Heavy Metal/Toxins Detection Using Electronic Tongues
Abstract
:1. Introduction
2. Heavy Metals
2.1. E-Tongues Applied in Heavy Metals Detection
2.1.1. Computational Analysis Assisting E-Tongues in the Detection of Heavy Metals
2.1.2. Optical Multisensory System in the Detection of Heavy Metals
3. Toxins
4. Conclusions and Future Trends
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Geissen, V.; Mol, H.; Klumpp, E.; Umlauf, G.; Nadal, M.; van der Ploeg, M.; van de Zee, S.E.A.T.M.; Ritsema, C.J. Emerging pollutants in the environment: A challenge for water resource management. Int. Soil Water Conserv. Res. 2015, 3, 57–65. [Google Scholar] [CrossRef]
- Dulio, V.; van Bavel, B.; Brorström-Lundén, E.; Harmsen, J.; Hollender, J.; Schlabach, M.; Slobodnik, J.; Thomas, K.; Koschorreck, J. Emerging pollutants in the EU: 10 years of NORMAN in support of environmental policies and regulations. Environ. Sci. Eur. 2018, 30, 5. [Google Scholar] [CrossRef]
- Bonanno, G.; Lo Giudice, R. Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol. Indic. 2010, 10, 639–645. [Google Scholar] [CrossRef]
- Katagi, T. Bioconcentration, Bioaccumulation, and Metabolism of Pesticides in Aquatic Organisms; Springer: New York, NY, USA, 2010; pp. 1–132. [Google Scholar]
- Tamele, I.J.; Silva, M.; Vasconcelos, V. The incidence of marine toxins and the associated seafood poisoning episodes in the african countries of the indian ocean and the red sea. Toxins 2019, 11, 58. [Google Scholar] [CrossRef]
- Toko, K. Taste sensor with global selectivity. Mater. Sci. Eng. C 1996, 4, 69–82. [Google Scholar] [CrossRef]
- Di Natale, C.; Macagnano, A.; Davide, F.; D’Amico, A.; Legin, A.; Vlasov, Y.; Rudnitskaya, A.; Selezenev, B. Multicomponent analysis on polluted waters by means of an electronic tongue. Sens. Actuators B Chem. 1997, 44, 423–428. [Google Scholar] [CrossRef]
- Vlasov, Y.G.; Legin, A.V.; Rudnitskaya, A.M.; Di Natale, C.; D’Amico, A. Multisensor system with an array of chemical sensors and artificial neural networks (electronic tongue) for quantitative analysis of multicomponent aqueous solutions. Russ. J. Appl. Chem. 1996, 69, 848–853. [Google Scholar]
- Vlasov, Y.; Legin, A.; Rudnitskaya, A.; Di Natale, C.; D’Amico, A. Nonspecific sensor arrays (“electronic tongue”) for chemical analysis of liquids (IUPAC Technical Report). Pure Appl. Chem. 2005, 77, 1965–1983. [Google Scholar] [CrossRef]
- Krantz-Rülcker, C.; Stenberg, M.; Winquist, F.; Lundström, I. Electronic tongues for environmental monitoring based on sensor arrays and pattern recognition: a review. Anal. Chim. Acta 2001, 426, 217–226. [Google Scholar] [CrossRef]
- Riul., A., Jr.; Dantas, C.A.R.R.; Miyazaki, C.M.; Oliveira, O.N., Jr.; Riul, A.; Dantas, C.A.R.R.; Miyazaki, C.M.; Oliveira, O.N.; Riul, A., Jr.; Dantas, C.A.R.R.; et al. Recent advances in electronic tongues. Analyst 2010, 135, 2481–2495. [Google Scholar] [CrossRef]
- Wei, Z.; Yang, Y.; Wang, J.; Zhang, W.; Ren, Q. The measurement principles, working parameters and configurations of voltammetric electronic tongues and its applications for foodstuff analysis. J. Food Eng. 2018, 217, 75–92. [Google Scholar] [CrossRef]
- Vlasov, Y.; Legin, A.; Rudnitskaya, A. Electronic tongues and their analytical application. Anal. Bioanal. Chem. 2002, 373, 136–146. [Google Scholar] [CrossRef]
- Li, M.; Gou, H.; Al-Ogaidi, I.; Wu, N. Nanostructured Sensors for Detection of Heavy Metals: A Review. ACS Sustain. Chem. Eng. 2013, 1, 713–723. [Google Scholar] [CrossRef]
- Duruibe, O.J.; Ogwuegbu, C.M.O.; Egwurugwu, N.J. Heavy metal pollution and human biotoxic effects. Int. J. Phys. Sci. 2007, 2, 112–118. [Google Scholar]
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [Green Version]
- Cuajungco, M.P.; Lees, G.J. Zinc Metabolism in the Brain: Relevance to Human Neurodegenerative Disorders. Neurobiol. Dis. 1997, 4, 137–169. [Google Scholar] [CrossRef] [Green Version]
- Kozlowski, H.; Luczkowski, M.; Remelli, M.; Valensin, D. Copper, zinc and iron in neurodegenerative diseases (Alzheimer’s, Parkinson’s and prion diseases). Coord. Chem. Rev. 2012, 256, 2129–2141. [Google Scholar] [CrossRef]
- Lvova, L.; Caroleo, F.; Garau, A.; Lippolis, V.; Giorgi, L.; Fusi, V.; Zaccheroni, N.; Lombardo, M.; Prodi, L.; Di Natale, C.; et al. A Fluorescent Sensor Array Based on Heteroatomic Macrocyclic Fluorophores for the Detection of Polluting Species in Natural Water Samples. Front. Chem. 2018, 6, 258. [Google Scholar] [CrossRef]
- Cate, D.M.; Noblitt, S.D.; Volckens, J.; Henry, C.S. Multiplexed paper analytical device for quantification of metals using distance-based detection. Lab. Chip 2015, 15, 2808–2818. [Google Scholar] [CrossRef] [Green Version]
- Busa, L.S.A.; Mohammadi, S.; Maeki, M.; Ishida, A.; Tani, H.; Tokeshi, M.; Busa, L.S.A.; Mohammadi, S.; Maeki, M.; Ishida, A.; et al. Advances in Microfluidic Paper-Based Analytical Devices for Food and Water Analysis. Micromachines 2016, 7, 86. [Google Scholar] [CrossRef]
- Najafzadeh, F.; Ghasemi, F.; Hormozi-Nezhad, M.R. Anti-aggregation of gold nanoparticles for metal ion discrimination: A promising strategy to design colorimetric sensor arrays. Sens. Actuators B Chem. 2018, 270, 545–551. [Google Scholar] [CrossRef]
- Idros, N.; Chu, D. Triple-Indicator-Based Multidimensional Colorimetric Sensing Platform for Heavy Metal Ion Detections. ACS Sens. 2018, 3, 1756–1764. [Google Scholar] [CrossRef]
- Devadhasan, J.P.; Kim, J. A chemically functionalized paper-based microfluidic platform for multiplex heavy metal detection. Sens. Actuators B Chem. 2018, 273, 18–24. [Google Scholar] [CrossRef]
- Zhan, S.; Wu, Y.; Wang, L.; Zhan, X.; Zhou, P. A mini-review on functional nucleic acids-based heavy metal ion detection. Biosens. Bioelectron. 2016, 86, 353–368. [Google Scholar] [CrossRef]
- Quinn, C.W.; Cate, D.M.; Miller-Lionberg, D.D.; Reilly, T.; Volckens, J.; Henry, C.S. Solid-Phase Extraction Coupled to a Paper-Based Technique for Trace Copper Detection in Drinking Water. Environ. Sci. Technol. 2018, 52, 3567–3573. [Google Scholar] [CrossRef]
- Lee, S.; Park, S.-K.; Choi, E.; Piao, Y. Voltammetric determination of trace heavy metals using an electrochemically deposited graphene/bismuth nanocomposite film-modified glassy carbon electrode. J. Electroanal. Chem. 2016, 766, 120–127. [Google Scholar] [CrossRef]
- Pérez-Ràfols, C.; Serrano, N.; Díaz-Cruz, J.M.; Ariño, C.; Esteban, M. A screen-printed voltammetric electronic tongue for the analysis of complex mixtures of metal ions. Sens. Actuators B Chem. 2017, 250, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Gritsenko, D.; Feng, S.; Teh, Y.C.; Lu, X.; Xu, J. Detection of heavy metal by paper-based microfluidics. Biosens. Bioelectron. 2016, 83, 256–266. [Google Scholar] [CrossRef]
- Cui, L.; Wu, J.; Ju, H. Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens. Bioelectron. 2015, 63, 276–286. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Yu, H.; Tian, L.; Wang, Z. Portable and smart devices for monitoring heavy metal ions integrated with nanomaterials. TrAC Trends Anal. Chem. 2018, 98, 190–200. [Google Scholar] [CrossRef]
- Barton, J.; García, M.B.G.; Santos, D.H.; Fanjul-Bolado, P.; Ribotti, A.; McCaul, M.; Diamond, D.; Magni, P. Screen-printed electrodes for environmental monitoring of heavy metal ions: A review. Microchim. Acta 2016, 183, 503–517. [Google Scholar] [CrossRef]
- Puy-Llovera, J.; Pérez-Ràfols, C.; Serrano, N.; Díaz-Cruz, J.M.; Ariño, C.; Esteban, M. Selenocystine modified screen-printed electrode as an alternative sensor for the voltammetric determination of metal ions. Talanta 2017, 175, 501–506. [Google Scholar] [CrossRef] [Green Version]
- Serrano, N.; Alberich, A.; Díaz-Cruz, J.M.; Ariño, C.; Esteban, M. Coating methods, modifiers and applications of bismuth screen-printed electrodes. TrAC Trends Anal. Chem. 2013, 46, 15–29. [Google Scholar] [CrossRef]
- Trachioti, M.G.; Hrbac, J.; Prodromidis, M.I. Determination of Cd and Zn with “green” screen-printed electrodes modified with instantly prepared sparked tin nanoparticles. Sens. Actuators B Chem. 2018, 260, 1076–1083. [Google Scholar] [CrossRef]
- Yang, D.; Wang, L.; Chen, Z.; Megharaj, M.; Naidu, R. Voltammetric Determination of Lead (II) and Cadmium (II) Using a Bismuth Film Electrode Modified with Mesoporous Silica Nanoparticles. Electrochim. Acta 2014, 132, 223–229. [Google Scholar] [CrossRef]
- Jung, W.; Jang, A.; Bishop, P.L.; Ahn, C.H. A polymer lab chip sensor with microfabricated planar silver electrode for continuous and on-site heavy metal measurement. Sens. Actuators B Chem. 2011, 155, 145–153. [Google Scholar] [CrossRef]
- Waheed, A.; Mansha, M.; Ullah, N. Nanomaterials-based electrochemical detection of heavy metals in water: Current status, challenges and future direction. TrAC Trends Anal. Chem. 2018, 105, 37–51. [Google Scholar] [CrossRef]
- Mourzina, Y.G.; Schubert, J.; Zander, W.; Legin, A.; Vlasov, Y.G.; Lüth, H.; Schöning, M.J. Development of multisensor systems based on chalcogenide thin film chemical sensors for the simultaneous multicomponent analysis of metal ions in complex solutions. Electrochim. Acta 2001, 47, 251–258. [Google Scholar] [CrossRef]
- Legin, A.; Rudnitskaya, A.; Vlasov, Y.; Di Natale, C.; Davide, F.; D’Amico, A. Tasting of beverages using an electronic tongue. Sens. Actuators B Chem. 1997, 44, 291–296. [Google Scholar] [CrossRef]
- Men, H.; Zou, S.; Li, Y.; Wang, Y.; Ye, X.; Wang, P. A novel electronic tongue combined MLAPS with stripping voltammetry for environmental detection. Sens. Actuators B Chem. 2005, 110, 350–357. [Google Scholar] [CrossRef]
- Vlasov, Y.; Legin, A.; Rudnitskaya, A. Cross-sensitivity evaluation of chemical sensors for electronic tongue: Determination of heavy metal ions. Sens. Actuators B Chem. 1997, 44, 532–537. [Google Scholar] [CrossRef]
- Mortensen, J.; Legin, A.; Ipatov, A.; Rudnitskaya, A.; Vlasov, Y.; Hjuler, K. A flow injection system based on chalcogenide glass sensors for the determination of heavy metals. Anal. Chim. Acta 2000, 403, 273–277. [Google Scholar] [CrossRef]
- Legin, A.; Rudnitskaya, A.; Vlasov, Y.; Di Natale, C.; Mazzone, E.; D’Amico, A. Application of electronic tongue for qualitative and quantitative analysis of complex liquid media. Sens. Actuators B Chem. 2000, 65, 232–234. [Google Scholar] [CrossRef]
- Rudnitskaya, A.; Legin, A.; Seleznev, B.; Kirsanov, D.; Vlasov, Y. Detection of ultra-low activities of heavy metal ions by an array of potentiometric chemical sensors. Microchim. Acta 2008, 163, 71–80. [Google Scholar] [CrossRef]
- Spelthahn, H.; Kirsanov, D.; Legin, A.; Osterrath, T.; Schubert, J.; Zander, W.; Schöning, M.J. Development of a thin-film sensor array for analytical monitoring of heavy metals in aqueous solutions. Phys. Status Solidi Appl. Mater. Sci. 2012, 209, 885–891. [Google Scholar] [CrossRef]
- Riul, A.; Dos Santos, D.S.; Wohnrath, K.; Di Tommazo, R.; Carvalho, A.C.P.L.F.; Fonseca, F.J.; Oliveira, O.N.; Taylor, D.M.; Mattoso, L.H.C. Artificial taste sensor: Efficient combination of sensors made from Langmuir-Blodgett films of conducting polymers and a ruthenium complex and self-assembled films of an azobenzene-containing polymer. Langmuir 2002, 18, 239–245. [Google Scholar] [CrossRef]
- Riul, A., Jr.; Soto, A.G.; Mello, S.V.; Bone, S.; Taylor, D.M.; Mattoso, L.H.C. An electronic tongue using polypyrrole and polyaniline. Synth. Met. 2003, 132, 109–116. [Google Scholar] [CrossRef]
- Martins, G.F.F.; Pereira, A.A.A.; Stracçalano, B.A.A.; Antunes, P.A.A.; Pasquini, D.; Curvelo, A.A.S.A.S.; Ferreira, M.; Riul, A.; Constatino, C.J.L.J.L. Ultrathin films of lignins as a potential transducer in sensing applications involving heavy metal ions. Sens. Actuators B Chem. 2008, 129, 525–530. [Google Scholar] [CrossRef]
- Oliveira, J.E.; Grassi, V.; Scagion, V.P.; Mattoso, L.H.C.; Glenn, G.M.; Medeiros, E.S. Sensor Array for Water Analysis Based on Interdigitated Electrodes Modified With Fiber Films of Poly(Lactic Acid)/Multiwalled Carbon Nanotubes. IEEE Sens. J. 2013, 13, 759–766. [Google Scholar] [CrossRef]
- Teodoro, K.B.R.; Shimizu, F.M.; Scagion, V.P.; Correa, D.S. Ternary nanocomposites based on cellulose nanowhiskers, silver nanoparticles and electrospun nanofibers: Use in an electronic tongue for heavy metal detection. Sens. Actuators B Chem. 2019, 290, 387–395. [Google Scholar] [CrossRef]
- Kuhlman, G.M.; Keymeulen, D.; Buehler, M.G.; Kounaves, S.P. Detecting heavy metals in solution using electronic-tongue 3 REDOX water quality sensors. In Proceedings of the 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720), Big Sky, MT, USA, 6–13 March 2004. [Google Scholar]
- Wan, H.; Ha, D.; Zhang, W.; Zhao, H.; Wang, X.; Sun, Q.; Wang, P. Design of a novel hybrid sensor with microelectrode array and LAPS for heavy metal determination using multivariate nonlinear calibration. Sens. Actuators B Chem. 2014, 192, 755–761. [Google Scholar] [CrossRef]
- Wan, H.; Sun, Q.; Li, H.; Sun, F.; Hu, N.; Wang, P. Design of a miniaturized multisensor chip with nanoband electrode array and light addressable potentiometric sensor for ion sensing. Anal. Methods 2015, 7, 9190–9197. [Google Scholar] [CrossRef]
- Pérez-Ràfols, C.; Puy-Llovera, J.; Serrano, N.; Ariño, C.; Esteban, M.; Díaz-Cruz, J.M. A new multivariate standard addition strategy for stripping voltammetric electronic tongues: Application to the determination of Tl(I) and In(III) in samples with complex matrices. Talanta 2019, 192, 147–153. [Google Scholar] [CrossRef]
- Paulovich, F.V.; Moraes, M.L.; Maki, R.M.; Ferreira, M.; Oliveira, O.N., Jr.; de Oliveira, M.C.F. ; de Oliveira, M.C.F. Information visualization techniques for sensing and biosensing. Analyst 2011, 136, 1344–1350. [Google Scholar] [CrossRef]
- Paulovich, F.V.; De Oliveira, M.C.F.; Oliveira, O.N. A Future with Ubiquitous Sensing and Intelligent Systems. ACS Sens. 2018, 3, 1433–1438. [Google Scholar] [CrossRef] [Green Version]
- Daikuzono, C.M.; Shimizu, F.M.; Manzoli, A.; Riul, A.; Piazzetta, M.H.O.; Gobbi, A.L.; Correa, D.S.; Paulovich, F.V.; Oliveira, O.N. Information Visualization and Feature Selection Methods Applied to Detect Gliadin in Gluten-Containing Foodstuff with a Microfluidic Electronic Tongue. ACS Appl. Mater. Interfaces 2017, 9, 19646–19652. [Google Scholar] [CrossRef]
- Mimendia, A.; Gutiérrez, J.M.M.; Leija, L.; Hernández, P.R.R.; Favari, L.; Muñoz, R.; del Valle, M. A review of the use of the potentiometric electronic tongue in the monitoring of environmental systems. Environ. Model. Softw. 2010, 25, 1023–1030. [Google Scholar] [CrossRef]
- Wilson, D.; Gutiérrez, J.M.; Alegret, S.; del Valle, M. Simultaneous Determination of Zn(II), Cu(II), Cd(II) and Pb(II) in Soil Samples Employing an Array of Potentiometric Sensors and an Artificial Neural Network Model. Electroanalysis 2012, 24, 2249–2256. [Google Scholar] [CrossRef]
- Wilson, D.; Alegret, S.; del Valle, M. Simultaneous Titration of Ternary Mixtures of Pb(II), Cd(II) and Cu(II) with Potentiometric Electronic Tongue Detection. Electroanalysis 2015, 27, 336–342. [Google Scholar] [CrossRef] [Green Version]
- Florido, A.; Valderrama, C.; Nualart, S.; Velazco-Molina, L.; de Fuentes, O.A.; del Valle, M. Computer controlled-flow injection potentiometric system based on virtual instrumentation for the monitoring of metal-biosorption processes. Anal. Chim. Acta 2010, 668, 26–34. [Google Scholar] [CrossRef]
- Wilson, D.; del Valle, M.; Alegret, S.; Valderrama, C.; Florido, A. Potentiometric electronic tongue-flow injection analysis system for the monitoring of heavy metal biosorption processes. Talanta 2012, 93, 285–292. [Google Scholar] [CrossRef]
- Wilson, D.; Del Valle, M.; Alegret, S.; Valderrama, C.; Florido, A. Simultaneous and automated monitoring of the multimetal biosorption processes by potentiometric sensor array and artificial neural network. Talanta 2013, 114, 17–24. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, Y.; Lamb, D.; Chen, Z.; Lesniewski, P.J.; Megharaj, M.; Naidu, R. Simultaneously determining multi-metal ions using an ion selective electrode array system. Environ. Technol. Innov. 2016, 6, 165–176. [Google Scholar] [CrossRef]
- Karkra, R.; Kumar, P.; Bansod, B.K.S.; Krishna, C.R. Analysis of Heavy Metal Ions in Potable Water Using Soft Computing Technique. Procedia Comput. Sci. 2016, 93, 988–994. [Google Scholar] [CrossRef] [Green Version]
- Karkra, R.; Kumar, P.; Bansod, B.K.S.; Bagchi, S.; Sharma, P.; Krishna, C.R. Classification of heavy metal ions present in multi-frequency multi-electrode potable water data using evolutionary algorithm. Appl. Water Sci. 2017, 7, 3679–3689. [Google Scholar] [CrossRef]
- Turek, M.; Heiden, W.; Riesen, A.; Chhabda, T.A.; Schubert, J.; Zander, W.; Krüger, P.; Keusgen, M.; Schöning, M.J. Artificial intelligence/fuzzy logic method for analysis of combined signals from heavy metal chemical sensors. Electrochim. Acta 2009, 54, 6082–6088. [Google Scholar] [CrossRef]
- Men, H.; Wang, J.; Gao, J.; Wang, P. On board-ship seawater heavy metal automatic measurement system based on electronic tongue. Proc. World Congr. Intell. Control. Autom. 2006, 1, 5058–5061. [Google Scholar]
- Zou, S.; Men, H.; Li, Y.; Wang, Y.; Xia, S.; Wang, P. Improved design of electronic tongue integrated MEA with MLAPS for environmental monitoring. Proc. IEEE Sens. 2005, 2005, 1404–1407. [Google Scholar]
- Han, F.; Huang, X.; Teye, E. Novel prediction of heavy metal residues in fish using a low-cost optical electronic tongue system based on colorimetric sensors array. J. Food Process. Eng. 2019, 42, 1–9. [Google Scholar] [CrossRef]
- Feng, L.; Li, X.; Li, H.; Yang, W.; Chen, L.; Guan, Y. Enhancement of sensitivity of paper-based sensor array for the identification of heavy-metal ions. Anal. Chim. Acta 2013, 780, 74–80. [Google Scholar] [CrossRef]
- Mimendia, A.; Legin, A.; Merkoçi, A.; del Valle, M. Use of Sequential Injection Analysis to construct a potentiometric electronic tongue: Application to the multidetermination of heavy metals. Sens. Actuators B Chem. 2010, 146, 420–426. [Google Scholar] [CrossRef]
- Ariza-Avidad, M.; Cuellar, M.P.; Salinas-Castillo, A.; Pegalajar, M.C.; Vuković, J.; Capitán-Vallvey, L.F. Feasibility of the use of disposable optical tongue based on neural networks for heavy metal identification and determination. Anal. Chim. Acta 2013, 783, 56–64. [Google Scholar] [CrossRef]
- Picardo, M.; Filatova, D.; Nuñez, O.; Farré, M. Recent advances in the detection of natural toxins in freshwater environments. TrAC Trends Anal. Chem. 2019, 112, 75–86. [Google Scholar] [CrossRef]
- Cunha, I.; Biltes, R.; Sales, M.G.F.; Vasconcelos, V. Aptamer-Based Biosensors to Detect Aquatic Phycotoxins and Cyanotoxins. Sensors 2018, 18, 2367. [Google Scholar] [CrossRef]
- Visciano, P.; Schirone, M.; Berti, M.; Milandri, A.; Tofalo, R.; Suzzi, G. Marine Biotoxins: Occurrence, Toxicity, Regulatory Limits and Reference Methods. Front. Microbiol. 2016, 7, 1051. [Google Scholar] [CrossRef] [Green Version]
- Lvova, L.; Branchini, C.G.; Petropoulos, K.; Micheli, L.; Volpe, G.; Viaggiu, E.; Congestri, R.; Guzzella, L.; Pozzoni, F.; Di Natale, C.; et al. E-tongue for Ecological Monitoring Purposes: The Case of Microcystins Detection. Procedia Eng. 2014, 87, 1358–1361. [Google Scholar] [CrossRef]
- Lvova, L.; Guanais Gonçalves, C.; Petropoulos, K.; Micheli, L.; Volpe, G.; Kirsanov, D.; Legin, A.; Viaggiu, E.; Congestri, R.; Guzzella, L.; et al. Electronic tongue for microcystin screening in waters. Biosens. Bioelectron. 2016, 80, 154–160. [Google Scholar] [CrossRef]
- Rudnitskaya, A. Calibration Update and Drift Correction for Electronic Noses and Tongues. Front. Chem. 2018, 6, 433. [Google Scholar] [CrossRef]
- Panchuk, V.; Lvova, L.; Kirsanov, D.; Gonçalves, C.G.; Di Natale, C.; Paolesse, R.; Legin, A. Extending electronic tongue calibration lifetime through mathematical drift correction: Case study of microcystin toxicity analysis in waters. Sens. Actuators B Chem. 2016, 237, 962–968. [Google Scholar] [CrossRef]
- Ferreira, N.S.; Cruz, M.G.N.; Gomes, M.T.S.R.; Rudnitskaya, A. Potentiometric chemical sensors for the detection of paralytic shellfish toxins. Talanta 2018, 181, 380–384. [Google Scholar] [CrossRef]
- Cruz, M.G.N.; Ferreira, N.S.; Gomes, M.T.S.R.; Botelho, M.J.; Costa, S.T.; Vale, C.; Rudnitskaya, A. Determination of paralytic shellfish toxins using potentiometric electronic tongue. Sens. Actuators B Chem. 2018, 263, 550–556. [Google Scholar] [CrossRef]
- Food Safety. Available online: https://www.who.int/news-room/fact-sheets/detail/food-safety (accessed on 15 April 2019).
- Samanta, N.; RoyChaudhuri, C. Nanocrystalline Silicon Oxide Impedance Immunosensors for Sub-Femtomolar Mycotoxin Estimation in Corn Samples by Incremental Fuzzy Approach. IEEE Sens. J. 2016, 16, 1069–1078. [Google Scholar] [CrossRef]
- Ghosh, H.; Das, R.; Roychaudhuri, C. Optimized Nanocrystalline Silicon Oxide Impedance Immunosensor Electronic Tongue for Subfemtomolar Estimation of Multiple Food Toxins. IEEE Trans. Instrum. Meas. 2017, 66, 964–973. [Google Scholar] [CrossRef]
Heavy Metals | Sample | Sensing Units | Principle of Detection | Limit of Detection | Concentration Range | Computational Analysis | Ref. |
---|---|---|---|---|---|---|---|
Ni2+, Cu2+, Zn2+, Cd2+, Pb2+ | natural water | thirty-three chalcogenide glass and crystalline chemical sensors: based on Ag2S, As2S3, AgI, SbS3, GeS, GeS2, CdI2, PbI2, Cu, Ag, As, Se, Te, Sb, Ge, CdS, PbS, CuS, AgBr, AgCl, LaF3, Sbmetal. | POT | - | 10−7–10−3 mol L−1 | 3D simulation of sensor cross-sensitivity | [42] |
Pb2+, Cr6+, Cu2+, Cd2+ | waste gases from incineration in pilot plant | seven chalcogenide glass sensors: PbAgAsS, CdAgAsS, TlAgAsS, CuAgAs-SeTe, CuAgAsSe, AgBrAsS, AgAsSe | POT/FIA | 3 μmol L−1 Pb2+; 1 μmol L−1 Cr6+, 1 μmol L−1 Cu2+, 1 μmol L−1 Cd2+ | 2 × 10−7–2 × 10−4 mol L−1 | PCA; PLS; ANN | [43] |
Cu2+, Pb2+, Zn2+, Cd2+ | seawater | six chalcogenide glass sensors: Cu-Ag-As-Se; Cd-Ag-As-S; Pb-Ag-As-S; Ag-As-Se-Te; Cu-Ag-As-Se-Te; Ag-As-S. 5 PVC membrane based on: trioctylphosphine oxide; potassium tetra-phenyl borate + trioctylphosphine oxide; potassium tetra-phenyl borate; potassium tetra-phenyl borate + octylphenyl-N,N,-di-iso-butylcarbamoylmethylphosphine oxide; potassium tetraphenyl borate +tetrabutylmethylenediphosphine dioxide | POT | 0.2 nmol L−1 Cu2+, 0.4 nmol L−1 Pb2+, 30 nmol L−1 Zn2+, 0.6 nmol L−1 Cd2+ | 10−10–10−2 mol L−1 | PLS | [45] |
Cd2+, Cu2+, Pb2+ | 81 samples of combined portions of three stock solutions (one for each considered metal) | chalcogenide glass: CdI2–Ag2S–As2S3; Cu–Ag–As–Se) and PVC membrane: octylphenyl-N,N’,-di-isobutylcarbamoylmethylphosphine oxide | POT/FIA | 5.5 pmol L−1 Cd2+, 6.2 pmol L−1 Cu2+, 5.6 pmol L−1 Pb2+ | 0–3.2 ppm Cd2+; 0–95 ppb Cu2+; 0–3 ppm Pb2+ | ANN; FFT | [73] |
Ag+, Cu2+, Cd2+, Pb2+ | aqueous solutions | four chalcogenide glass: CdSAgIAs2S3, PbSAgIAs2S3, AgIAs2S3, CuAgAsSe; and 2 polymeric membranes: N,N’-diethyl-N,N’-di-p-tollyldipicolinic diamide, N,N’-diethyl-N,N’-diphenyl-2,2′-dipyridyl-6,6′-dicarboxilic diamide | POT | 10−8–10−7 mol L−1 | 10−9–10−3 mol L−1 | - | [46] |
Cu2+ | aqueous solutions | lignin LB films | CV; EIS | - | >10.0 mg L−1 | Curve fitting with an equivalent electric circuit | [49] |
Ba2+, Cd2+, Cu2+, Pb2+, Ni2+, Mn2+, Fe3+ | potable water | MWCNT and PLA nanofiber nanocomposites | EIS/FIA | - | µg L−1 | PCA | [50] |
Pb2+, Cd2+, Cu2+, Ni2+ | aqueous and lead solutions | ternary nanocomposites based on electrospun nylon nanofibers, cellulose nanowhiskers and silver nanoparticles | CV; EIS | <10 nmol L−1 | 10−8–10−3 mol L−1 | PCA; PLS; IDMAP; PC | [51] |
Pb2+, Cd2+, Zn2+ | Synthetic aqueous solutions of Pb(NO3)2, Cd(NO3)2, Zn(NO3)2 and Fe(NO3)3 | eight chalcogenide glasses: CuAgAsSeTe, CuAgAsSe, PbAgAsIS, CdAgAsIS, TlAgAsIS, AgIAsS, AgIAsSe, AgAsTeSe | POT | 1 × 10−7 mol L−1 Cu2+ and Pb2+; 4 × 10−7 mol L−1 Cd2+; 3 × 10−5 mol L−1 Tl2+ | 10−5–10−3 mol L−1 | ANN | [39] |
Zn2+, Pb2+, Cu2+, Mn2+ | water of the International Space Station | nine ceramic-based REDOX and conductivity sensors onto gold SPE | ASV/FIA | 10 μmol L−1 | 100 μmol L−1 | - | [52] |
Fe3+, Cr6+, Mn5+, As3+, Zn2+, Cd2+, Pb2+, Cu2+ | wastewater/seawater | chalcogenide glass Cr/Au silver-based mercury film electrode | MLAPS with SV | 60 μg L−1 Zn2+; 1 μg L−1 Cd2+; 2 μg L−1 Pb2+; 8 μg L−1 Cu2+; 60 μg L−1 Mn5+; 30 μg L−1 As3+; 280 μg L−1 Fe3+; 26 μg L−1 Cr6+ | μg L−1 | - | [41] |
Pb2+, Cu2+ | standard solutions of zinc, lead, and copper in acetate buffer | gold MEA in a LAPS | POT | ppb | - | SCM; MNLR | [53] |
Pb2+, Cu2+ | sulfuric acid and acetate buffer | gold NEA-LAPS | SWASV | ppb | 20 ppb–100 ppb | - | [54] |
Cd2+, Pb2+, Tl+, Bi3+ | spiked tap water | SPCE-CNF; ex-situ-SbSPCE-CNF; GSH-SPCE-CNF; Cys-SPCE-CNF | DPASV | μg L−1 | 0–200 μg L−1 | PLS | [28] |
Tl+, In3+ | tonic water samples spiked with Tl+ and In3+ | sensor array based on a SeCyst-SPCNFE and an ex-situ-BiSPCE | DPASV | μg L−1 | 19.9–174.9 µg L−1 Tl+; 20.2–174.9 µg L−1 In3+ | PLS | [55] |
Cu2+, Pb2+, Zn2+, Cd2+ | natural water waste streams (Gulf of Mexico) | eleven PVC membranes: N,N’,N’-tetrabutyl-3,6-dioxaoctanedi (thioamide), o-xylylenebis (N,Ndiisobutyldithiocarbamate), S,S’-methylenebis (N,Ndiisobutyldithiocarbamate), tert-butylcalix[4]arene-tetrakis (N,N-dimethylthioacetamide), tetrabutylthiuram disulfide, 3,7,12,17-tetramethyl-8,13-divinyl-2,18-porphinedipropionic acid disodium salt, tri-N-dodecylamine, tetrabenzyl pyrophosphate, [2,2′]-Furildioxime monohydrate | POT | - | 5.2 × 10−8–2 × 10−6 mol L−1 Cd2+ and Pb2+; 5.2 × 10−7–2 × 10−5 mol L−1 Cu2+ and Zn2+ | ANN | [59] |
Pb2+, Cd2+, Cu2+, Zn2+ | road soil | nine PVC membranes: 1,3-bis(N-benzoylthioureido)benzene, S,S’-methylenebis(N,N-diisobutyldithiocarbamate), tert-butylcalix[4]arene-tetrakis (N,N-dimethylthioaceta-mide), tetrabutylthiuram disulfide, 3,7,12,17-tetramethyl-8,13-divinyl-2,18-porphine-dipropionic acid (disodium salt), N,N’,N’-tetrabutyl-3,6-dioxaoctane di(thioamide), o-xylylene bis(N,N-diisobutyldithio-carbamate), tetrabenzyl pyrophosphate, [2,2′]-furildioxime monohydrate | POT | - | 10−6–10−2 mol L−1 | ANN | [60] |
Pb2+, Cd2+, Cu2+ | contaminated soil | eight PVC membranes: S,S’-methylenebis (N,N-diisobutyldithiocarbamate), tert-butyl-calix[4]arene-tetrakis (N,N-dimethylthioacetamide), 1,3-bis(N-benzoylthioureido)-benzene, N,N’,N’-tetrabutyl-3,6-dioxaoctane di(thioamide), o-xylylene bis (N,N-diisobutyl-dithiocarbamate), tetrabenzyl pyrophosphate, [2,2′]-furil-dioxime monohydrate, trioctylphosphineoxide | POT | 1 mg L−1 | - | ANN | [61] |
Cu2+ | grape stalk waste | Cu(II)-selective electrodes | POT/FIA | - | µg L−1 | Thomas’ model | [62] |
Cu2+, Ca2+ | effluent solution of grape stalk wastes | 5-sensor array with Cu2+ and Ca2+-selective electrodes; electrodes with generic response to heavy-metals | POT/FIA | µmol L−1 | - | ANN | [63] |
binary (Cu2+/Pb2+), (Cu2+/Zn2+) and ternary (Cu2+/Pb2+/Zn2+), (Cu2+/Zn2+/Cd2+) heavy metal mixtures, simultaneously to the release of Ca2+ ions in the effluent solution | vegetable wastes | crystalline membranes based on a composite of Ag2S-CuS in epoxy resin used in the preparation of the Cu2+-selective sensors; polymeric membrane with mobile carrier | POT/FIA | µmol L−1 | - | optimized Fourier-ANN coupling | [64] |
Ca2+, Cd2+, Cu2+, Pb2+ | multiple free ions dissolved in solutions | ISE array of six commercial electrodes: Ca2+; Cd2+; pHoenix Cl-ISE; Cu2+; Pb2+; orion double junction Ag/AgCl reference electrode | - | 0.01 μmol L−1 Cu2+; 0.1 μmol L−1 Pb2+ and Cd2+; 1 μmol L−1 Ca2+ | 0.1 μmol L−1– 10 mmol L−1 Cu2+; 1 μmol L−1–10 m mol L−1 Pb2+ and Cd2+; 10 μmol L−1–0.1 mol L−1 Ca2+ | PCA; ANN; genetic ICA; OED | [65] |
Cd2+, Co2+, Zn2+, Ni2+, Cu2+, Cr6+, Ar2+, Pb2+ | 24 water samples containing 8 different heavy metal ions | gold, platinum, glassy carbon and silver nanoparticle electrodes | EIS | - | - | PCA; GA | [66,67] |
Ag+, Pb2+, Cu2+ | single- and multi-component heavy metal solutions | miniaturized chalcogenide glass sensors | POT | - | 10−6 mol L−1– 10−3 mol L−1 | fuzzy logic | [68] |
Cd2+, Cu2+, Zn2+ | fountains, rivers and seawater (Italy) | macrocyclic fluorophore-modified PVC membranes | FLUO | 0.0013 mg L−1 Cd2+ | - | PCA; PLS | [19] |
Pb2+, Cd2+, Hg2+ | muscle tissue from crucian carp fish species and artificially digested | nine dye sensitive materials, containing either pyridylazo or porphyrin chromophores | COL | 0.05 mg kg−1 Pb2+; 0.02 mg kg−1 Cd2+ and Hg2+ | - | PCA; ELM; PLS | [71] |
Ni2+, Cr6+, Hg2+ | lake-water | C-µPAD immobilized with silane compounds terminating in amine (NH2), carboxyl (COOH), and thiol (SH) | COL | 0.24 ppm Ni2+; 0.18 ppm Cr6+; 0.19 ppm Hg2+ | - | - | [24] |
Hg2+, Cd2+, Pb2+, Ag+, Ni2+, Cu2+, Zn2+, Co2+ | sewage water | paper-based microfluidic device modified with pyridylazo | COL | 50 µmol L−1 | - | PCA; HCA | [72] |
Zn2+, Cu2+, Ni2+ | standard solutions in water | two polymeric membranes that change color by complexation with chromogenic reagents | OPT | 10−7 mol L−1 | - | ANN | [74] |
Toxins | Sample | Sensing Units | Principle of Detection | Limit of Detection | Concentration Range | Computational Analysis | Ref. |
---|---|---|---|---|---|---|---|
microcystin released by Microcystis aeruginosa strains | potable water | six PVC-plasticized sensors based on ion-exchangers and ligands of various structure, platinum (Pt) and stainless-steel bar electrodes | POT | - | 10−10–10−8 mol L−1 | PCA; PLS | [78] |
microcystin released by Microcystis aeruginosa strains | mineral and tap water, river and lake water (Italy) | PVC-based solvent polymeric membranes doped with Co(TPP)Cl and nonactin ionophores, and ion-exchangers TpClPBK and TDANO3; chalcogenide glass sensors (CG-Cu, CG-Pb, CG-Ag) and polycrystalline sensor based on LaF3 | POT | 0.014 μg L−1 | 0.078–8.25 μg L−1 | PLS-DA | [79] |
microcystin released by Microcystis aeruginosa strains | tap water | PVC-based solvent polymeric membranes doped with Co(TPP)Cl and nonactin (sensor C1) ionophores, and ion-exchangers TpClPBK and TDANO3; chalcogenide glass sensors (CG-Cu, CG-Pb) and polycrystalline sensor based on LaF3 | POT | - | - | LDA; LR; PLS-DA | [81] |
saxitoxin (STX), decarbamoyl saxitoxin (dcSTX), gonyautoxin GTX5 and C1&C2 | extracts of bivalves found in marine water (Portugal) | nine PVC membranes: Calix[6]arene, Calix[4]arene−25,26,27,28-tetrol, 1,4,7,10,13-pentaoxa−16-azacyclooctadecane, 1,4,10,13-tetraoxa−7,16-diazacyclooctadecane, Calix[6]arene-hexaacetic acid hexaethylester, Octadecyl 4-formylbenzoate, 4,6,11,12-tetrahydro−3-methyl−1-phenyl-1H-pyrazolo[3′,4′:4,5]pyrimido[1,2-b]quinazolin−5-ium tetrafluoroborate, Octadecyl 4-formylbenzoate, 4,6,11,12-tetrahydro−3-methyl−1-phenyl-1H-pyrazolo[3′,4′:4,5]pyrimido[1,2-b]quinazolin−5-ium tetrafluoroborate | POT | 0.25–0.9 μmol L−1 STX and dcSTX; 0.08–1.8 μmol L−1 GTX5 and C1&C2 | 0.1–6.8 µmol L−1 | - | [82] |
saxitoxin (STX), decarbamoyl saxitoxin (dcSTX), GTX5 and C1&2 released by Gymnodinium catenatum blooms | extracts of naturally contaminated mussels found in marine water in distinct years (Portugal) | plasticized PVC membranes containing ionophores in 6 distinct compositions: calix[6]arene, calix[4]arene-25,26,27,28-tetrol, 1,4,7,10,13-pentaoxa-16-azacyclooctadecane, 1,4,10,13-tetraoxa-7,16-diazacyclooctadecane, octadecyl 4-formylbenzoate and 4,6,11,12-tetrahydro-3-methyl-1-phenyl-1H-pyrazolo[3′,4′:4,5]pyrimido[1,2-b]quinazolin-5-ium tetrafluoroborate | POT | 0.19–1.5 μmol L−1 STX and dcSTX; 0.24–2.5 μmol L−1 GTX5; 0.63–7.2 μmol L−1 C1&2 | 0.19–1.5 μmol L−1 STX and dcSTX; 0.24–2.5 μmol L−1 GTX5; 0.63–7.2 μmol L−1 C1&2 | PCA; PLS; JY-PLS | [83] |
aflatoxin B1 (AFB1), aflatoxin B2 (AFB2) and ochratoxin A (OTA) | extract of non-infected corn seeds (India) | eighteen nanocrystalline silicon oxide immunosensors (six for each toxin) immobilized with specific monoclonal antibodies commercially available for each individual toxin (anti-AFB1, anti-AFB2 and anti-OTA) | EIS | 0.1 fg mL−1 | 0.1 fg mL−1–100 ng ml−1 | incremental fuzzy logic | [85] |
aflatoxin B1 (AFB1) and ochratoxin A (OTA) | extract of non-infected corn seeds | nine nanocrystalline silicon oxide immunosensors with different pore dimensions immobilized with anti-AFB1 | EIS | 0.1 fg mL−1 | 0.1 fg mL−1–1 pg mL−1 (AFB1); 0.1 fg mL−1–100 ng mL−1 (OTA) | PCA; PLS-DA | [86] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimizu, F.M.; Braunger, M.L.; Riul, A. Heavy Metal/Toxins Detection Using Electronic Tongues. Chemosensors 2019, 7, 36. https://doi.org/10.3390/chemosensors7030036
Shimizu FM, Braunger ML, Riul A. Heavy Metal/Toxins Detection Using Electronic Tongues. Chemosensors. 2019; 7(3):36. https://doi.org/10.3390/chemosensors7030036
Chicago/Turabian StyleShimizu, Flavio M., Maria L. Braunger, and Antonio Riul. 2019. "Heavy Metal/Toxins Detection Using Electronic Tongues" Chemosensors 7, no. 3: 36. https://doi.org/10.3390/chemosensors7030036
APA StyleShimizu, F. M., Braunger, M. L., & Riul, A. (2019). Heavy Metal/Toxins Detection Using Electronic Tongues. Chemosensors, 7(3), 36. https://doi.org/10.3390/chemosensors7030036