green Version]
- Spiteri, J.C.; Schembri, J.S.; Magri, D.C. A naphthalimide-based ‘Pourbaix sensor’: A redox and pH driven AND logic gate with photoinduced electron transfer and internal charge transfer mechanisms. New J. Chem. 2015, 39, 3349–3352. [Google Scholar] [CrossRef]
- Johnson, A.D.; Paterson, K.A.; Spiteri, J.C.; Denisov, S.A.; Jonusauskas, G.; Tron, A.; McClenaghan, N.D.; Magri, D.C. Water-soluble naphthalimide-based ‘Pourbaix sensors’: pH and redox-activated fluorescent AND logic gates based on photoinduced electron transfer. New J. Chem. 2016, 40, 9917–9922. [Google Scholar] [CrossRef]
- Gan, J.; Tian, H.; Wang, Z.; Chen, K.; Hill, J.; Lane, P.A.; Rahn, M.D.; Fox, A.M.; Bradley, D.D.C. Synthesis and luminescence properties of novel ferrocene–naphthalimides dyads. J. Organomet. Chem. 2002, 645, 168–175. [Google Scholar] [CrossRef]
- Spiteri, J.C.; Johnson, A.D.; Denisov, S.A.; Jonusauskas, G.; McClenaghan, N.D.; Magri, D.C. A fluorescent AND logic gate based on a ferrocene-naphthalimide-piperazine format responsive to acidity and oxidizability. Dyes Pigm. 2018, 157, 278–283. [Google Scholar] [CrossRef]
- de Silva, A.P.; Gunaratne, H.Q.N.; Habib-Jiwan, J.L.; McCoy, C.P.; Rice, T.E.; Soumillion, J.P. New fluorescent model compounds for the study of photoinduced electron transfer: The influence of a molecular field effect in the excited state. Angew. Chem. Ed. Int. 1995, 107, 1728–1731. [Google Scholar] [CrossRef]
- Panchenko, P.A.; Fedorova, O.A.; Fedorov, Y.V. Fluorescent and colorimetric chemosensors for cations based on 1, 8-naphthalimide derivatives: Design principles and optical signaling mechanisms. Russ. Chem. Rev. 2014, 83, 155–182. [Google Scholar] [CrossRef]
- Spiteri, J.C.; Denisov, S.A.; Jonusauskas, G.; Klejna, S.; Szaciłowski, K.; McClenaghan, N.D.; Magri, D.C. Molecular engineering of logic gate types by module rearrangement in ‘Pourbaix sensors’: The effect of excited-state electric fields. Org. Biomol. Chem. 2018, 16, 6159–6201. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Hu, J.; Baigude, H.; Zhang, H. A novel ferrocenyl–naphthalimide as a multichannel probe for the detection of Cu(II) and Hg(II) in aqueous media and living cells. Dalton Trans. 2018, 47, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Czarnik, A.W. Chemical communication in water using fluorescent chemosensors. Acc. Chem. Res. 1994, 27, 302–308. [Google Scholar] [CrossRef]
- Cardona, M.A.; Mallia, C.J.; Baisch, U.; Magri, D.C. Water-soluble amino(ethanesulfonate) and [bis(ethanesulfonate)] anthracenes as fluorescent photoinduced electron transfer (PET) pH indicators and Fe3+ chemosensors. RSC Adv. 2016, 6, 3783–3791. [Google Scholar] [CrossRef]
- de Silva, A.P.; Gunaratne, H.Q.N.; Mark Lynch, P.L.; Patty, A.J.; Spence, G.L. Luminescence and charge transfer. Part 3. The use of chromophores with ICT (Internal Charge Transfer) excited states in the construction of fluorescent PET (Photoinduced Electron Transfer) pH sensors and related absorption pH sensors with aminoalkyl side chains. J. Chem. Soc. Perkin Trans. 2 1993, 1611–1616. [Google Scholar] [CrossRef]
- Bricks, J.L.; Kovalchuk, A.; Trieflinger, C.; Nofz, M.; Bushcel, M.; Tolmachev, A.I.; Daub, J.; Rurack, K. On the development of sensor molecules that display FeIII-amplified fluorescence. J. Am. Chem. Soc. 2005, 127, 13522–13529. [Google Scholar] [CrossRef] [PubMed]
- de Silva, A.P.; Gunaratne, H.Q.N.; Gunnlaugsson, T.; Nieuwenhuizen, M.T. Fluorescent switches with high selectivity towards sodium ions: Correlation of ion-induced conformation switching with fluorescence function. Chem. Commun. 1996, 16, 1967–1968. [Google Scholar] [CrossRef]
- de Silva, A.P.; Gunaratne, H.Q.N. Fluorescent PET (Photoinduced Electron Transfer) sensors selective for submicromolar calcium with quantitatively predictable spectral and ion-binding properties. Chem. Commun. 1990, 2, 186–188. [Google Scholar] [CrossRef]
- Morgan, M.T.; Bagchi, P.; Fahrni, C.J. Designed to dissolve: Suppression of colloidal aggregation of Cu(I)-selective fluorescent probes in aqueous buffer and in-gel detection of a metallochaperone. J. Am. Chem. Soc. 2011, 133, 15906–15909. [Google Scholar] [CrossRef] [PubMed]
- Rurack, K.; Resch-Genger, U. Rigidization, preorientation and electronic decoupling—The ‘magic triangle’ for the design of highly efficient fluorescent sensors and switches. Chem. Soc. Rev. 2002, 31, 116–127. [Google Scholar] [CrossRef]
- Zammit, R.; Pappova, M.; Zammit, E.; Gabarretta, J.; Magri, D.C. 1,3,5-Triarylpyrazolines—pH-driven off-on-off molecular logic devices based on a “receptor1-fluorophore-spacer-receptor2” format with internal charge transfer (ICT) and photoinduced electron transfer (PET) mechanisms. Can. J. Chem. 2015, 93, 199–206. [Google Scholar] [CrossRef]
- Scerri, G.J.; Cini, M.; Schembri, J.S.; da Costa, P.F.; Johnson, A.D.; Magri, D.C. Redox-enabled, pH-disabled pyrazoline–ferrocene INHIBIT logic gates. ChemPhysChem 2017, 18, 1742–1745. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, M.; Kang, L.; Zhu, W. A Luminescence molecular switch via modulation of PET and ICT processes in DCM system. Sci. China Chem. 2017, 60, 607–613. [Google Scholar] [CrossRef]
- Liu, X.Y.; Han, X.; Zhang, L.P.; Tung, C.H.; Wu, L.Z. Molecular logic circuit based on a multi-state mononuclearplatinum(II) terpyridyl complex. Phys. Chem. Chem. Phys. 2010, 12, 13026–13033. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Guo, Z.; Zhu, W.; Marken, F.; James, T.D. A redox-activated fluorescence switch based on a ferrocene–fluorophore–boronic ester conjugate. Chem. Commun. 2015, 51, 1293–1296. [Google Scholar] [CrossRef] [PubMed]
- Magri, D.C.; Spiteri, J.C. Proof of principle of a three-input AND–INHIBIT–OR combinatorial logic gate array. Org. Biol. Chem. 2017, 15, 6706–6709. [Google Scholar] [CrossRef] [PubMed]
- de Silva, A.P.; James, M.R.; McKinney, B.O.F.; Pears, D.A.; Weir, S.M. Molecular computational elements encode large populations of small objects. Nat. Mater. 2006, 5, 787–790. [Google Scholar] [CrossRef] [PubMed]
- McKinney, B.O.F.; Daly, B.; Yao, C.; Schroeder, M.; de Silva, A.P. Consolidating molecular logic with new solid-bound YES and PASS 1 gates and their combinations. ChemPhysChem 2017, 18, 1760–1766. [Google Scholar] [CrossRef] [PubMed]
- Vella Refalo, M.; Spiteri, J.C.; Magri, D.C. Covalent attachment of a fluorescent ‘Pourbaix sensor’ onto a polymer bead for sensing in water. New J. Chem. 2018. [Google Scholar] [CrossRef]
- Brown, G.J.; de Silva, A.P.; James, M.R.; McKinney, B.O.F.; Pears, D.A.; Weir, S.M. Solid-bound, proton-driven, fluorescent ‘off–on–off’ switches based on PET (photoinduced electron transfer). Tetrahedron 2008, 64, 8301–8306. [Google Scholar] [CrossRef]
- Tandon, R.; Luxami, V.; Kaur, H.; Tandon, N.; Paul, K. 1,8-Naphthalimide: A potent DNA intercalator and target for cancer therapy. Chem. Rec. 2017, 17, 956–993. [Google Scholar] [CrossRef] [PubMed]
- Gellerman, G. Recent developments in the synthesis and applications of anticancer amonafide derivatives. A mini review. Lett. Drug Des. Discovery 2016, 13, 47–63. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, A. Carbon quantum dots: Synthesis, properties and applications. J. Mater. Chem. C 2014, 2, 6921–6939. [Google Scholar] [CrossRef]
- Gong, X.; Liu, Y.; Yang, Z.; Shuang, S.; Zhang, Z.; Dong, C. An ”on-off-on” fluorescent nanoprobe for recognition of chromium (VI) and ascorbic acid based on phosphorus/nitrogen dual-doped carbon quantum dot. Anal. Chim. Acta. 2017, 968, 85–96. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magri, D.C. Recent Progress on the Evolution of Pourbaix Sensors: Molecular Logic Gates for Protons and Oxidants. Chemosensors 2018, 6, 48. https://doi.org/10.3390/chemosensors6040048
Magri DC. Recent Progress on the Evolution of Pourbaix Sensors: Molecular Logic Gates for Protons and Oxidants. Chemosensors. 2018; 6(4):48. https://doi.org/10.3390/chemosensors6040048
Chicago/Turabian StyleMagri, David C. 2018. "Recent Progress on the Evolution of Pourbaix Sensors: Molecular Logic Gates for Protons and Oxidants" Chemosensors 6, no. 4: 48. https://doi.org/10.3390/chemosensors6040048
APA StyleMagri, D. C. (2018). Recent Progress on the Evolution of Pourbaix Sensors: Molecular Logic Gates for Protons and Oxidants. Chemosensors, 6(4), 48. https://doi.org/10.3390/chemosensors6040048