Microwave Enthrakometric Labs-On-A-Chip and On-Chip Enthrakometric Catalymetry: From Non-Conventional Chemotronics Towards Microwave-Assisted Chemosensors
Abstract
:1. What is an Enthrakometer?
2. Microwave Enthrakometry in its Relation to Polarography
3. From MW-Polarography to “Autowave” and “Self-Oscillating”
4. Microwave On-Chip Systems: From Physics to Chemometrics
5. From On-Chip Voltammetry to On-Chip Microwave Electrochemistry
6. Towards Combined Electron Spin Resonance and Polarographic Chip/Pt-Electrode Enthrakometer Measurements, including MW-Field Electrophoresis
7. On the Way to the Multilayer Microfluidic Polarographic Catalymetry
8. From On-Chip Microwave Chemical Measurements to Real-Time Microwave Analog Signal Processing/Analog Computations on the Enthrakometric Chip
9. From Oscillating On-Chip Computations to Microwave Chemotronics
10. Microwave-Accelerated Charge Drift in Materials Science and Elionics
11. From Microwave-Induced Charge Carrier Drift in Materials to Accelerator-Assisted Microwave Catalymetry and Accelerated Enthrakometric Catalysis
12. Microwave Acceleration of Chemical Reactions and Microwave Catalysis
13. Chemical Generation and Reception of Radio- and Microwaves and Microwave Spin Catalysis
14. Towards Microwave-Controlled Magnetic and Isotope Ion Spintronics
15. From Magnetic Isotope On-Chip-Spintronics to MW-Nanospin-Ionics
16. Enthrakometric Chips and LoCs as 3D Hybrid Integrated Circuits
17. Separation of Thermal and Non-Thermal Effects of the Microwave Field in MW-Induced Self-Organization Processes on the Surface of Enthrakometric Chips
18. Towards Multiparametric Chemosensing and Physico-Chemical Sensing on the Collard Enthrakometer Surface
- Electrochemical sensing and microwave-enhanced electroanalysis
- Studies of the adsorption phenomena at the microwave range
- Microwave catalymetry and analysis of the mechanisms of microwave catalysis
- Study of the intermetallic compound formation, electrosynthesis of organometalic compounds and intermediates
- Combination of the microwave sample preparation with microwave operando spectroscopy on the enthrakometric surface
- High-frequency thermal analysis on the enthrakometric chip
- Kinetic analysis of the microwave-induced processes on the surface of platinum enthrakometers
- Combination of electrochemical measurements on the polarographic enthrakometric electrodes with EPR methods in a microwave range
- Monitoring of generation of the reactive radical species in aqueous systems during electrochemical measurements
- Capillary electrophoresis, including electrophoresis in radio frequency fields.
- Operando spectroscopy in catalytic microreactors for the fine chemical synthesis
- Design of novel hybrid sensors combining bolometers and chemosensors
- Design of chemotrons and chemotronic devices for electrochemical engineering
- Local microwave regulation of the synthesis processes on the surface of a platinum chip-enthrakometer as an absorber of microwave power
- Thermal diffusion Pt-doping of superionic materials during their microwave-induced formation on a platinum surface of the enthrakometer
- Design of the devices providing the microwave field-assisted ion transport and ion exchange (e.g., during the glass hardening process)
- Application of enthrakometers for technological control in microwave accelerators, from klystron two-beam accelerators, microwave undulators and conventional microwave linear accelerators to auto-resonant aggregates and inverse Cherenkov accelerators
- Integration of several types of physical sensors for industrial processes on a single platform (multilayer and multi-meander sensors on the enthrakometer platform).
Acknowledgments
Conflicts of Interest
References
- Collard, J. The gold-leaf electroscope and the Enthrakometer. J. Inst. Electr. Eng. Part 3A 1946, 93, 209–211. [Google Scholar] [CrossRef]
- Collard, J. The Enthrakometer, an instrument for the measurement of power in rectangular wave guides. J. Inst. Electr. Eng. Part 3A 1946, 93, 1399–1402. [Google Scholar] [CrossRef]
- Collard, J. The measurement of voltage at centimetre wavelengths. J. Inst. Electr. Eng. Part 3A 1946, 93, 1393–1398. [Google Scholar] [CrossRef]
- Hinton, L.J.T.; Burry, L.F. An Enthrakometer for the Band 26.0-40 Gc/s’; Document CP 198; EMI Electronics Ltd.: London, UK, 1959. [Google Scholar]
- Fantom, A. Radio Frequency and Microwave Power Measurement. In IEE Electrical Measurement Series; IET—Peter Peregrinus Ltd.: London, UK, 1990; Volume 7, p. 278. [Google Scholar]
- Adamovich, E.D.; Gradov, O.V.; Nasirov, P.A. Liquid metal microfluidics with morphometric monitoring: From liquid metal antenna towards the radiofrequency polarography. Fundam. Prob. Radioengineering Device Constr. 2018, 18, 650–653. (In Russian) [Google Scholar]
- Lan, W.G.; Wong, M.K.; Sin, Y.M. Microwave digestion of fish tissue for selenium determination by differential pulse polarography. Talanta 1994, 41, 53–58. [Google Scholar] [CrossRef]
- Yi, H.; Zhang, T.M.; Cao, J.; Liang, Y.-Z. Microwave digestion polarography for determining seven trace elements in Salvia Miltiorrhiza root and compound Salvia Militiorrhiza root injection simultaneously. J. Cent. South Univ. Technol. 2007, 14, 514–519. [Google Scholar]
- Romero, R.A.; Tahán, J.E.; Moronta, A.J. Two alternative sample mineralization procedures to permit subsequent polarographic determination of total soluble aluminium in haemodialysis water. Anal. Chim. Acta 1992, 257, 147–154. [Google Scholar] [CrossRef]
- Jee, R.D. Fast sweep a.c. polarography. Fresenius’ Zeitschrift für Analytische Chemie 1973, 264, 143–146. [Google Scholar] [CrossRef]
- Barker, G.C.; McKeown, D. Modulation Polarography of DNA and Some Types of RNA. Bioelectrochem. Bioenerg. 1976, 3, 373–392. [Google Scholar] [CrossRef]
- Stas’, I.E.; Nedyakina, I.A.; Shipunov, B.P. Determination of potassium and sodium in non-aqueous solvents by stripping voltammetry in a radio-frequency electromagnetic field. J. Anal. Chem. 2003, 58, 959–964. [Google Scholar] [CrossRef]
- Devanathan, M.A.V.; Abeyagunawardene, S. Faradaic rectification studies of redox systems at radiofrequencies. J. Electroanal. Chem. Interfacial Electrochem. 1975, 62, 195–208. [Google Scholar] [CrossRef]
- McCord, T.G.; Smith, D.E. Second harmonic alternating current polarography. Considerations of the theory of quasi-reversible processes. Anal. Chem. 1968, 40, 289–304. [Google Scholar] [CrossRef]
- McCord, T.G.; Smith, D.E. Second harmonic a.c. polarography. Theoretical predictions for systems with first-order chemical reactions following the charge transfer step. Anal. Chem. 1969, 41, 1423–1441. [Google Scholar] [CrossRef]
- Hayes, J.W.; Ruić, I.; Smith, D.E.; Booman, G.L.; Delmastro, J.R. Fundamental harmonic a.c. polarography with irreversible dimerization following the charge transfer step: Theory and experimental results with the benzaldehyd system. J. Electroanal. Chem. 1974, 51, 269–285. [Google Scholar] [CrossRef]
- Ruzic, I.; Sobel, H.R.; Smith, D.E. On the theory for D.C. and fundamental harmonic a.c. polarography with the first-order consecutive ECE mechanism. J. Electroanal. Chem. Interfacial Electrochem. 1975, 65, 21–56. [Google Scholar] [CrossRef]
- Ogawa, N.; Watanabe, I.; Ikeda, S. Analytical application of second-harmonic a.c. polarography. Anal. Chim. Acta 1982, 141, 123–129. [Google Scholar] [CrossRef]
- Fleet, B.; Jee, R.D. An evaluation of integration procedures for improving the precision of a.c. polarography. J. Appl. Electrochem. 1971, 1, 269–274. [Google Scholar] [CrossRef]
- Zheleztsov, A.V. Resolving power in voltametry and polarography. Meas. Tech. 1989, 32, 1211–1214. [Google Scholar] [CrossRef]
- Bauer, K.-H. Calculation of voltammetric peaks by the transformed Heyrovsky-Ilkovič equation. Simulation of polarograms, smoothing of voltammetric peaks, separation of overlapping peaks. Fresenius’ J. Anal. Chem. 1990, 336, 665–671. [Google Scholar] [CrossRef]
- Zheleztsov, A.V. A Solution voltammetry method. Meas. Tech. 2002, 45, 445–451. [Google Scholar] [CrossRef]
- Kambara, T.; Watarai, S. The temperature dependence of the radio-frequency polarographic wave height. Bull. Chem. Soc. Jpn. 1966, 39, 521–524. [Google Scholar] [CrossRef]
- Tsuji, K. Studies on the suspended particles in air. I. Determination of copper, lead, cadmium and zinc in air by low temperature radio frequency oxidation apparatus and polarography. Eisei Shikenjo Hokoku 1971, 89, 21–24. (In Japanese) [Google Scholar] [PubMed]
- Šesták, J.; Mareš, J.J. From caloric to stathmograph and polarography. J. Therm. Anal. Calorim. 2007, 88, 763–768. [Google Scholar] [CrossRef]
- Tsai, Y.C.; Coles, B.A.; Compton, R.G.; Marken, F. Microwave activation of electrochemical processes: Enhanced electrode halogenation in organic solvent media. J. Amer. Chem. Soc. 2002, 124, 9784–9788. [Google Scholar] [CrossRef] [PubMed]
- Sur, U.K.; Marken, F.; Coles, B.A.; Compton, R.G.; Dupont, J. Microwave activation in ionic liquids induces high temperature-high speed electrochemical processes. Chem. Commun. 2004, 24, 2816–2817. [Google Scholar]
- Ghanem, M.A.; Compton, R.G.; Coles, B.A.; Canals, A.; Vuorema, A.; John, P.; Marken, F. Microwave activation of the electro-oxidation of glucose in alkaline media. Phys. Chem. Chem. Phys. 2005, 7, 3552–3559. [Google Scholar] [CrossRef]
- Bae, S.-E.; Gokcen, D.; Liu, P.; Mohammadi, P.; Brankovic, S.R. Size effects in monolayer catalysis-model study: Pt submonolayers on Au (111). Electrocatalysis 2012, 3, 203–210. [Google Scholar] [CrossRef]
- Lee, K.; Zhang, J.; Wang, H.; Wilkinson, D.P. Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis. J. Appl. Electrochem. 2006, 36, 507–522. [Google Scholar] [CrossRef]
- Konsolakis, M.; Yentekakis, I.V. Insight into the role of electropositive promoters in emission control catalysis: An in situ drifts study of no reduction by C3H6 over Na-promoted Pt/Al2O3 catalysts. Top. Catal. 2013, 56, 165–171. [Google Scholar] [CrossRef]
- Mirdamadi-Esfahani, M.; Mostafavi, M.; Keita, B.; Nadjo, L.; Kooyman, P.; Remita, H. Bimetallic Au-Pt nanoparticles synthesized by radiolysis: Application in electro-catalysis. Gold Bull. 2010, 43, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Singh, P.; Hegde, M.S. Electrocatalysis and redox behavior of Pt2+ ion in CeO2 and Ce0.85Ti0.15O2: XPS evidence of participation of lattice oxygen for high activity. J. Solid State Electrochem. 2011, 15, 2185–2197. [Google Scholar] [CrossRef]
- Gasteiger, H.A.; Marković, N.M.; Ross, P.N. Structural effects in electrocatalysis: Electrooxidation of carbon monoxide on Pt3Sn single-crystal alloy surfaces. Catal. Lett. 1996, 36, 1–8. [Google Scholar] [CrossRef]
- Yang, Z.; Miao, Y.; Xu, L.; Song, G.; Zhou, S. Adsorption of Bi(III) on Pt nanoparticles leading to the enhanced electrocatalysis of glucose oxidation. Colloid J. 2015, 77, 382–389. [Google Scholar] [CrossRef]
- Verheij, L.K.; Hugenschmidt, M.B.; Freitag, M.; Poelsema, B.; Comsa, G. Deuterium-Oxygen Reaction on Pt (111) Catalysis by Defects. In Fundamental Aspects of Heterogeneous Catalysis Studied by Particle Beams; Springer: Boston, MA, USA, 1991; pp. 445–450. [Google Scholar]
- Bernfeld, G.J.; Bird, A.J.; Edwards, R.I.; Köpf, H.; Köpf-Maier, P.; Raub, C.J.; te Riele, W.A.M.; Simon, F.; Westwood, W. Platinum-group metals, alloys and compounds in catalysis. In Gmelin Handbook of Inorganic Chemistry, 8th ed.; Part Pt. (System No. 68), Suppl. Vol. A 1; Springer: Berlin/Heidelberg, Germany, 1985; pp. 92–317. [Google Scholar]
- Kurkina, E.S.; Makeev, A.G. Bifurcation analysis of the mathematical model of the NO + CO/Pt(100) reaction. Comput. Math. Model. 1997, 8, 326–347. [Google Scholar] [CrossRef]
- Hartmann, N.; Imbihl, R.; Vogel, W. Experimental evidence for an oxidation/reduction mechanism in rate oscillations of catalytic CO oxidation on Pt/SiO2. Catal. Lett. 1994, 28, 373–381. [Google Scholar] [CrossRef]
- Eiswirth, R.M.; Krischer, K.; Ertl, G. Nonlinear dynamics in the CO-oxidation on Pt single crystal surfaces. Appl. Phys. A 1990, 51, 79–90. [Google Scholar] [CrossRef]
- Chabal, Y.J.; Christman, S.B.; Burrows, V.A.; Collins, N.A.; Sundaresan, S. Self-sustained kinetic oscillations in the catalytic co oxidation on platinum. In Kinetics of Interface Reactions. Springer Series in Surface Sciences; Springer: Berlin/Heidelberg, Germany, 1987; Volume 8, pp. 285–295. [Google Scholar]
- Kurkina, E.S.; Malykh, A.V.; Makeev, A.G. Natural waves and chaotic structures in a distributed four- component model of the NO + CO/Pt(100) reaction. Comput. Math. Model. 1999, 10, 363–378. [Google Scholar] [CrossRef]
- Kurkina, E.S.; Semendyaeva, N.L. Oscillatory dynamics of CO oxidation on platinum-group metal catalysts. Kinet. Catal. 2005, 46, 453–463. [Google Scholar] [CrossRef]
- Krylov, O.V.; Shub, B.R. Nonequilibrium Processes in Catalysis; CRC Press: Boca Raton, FL, USA; Ann Arbor, MI, USA; London, UK; Tokyo, Japan, 1993; p. 320. [Google Scholar]
- Privman, V.; Gorshkov, V.; Zavalov, O. Formation of nanoclusters and nanopillars in nonequilibrium surface growth for catalysis applications: Growth by diffusional transport of matter in solution synthesis. Heat Mass Transfer 2014, 50, 383–392. [Google Scholar] [CrossRef]
- Solovyev, A.L.; Dmitriev, V.M.; Agafonov, A.B. Nonequilibrium properties of HTSC under microwave irradiation. In Electronic Properties of High-Tc Superconductors. Springer Series in Solid-State Sciences; Springer: Berlin/Heidelberg, Germany, 1993; Volume 113, pp. 99–103. [Google Scholar]
- Dorozhkin, S.I. Self-Oscillations of a spontaneous electric field in a nonequilibrium two-dimensional electron system under microwave irradiation. JETP Lett. 2015, 102, 91–95. [Google Scholar] [CrossRef]
- Devyatov, I.A.; Krutitskii, P.A.; Semenov, A.V.; Goncharov, D.V. Nonequilibrium fluctuations of a thin metal diffuse film exposed to microwave radiation. JETP Lett. 2008, 88, 254–258. [Google Scholar] [CrossRef]
- Burla, M.; Cortés, L.R.; Li, M.; Wang, X.; Chrostowski, L.; Azaña, J. On-chip programmable ultra-wideband microwave photonic phase shifter and true time delay unit. Opt. Lett. 2014, 39, 6181–6184. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.; Hoekman, M.; Taddei, C.; Leinse, A.; Heideman, R.G.; Hulzinga, A.; Verpoorte, J.; Oldenbeuving, R.M.; van Dijk, P.W.; Boller, K.J.; et al. On-chip microwave photonic beamformer circuits operating with phase modulation and direct detection. Opt. Express 2014, 22, 17079–17091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, L.; Taddei, C.; Hoekman, M.; Leinse, A.; Heideman, R.; van Dijk, P.; Roeloffzen, C. Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links. Opt. Express 2013, 21, 25999–26013. [Google Scholar] [CrossRef] [Green Version]
- Marpaung, D.; Roeloffzen, C.; Leinse, A.; Hoekman, M. A photonic chip based frequency discriminator for a high performance microwave photonic link. Opt. Express 2010, 18, 27359–27370. [Google Scholar] [CrossRef]
- Pagani, M.; Marpaung, D.; Choi, D.Y.; Madden, S.J.; Luther-Davies, B.; Eggleton, B.J. Tunable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering. Opt. Express 2014, 22, 28810–28818. [Google Scholar] [CrossRef]
- Choudhary, A.; Aryanfar, I.; Shahnia, S.; Morrison, B.; Vu, K.; Madden, S.; Luther-Davies, B.; Marpaung, D.; Eggleton, B.J. Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters. Opt. Lett. 2016, 41, 436–439. [Google Scholar] [CrossRef]
- Byrnes, A.; Pant, R.; Li, E.; Choi, D.Y.; Poulton, C.G.; Fan, S.; Madden, S.; Luther-Davies, B.; Eggleton, B.J. Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering. Opt. Express 2012, 20, 18836–18845. [Google Scholar] [CrossRef]
- Li, J.; Lee, H.; Vahala, K.J. Microwave synthesizer using an on-chip Brillouin oscillator. Nat. Commun. 2013, 4, 2097. [Google Scholar] [CrossRef] [Green Version]
- Hammer, J.; Thomas, S.; Weber, P.; Hommelhoff, P. Microwave chip-based beam splitter for low-energy guided electrons. Phys. Rev. Lett. 2015, 114, 254801. [Google Scholar] [CrossRef]
- Hoffrogge, J.; Fröhlich, R.; Kasevich, M.A.; Hommelhoff, P. Microwave guiding of electrons on a chip. Phys. Rev. Lett. 2011, 106, 193001. [Google Scholar] [CrossRef] [PubMed]
- Obata, T.; Pioro-Ladrière, M.; Kubo, T.; Yoshida, K.; Tokura, Y.; Tarucha, S. Microwave band on-chip coil technique for single electron spin resonance in a quantum dot. Rev. Sci. Instrum. 2007, 78, 104704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchachenko, A.L.; Kozhushner, M.A.; Shub, B.R. Tunneling spectroscopy of single electron spin. Russ. Chem. Bull. 1998, 47, 1683–1685. [Google Scholar] [CrossRef]
- Kozhushner, M.A.; Shub, B.R.; Muryasov, R.R. On the experimental possibilities of observing single spins in STM. JETP Lett. 1998, 67, 508–512. [Google Scholar] [CrossRef]
- Grishin, M.V.; Gatin, A.K.; Dokhlikova, N.V.; Kirsankin, A.A.; Kharitonov, V.A.; Belysheva, T.V.; Trakhtenberg, L.I.; Shub, B.R. Single electronic traps in tin and zinc oxides. Nanotechnol. Russ. 2014, 9, 151–156. [Google Scholar] [CrossRef]
- Lacroute, C.; Reinhard, F.; Ramirez-Martinez, F.; Deutsch, C.; Schneider, T.; Reichel, J.; Rosenbusch, P. Preliminary results of the trapped atom clock on a chip. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 2010, 57, 106–110. [Google Scholar] [CrossRef]
- Winger, M.; Blasius, T.D.; Mayer, A.T.P.; Safavi-Naeini, A.H.; Meenehan, S.; Cohen, J.; Stobbe, S.; Painter, O. A chip-scale integrated cavity-electro-optomechanics platform. Opt. Express 2011, 19, 24905–24921. [Google Scholar] [CrossRef] [Green Version]
- Delbecq, M.R.; Schmitt, V.; Parmentier, F.D.; Roch, N.; Viennot, J.J.; Fève, G.; Huard, B.; Mora, C.; Cottet, A.; Kontos, T. Coupling a quantum dot, fermionic leads, and a microwave cavity on a chip. Phys. Rev. Lett. 2011, 107, 256804. [Google Scholar] [CrossRef]
- Vo, T.D.; Pelusi, M.D.; Schröder, J.; Luan, F.; Madden, S.J.; Choi, D.Y.; Bulla, D.A.; Luther-Davies, B.; Eggleton, B.J. Simultaneous multi-impairment monitoring of 640 Gb/s signals using photonic chip based RF spectrum analyzer. Opt. Express 2010, 18, 3938–3945. [Google Scholar] [CrossRef]
- Tasselli, G.; Alimenti, F.; Fonte, A.; Zito, D.; Roselli, L.; De Rossi, D.; Lanatà, A.; Neri, B.; Tognetti, A. Wearable microwave radiometers for remote fire detection: System-on-Chip (SoC) design and proof of the concept. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008, 981–984. [Google Scholar] [CrossRef]
- Burla, M.; Marpaung, D.; Zhuang, L.; Roeloffzen, C.; Khan, M.R.; Leinse, A.; Hoekman, M.; Heideman, R. On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing. Opt. Express 2011, 19, 21475–21484. [Google Scholar] [CrossRef] [PubMed]
- Linder, V.; Koster, S.; Franks, W.; Kraus, T.; Verpoorte, E.; Heer, F.; Hierlemann, A.; de Rooij, N.F. Microfluidics/CMOS orthogonal capabilities for cell biology. Biomed. Microdevices 2006, 8, 159–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Smela, E.; Nelson, N.M.; Abshire, P. Cell-lab on a chip: A CMOS-based microsystem for culturing and monitoring cells. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2004, 4, 2534–2537. [Google Scholar] [PubMed]
- Ciftlik, A.T.; Gijs, M.A. Parylene to silicon nitride bonding for post-integration of high pressure microfluidics to CMOS devices. Lab Chip 2012, 12, 396–400. [Google Scholar] [CrossRef]
- Huang, Y.; Mason, A.J. Lab-on-CMOS integration of microfluidics and electrochemical sensors. Lab Chip 2013, 13, 3929–3934. [Google Scholar] [CrossRef] [Green Version]
- Khorasani, M.; Behnam, M.; van den Berg, L.; Backhouse, C.J.; Elliott, D.G. High-voltage CMOS controller for microfluidics. IEEE Trans. Biomed. Circuits Syst. 2009, 3, 89–96. [Google Scholar] [CrossRef]
- Behnam, M.; Kaigala, G.V.; Khorasani, M.; Marshall, P.; Backhouse, C.J.; Elliott, D.G. An integrated CMOS high voltage supply for lab-on-a-chip systems. Lab Chip 2008, 8, 1524–1529. [Google Scholar] [CrossRef]
- Ensslin, K.; Gustavsson, S.; Gasser, U.; Küng, B.; Ihn, T. A quantum mechanics lab on a chip. Lab Chip 2010, 10, 2199–2202. [Google Scholar] [CrossRef]
- Chen, X.; Song, L.; Assadsangabi, B.; Fang, J.; Mohamed Ali, M.S.; Takahata, K. Wirelessly addressable heater array for centrifugal microfluidics and Escherichia coli sterilization. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 5505–5508. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, H.; Williams, S.E.; Zhou, A. Microfabricated three-electrode on-chip PDMS device with a vibration motor for stripping voltammetric detection of heavy metal ions. Talanta 2015, 132, 321–326. [Google Scholar] [CrossRef]
- Wang, J.; Polsky, R.; Tian, B.; Chatrathi, M.P. Voltammetry on microfluidic chip platforms. Anal. Chem. 2000, 72, 5285–5289. [Google Scholar] [CrossRef] [PubMed]
- El-Said, W.A.; Yea, C.H.; Kim, H.; Oh, B.K.; Choi, J.W. Cell-based chip for the detection of anticancer effect on HeLa cells using cyclic voltammetry. Biosens. Bioelectron 2009, 24, 1259–1265. [Google Scholar] [CrossRef] [PubMed]
- Jang, A.; Zou, Z.; Lee, K.K.; Ahn, C.H.; Bishop, P.L. Potentiometric and voltammetric polymer lab chip sensors for determination of nitrate, pH and Cd(II) in water. Talanta 2010, 83, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kokkinos, C.; Economou, A.; Raptis, I. Microfabricated disposable lab-on-a-chip sensors with integrated bismuth microelectrode arrays for voltammetric determination of trace metals. Anal. Chim. Acta 2012, 710, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Herzog, G.; Moujahid, W.; Twomey, K.; Lyons, C.; Ogurtsov, V.I. On-chip electrochemical microsystems for measurements of copper and conductivity in artificial seawater. Talanta 2013, 116, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Kokkinos, C.; Economou, A. Tin film sensor with on-chip three-electrode configuration for voltammetric determination of trace Tl(I) in strong acidic media. Talanta 2014, 125, 215–220. [Google Scholar] [CrossRef]
- Shao, H.; Yu, H.; Li, X.; Li, Y.; Jiang, J.; Wei, H.; Wang, G.; Dai, T.; Chen, Q.; Yang, J.; et al. On-chip microwave signal generation based on a silicon microring modulator. Opt. Lett. 2015, 40, 3360–3363. [Google Scholar] [CrossRef]
- Compton, R.G.; Coles, B.A.; Marken, F. Microwave activation of electrochemical processes at microelectrodes. Chem. Commun. 1988, 23, 2595–2596. [Google Scholar] [CrossRef]
- Tributsch, H.; Schlichthörl, G.; Elstner, L. Microwave (photo) electrochemistry: New insight into illuminated interfaces. Electrochim. Acta 1993, 38, 141–152. [Google Scholar] [CrossRef]
- Tributsch, H. Microwave (photo)electrochemistry. Mod. Aspects Electrochem. 1998, 33, 435–522. [Google Scholar]
- Rassaei, L.; Compton, R.G.; Marken, F. Microwave-enhanced electrochemistry in locally superheated aqueous−glycerol electrolyte media. J. Phys. Chem. C 2009, 113, 3046–3049. [Google Scholar] [CrossRef]
- Ghanem, M.A.; Marken, F.; Coles, B.; Compton, R.G. Microwave-enhanced electrochemical processes in micellar surfactant media. J. Solid State Electrochem. 2005, 9, 809–815. [Google Scholar] [CrossRef]
- Rassaei, L.; Nebel, M.; Rees, N.V.; Compton, R.G.; Schuhmann, W.; Marken, F. Discharge cavitation during microwave electrochemistry at micrometre-sized electrodes. Chem. Commun. 2010, 46, 812–814. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, J.A.; Khan, N.; Hou, H.; Wilmo, C.M.; Demidenko, E.; Dunn, J.F.; Swartz, H.M. Comparison of EPR oximetry and Eppendorf polarographic electrode assessments of rat brain PtO2. Physiol. Meas. 2004, 25, 1413–1423. [Google Scholar] [CrossRef]
- Piette, L.H.; Ludwig, P.; Adams, R.N. Electron paramagnetic resonance and electrochemistry studies of electrochemically generated radical ions in aqueous solution. Anal. Chem. 1962, 34, 916–921. [Google Scholar] [CrossRef]
- Fernando, K.R.; McQuillan, A.J.; Peake, B.M.; Wells, J. Cell for combined electrochemistry and ESR measurements at variable temperatures in a Varian TE 102 microwave cavity. J. Magn. Res. 1986, 68, 551–555. [Google Scholar]
- Ghanem, M.A.; Thompson, M.; Compton, R.G.; Coles, B.A.; Harvey, S.; Parker, K.H.; O’Hare, D.; Marken, F. Microwave induced jet boiling investigated via voltammetry at ring-disk microelectrodes. J. Phys. Chem. B 2006, 110, 17589–17594. [Google Scholar] [CrossRef]
- Ghanem, M.A.; Compton, R.G.; Coles, B.A.; Canals, A.; Marken, F. Microwave enhanced electroanalysis of formulations: Processes in micellar media at glassy carbon and at platinum electrodes. Analyst 2005, 130, 1425–1431. [Google Scholar] [CrossRef]
- Rassaei, L.; French, R.W.; Compton, R.G.; Marken, F. Microwave-enhanced electroanalytical processes: Generator-collector voltammetry at paired gold electrode junctions. Analyst 2009, 134, 887–892. [Google Scholar] [CrossRef]
- Pan, J.; Chen, Z.; Yao, M.; Li, X.; Li, Y.; Sun, D.; Yu, Y. A two-electrode system-based electrochemiluminescence detection for microfluidic capillary electrophoresis and its application in pharmaceutical analysis. Luminescence 2014, 29, 427–432. [Google Scholar] [CrossRef]
- Förster, S.; Matysik, F.M.; Ghanem, M.A.; Marken, F. Capillary electrophoresis with microwave-enhanced electrochemical detection. Analyst 2006, 131, 1210–1212. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekhar, R.; Mapps, D.J. Properties of CoCrTa perpendicular films prepared by sputtering on platinum underlayer with different bias conditions. J. Magn. Magn. Mater. 1996, 155, 206–208. [Google Scholar] [CrossRef]
- Attard, G.A.; Price, R. Electrochemical investigation of a structure sensitive growth mode: Palladium deposition on Pt(100)-hex-R0.7° and Pt(100)-(1×1). Surf. Sci. 1995, 335, 63–74. [Google Scholar] [CrossRef]
- Danilov, A.I.; Molodkina, E.B.; Rudnev, A.V.; Polukarov, Y.M.; Feliu, J.M. Kinetics of copper deposition on Pt(111) and Au(111) electrodes in solutions of different acidities. Electrochim. Acta 2005, 50, 5032–5043. [Google Scholar] [CrossRef]
- Ho, W.H.; Liu, H.C.; Chen, H.C.; Yen, S.K. Characterization of electrolytic tin dioxide deposition on Pt for lithium ion battery applications. Surf. Coat. Technol. 2007, 201, 7100–7106. [Google Scholar] [CrossRef]
- Bhaskaran, M.; Sriram, S.; Holland, A.S. RF magnetron sputtered perovskite-oriented PSZT thin films on gold for piezoelectric and ferroelectric transducers. Electron. Lett. 2006, 42, 244–245. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q.; Yang, S.; Gao, Q.; Lei, L.; Yu, Y.; Shao, J.; Liu, Y. Fast and controllable crystallization of perovskite films by microwave irradiation process. ACS Appl. Mater. Interfaces 2016, 8, 7854–7861. [Google Scholar] [CrossRef]
- Ramasamy, P.; Lim, D.H.; Kim, B.; Lee, S.H.; Lee, M.S.; Lee, J.S. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 2016, 52, 2067–2070. [Google Scholar] [CrossRef]
- Deng, H.; Yang, X.; Dong, D.; Li, B.; Yang, D.; Yuan, S.; Qiao, K.; Cheng, Y.B.; Tang, J.; Song, H. Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability. Nano Lett. 2015, 15, 7963–7969. [Google Scholar] [CrossRef]
- Lee, Y.; Kwon, J.; Hwang, E.; Ra, C.H.; Yoo, W.J.; Ahn, J.H.; Park, J.H.; Cho, J.H. High-performance perovskite-graphene hybrid photodetector. Adv. Mater. 2015, 27, 41–46. [Google Scholar] [CrossRef]
- Su, L.; Zhao, Z.X.; Li, H.Y.; Yuan, J.; Wang, Z.L.; Cao, G.Z.; Zhu, G. High-performance organolead halide perovskite-based self-powered triboelectric photodetector. ACS Nano 2015, 9, 11310–11316. [Google Scholar] [CrossRef] [PubMed]
- Lantto, V.; Saukko, S.; Toan, N.N.; Reyes, L.F.; Granqvist, C.G. Gas sensing with perovskite-like oxides having ABO3 and BO3 structures. J. Electroceram. 2004, 13, 721–726. [Google Scholar] [CrossRef]
- Fergus, J.W. Perovskite oxides for semiconductor-based gas sensors. Sens. Actuators B 2007, 123, 1169–1179. [Google Scholar] [CrossRef]
- Chaudhari, G.N.; Jagtap, S.V.; Gedam, N.N.; Pawar, M.J.; Sangawar, V.S. Sol-gel synthesized semiconducting LaCo0.8Fe0.2O3-based powder for thick film NH3 gas sensor. Talanta 2009, 78, 1136–1140. [Google Scholar] [CrossRef] [PubMed]
- Kersen, U. Microstructural and surface characterization of solid state sensor based on LaFeO3-sigma oxide for detection of NO2. Analyst 2001, 126, 1377–1381. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Z.; Zhong, H.; Li, X.M.; Jia, F.F.; Shi, Y.X.; Zhang, W.G.; Cheng, Z.P.; Zhang, L.L.; Wang, J.K. Perovskite LaTiO3-Ag0.2 nanomaterials for nonenzymatic glucose sensor with high performance. Biosens. Bioelectron. 2013, 48, 56–60. [Google Scholar] [CrossRef]
- Ye, D.; Xu, Y.; Luo, L.; Ding, Y.; Wang, Y.; Liu, X.; Xing, L.; Peng, J. A novel nonenzymatic hydrogen peroxide sensor based on LaNi0.5Ti0.5O3/CoFe2O4 modified electrode. Colloids Surf. B 2012, 89, 10–14. [Google Scholar] [CrossRef]
- Hensinger, WK. Quantum information: Microwave ion-trap quantum computing. Nature 2011, 476, 155–156. [Google Scholar] [CrossRef]
- Ospelkaus, C.; Warring, U.; Colombe, Y.; Brown, K.R.; Amini, J.M.; Leibfried, D.; Wineland, D.J. Microwave quantum logic gates for trapped ions. Nature 2011, 476, 181–184. [Google Scholar] [CrossRef] [Green Version]
- Timoney, N.; Baumgart, I.; Johanning, M.; Varón, A.F.; Plenio, M.B.; Retzker, A.; Wunderlich, C. Quantum gates and memory using microwave-dressed states. Nature 2011, 476, 185–188. [Google Scholar] [CrossRef] [Green Version]
- Webster, S.C.; Weidt, S.; Lake, K.; McLoughlin, J.J.; Hensinger, W.K. Simple manipulation of a microwave dressed-state ion qubit. Phys. Rev. Lett. 2013, 111, 140501. [Google Scholar] [CrossRef] [PubMed]
- Hoppensteadt, F. Spin torque oscillator neuroanalog of von Neumann’s microwave computer. Biosystems 2015, 136, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Caloz, C.; Gupta, S.; Zhang, Q.; Nikfal, B. Analog signal processing: A possible alternative or complement to dominantly digital radio schemes. IEEE Microw. Mag. 2013, 14, 87–103. [Google Scholar] [CrossRef]
- Nikfal, B.; Badiere, D.; Repeta, M.; Deforge, B.; Gupta, S.; Caloz, C. Distortion-less real-time spectrum sniffing based on a stepped group-delay phaser. IEEE Microw. Wirel. Compon. Lett. 2012, 22, 601–603. [Google Scholar] [CrossRef]
- Abielmona, S.; Gupta, S.; Caloz, C. Compressive receiver using a CRLH-based dispersive delay line for analog signal processing. IEEE Trans. Microw. Theory Tech. 2009, 57, 2617–2626. [Google Scholar] [CrossRef]
- Nikfal, B.; Gupta, S.; Caloz, C. Increased group-delay slope loop system for enhanced-resolution analog signal processing. IEEE Trans. Microw. Theory Tech. 2011, 59, 1622–1628. [Google Scholar] [CrossRef]
- Gupta, S.; Abielmona, S.; Caloz, C. Microwave analog real-time spectrum analyzer (RTSA) based on the spectral–spatial decomposition property of leaky-wave structures. IEEE Trans. Microw. Theory Tech. 2009, 57, 2989–2999. [Google Scholar] [CrossRef]
- Rambidi, N.G.; Shamayaev, K.E.; Peshkov, G.Y. Information processing using light sensitive chemical waves. Phys. Lett. A 2002, 298, 375–382. [Google Scholar] [CrossRef]
- Vishnevskii, A.L.; Savchenko, V.I. Self-oscillations in the rate of CO oxidation on Pt (110). React. Kinet. Catal. Lett. 1989, 38, 167–173. [Google Scholar] [CrossRef]
- Elokhin, V.I.; Matveev, A.V.; Gorodetskii, V.V. Self-oscillations and chemical waves in CO oxidation on Pt and Pd: Kinetic Monte Carlo models. Kinet. Catal. 2009, 50, 40–47. [Google Scholar] [CrossRef]
- Imbihl, R.; Cox, M.P.; Ertl, G. Kinetic oscillations in the catalytic CO oxidation on Pt (100): Experiments. J. Chem. Phys. 1986, 84, 3519–3534. [Google Scholar] [CrossRef]
- Trayer, V.V.; Elizarov, A.B. Electrochemical Integrating and Analog Storage Elements; Energiya Publ.: Moscow, USSR, 1971; p. 96. (In Russian) [Google Scholar]
- Borovkov, V.S.; Grafov, B.M.; Novikov, A.A.; Novitsky, M.A.; Sokolov, L.A. Electrochemical Converters of the Primary Information; Mashinostroenie Publ.: Moscow, USSR, 1969; p. 196. (In Russian) [Google Scholar]
- Voronkov, G.Y.; Gurevich, M.A.; Fedorin, V.A. Chemotronic Devices; VNIIEM Publ.: Moscow, USSR, 1965; p. 166. (In Russian) [Google Scholar]
- Yushina, L.D. Solid State Chemotronics; IHTE UB RAS Publ.: Yekaterinburg, Russia, 2003; p. 204. (In Russian) [Google Scholar]
- Strizhevsky, I.V.; Dmitriev, V.I.; Finlelshtein, E.B. Chemotronics; Nauka Publ.: Moscow, USSR, 1974; p. 191. (In Russian) [Google Scholar]
- Khazaryan, E.V.; Runich, I.A. Chemotronics; Znanie Publ.: Moscow, USSR, 1978; p. 64. (In Russian) [Google Scholar]
- Lapides, L.M. Chemotronics; Voenizdat Publ.: Moscow, USSR, 1968; p. 128. (In Russian) [Google Scholar]
- Frumkin, A.; Obrutschewa, A. Adsorption of electrolytes on platinum black. Z. Anorg. Allg. Chem. 1926, 158, 84. [Google Scholar] [CrossRef]
- Frumkin, A.; Donde, A. Adsoption of Electrolytes on Platinum Black and Carbon. Ber. Dt. Chem. Ges. A 1927, 2, 1816. [Google Scholar] [CrossRef]
- Frumkin, A.N.; Shlygin, A.I. About the Platinum Electrode. Dok. Akad. Nauk SSSR 1934, 2, 173–179. (In Russian) [Google Scholar]
- Frumkin, A.; Petry, O.; Marvet, R. The dependence of the double layer charge on the platinum hydrogen electrode surface upon the potential. J. Electroanal. Chem. 1966, 12, 504. [Google Scholar] [CrossRef]
- Frumkin, A.N.; Nekrasov, L.N. On the ring-disk electrode. Dok. Akad. Nauk SSSR 1959, 126, 115. [Google Scholar]
- Ivanov-Shits, A.K.; Demyanets, L.N. Solid State Ionics Materials. Priroda 2003, 12, 35–43. (In Russian) [Google Scholar]
- Zhao, Y.; Daemen, L.L. Superionic conductivity in lithium-rich anti-perovskites. J. Am. Chem. Soc. 2012, 134, 15042–15047. [Google Scholar] [CrossRef]
- Deng, Z.; Radhakrishnan, B.; Ong, S.P. Rational composition optimization of the lithium-rich Li3OCl1–xBrx anti-perovskite superionic conductors. Chem. Mater. 2015, 27, 3749–3755. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, C.; Baiyee, Z.M.; Chen, X.; Niu, C.; Ciucci, F. Defect chemistry and lithium transport in Li3OCl anti-perovskite superionic conductors. Phys. Chem. Chem. Phys. 2015, 17, 32547–32555. [Google Scholar] [CrossRef]
- Sinha, M.M.; Wakamura, K. Study of phonons and normal mode analysis of perovskite-type superionic conductors. Solid State Ionics 2000, 136, 1345–1350. [Google Scholar] [CrossRef]
- Bannikov, V.V.; Ivanovskii, A.L. Elastic and electronic properties of antiperovskite-type Pd- and Pt-based ternary carbides from first-principles calculations. J. Alloys Compd. 2013, 577, 615–621. [Google Scholar] [CrossRef]
- Ham, D.J.; Lee, J.S. Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energies 2009, 2, 873–899. [Google Scholar] [CrossRef]
- Vallance, S. Microwave Synthesis and Mechanistic Examination of the Transition Metal Carbides. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2008. [Google Scholar]
- Essaki, K.; Rees, E.J.; Buestein, G.T. Synthesis of nanoparticulate tungsten carbide under microwave irradiation. J. Amer. Ceram. Soc. 2010, 93, 692–695. [Google Scholar] [CrossRef]
- Ivanovskii, A.L. Platinum-based and platinum-doped layered superconducting materials: Synthesis, properties and simulation. Experimental and theoretical results for newest group of high-temperature superconductors. Platin. Metals Rev. 2013, 57, 87–100. [Google Scholar] [CrossRef]
- Lidorenko, N.S.; Fish, M.L. Application of chemotronic transducers in measurement techniques. Meas. Tech. 1967, 10, 772–777. [Google Scholar] [CrossRef]
- Evangelakis, G.A.; Miliotis, D. Ionic and superionic conductivities of SrF2 crystals in a wide frequency range. Phys. Rev. B 1987, 36, 4958–4961. [Google Scholar] [CrossRef]
- Grachev, G.N.; Medvedev, A.E. Acceleration of the laser plasma ions in a microwave resonator. In Proceedings of the XXXVII International Conference on the Physics of Plasma and Controlled Thermonuclear Fusion, Zvenigorod, Russia, 12 February 2010. [Google Scholar]
- Bratman, V.; Denisov, G.; Ginzburg, N.; Petelin, M.L. FEL’s with Bragg reflection resonators: Cyclotron autoresonance masers versus ubitrons. IEEE J. Quantum Electron. 1983, 19, 282–296. [Google Scholar] [CrossRef]
- Skaggs, L.S.; Nygard, J.C.; Lanzl, L.H. Design and initial operation of a 50-Mev microwave linear accelerator for electron beam therapy. Radiology 1955, 64, 117. [Google Scholar] [CrossRef]
- Halpern, J.; Everhart, E.; Rapuano, R.A.; Slater, J.C. Preliminary studies on the design of a microwave linear accelerator. Phys. Rev. 1946, 69, 688. [Google Scholar]
- Houck, T.; Deadrick, F.; Giordano, G.; Henestroza, E.; Lidia, S.; Reginato, L.; Vanecek, D.; Westenskov, G.A.; Yu, S. Prototype microwave source for a relativistic klystron two-beam accelerator. IEEE Trans. Plasma Sci. 1996, 24, 938–946. [Google Scholar] [CrossRef]
- Shintake, T.; Huke, K.; Tanaka, J.; Sato, I.; Kumabe, I. Development of microwave undulator. Jpn. J. Appl. Phys. 1983, 22, 844. [Google Scholar] [CrossRef]
- Barberis, L.; Icardi, M.; Portesine, M.; Tenconi, S.; Di Marco, P.G.; Martelli, A.; Fouchi, P.G. On the use of a microwave linear accelerator for control of carrier lifetime in electronic silicon devices. Radiat. Phys. Chem. 1985, 26, 165–172. [Google Scholar] [CrossRef]
- Shpitalnik, R.; Cohen, C.; Dothan, F.; Friedland, L. Autoresonance microwave accelerator. J. Appl. Phys. 1991, 70, 1101–1106. [Google Scholar] [CrossRef]
- Shpitalnik, R. Stability analysis, finite current effects, and experimental results in the autoresonance microwave accelerator. J. Appl. Phys. 1992, 71, 1583–1587. [Google Scholar] [CrossRef]
- Hirshfield, J.L.; LaPointe, M.A.; Ganguly, A.K.; Yoder, R.B.; Wang, C. Multimegawatt cyclotron autoresonance accelerator. Phys. Plasmas 1996, 3, 2163–2168. [Google Scholar] [CrossRef]
- Goren, Y.; Sessler, A.M. Phase control of the microwave radiation in free electron laser two-beam accelerator. In Proceedings of the Orsay Workshop on New Developments in Particle Acceleration Techniques; CERN: Orsay, France, 1987; p. 20. [Google Scholar]
- Zhang, T.B.; Marshall, T.C. Microwave inverse free-electron-laser accelerator using a small “phase window”. Phys. Rev. E 1994, 50, 1491–1495. [Google Scholar] [CrossRef]
- Zhang, T.B.; Marshall, T.C.; LaPointe, M.A.; Hirshfield, J.L.; Ron, A. Microwave inverse Cerenkov accelerator. Phys. Rev. E 1996, 54, 1918. [Google Scholar] [CrossRef]
- Kim, S.W.; Schneider, R.J.; von Reden, K.F.; Hayes, J.M.; Wills, J.S.C. Test of negative ion beams from a microwave ion source with a charge exchange canal for accelerator mass spectrometry applications. Rev. Sci. Instrum. 2002, 73, 846–848. [Google Scholar] [CrossRef]
- Pankratov, S.K.; Gradov, O.V. Computer classifier and database for the selection of the accelerator mass-spectrometry tools foe geoarcheological and archeomineralogical studies. In Geoarcheology and Archeological Mineralogy—2015; Institute of Mineralogy UB RAS: Miass, Russia, 2015; pp. 41–44. (In Russian) [Google Scholar]
- Urbanus, W.H.; Bannenberg, J.G.; Doorn, S.; Douma, S.; Ishikawa, J.; Saris, F.W.; Koudis, R.; Dubbelman, P. A microwave ion source and injector system for a Van de Graaff accelerator. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1988, 267, 237–241. [Google Scholar] [CrossRef]
- Zaitsev, N.I.; Ilyakov, E.V.; Korablev, G.S. A high-current microsecond thermionic-cathode electron accelerator for powerful microwave devices. Instrum. Exp. Tech. 1995, 38, 380–385. [Google Scholar]
- Hull, A.W. The dispenser cathode. A new type of thermionic cathode for gaseous discharge tubes. Phys. Rev. 1939, 56, 86. [Google Scholar] [CrossRef]
- Tuck, R.A. Thermionic cathode surfaces: The state-of-the-art and outstanding problems. Vacuum 1983, 33, 715–721. [Google Scholar] [CrossRef]
- Levi, R. Improved “Impregnated Cathode”. J. Appl. Phys. 1955, 26, 639. [Google Scholar] [CrossRef]
- Chen, P.K.; Rosana, M.R.; Dudley, G.B.; Stiegman, A.E. Parameters affecting the microwave-specific acceleration of a chemical reaction. J. Org. Chem. 2014, 79, 7425–7436. [Google Scholar] [CrossRef]
- Sasaki, S.; Ishibashi, N.; Kuwamura, T.; Sano, H.; Matoba, M.; Nisikawa, T.; Maeda, M. Excellent acceleration of the Diels-Alder reaction by microwave irradiation for the synthesis of new fluorine-substituted ligands of NMDA receptor. Bioorg. Med. Chem. Lett. 1998, 8, 2983–2986. [Google Scholar] [CrossRef]
- Rosana, M.R.; Hunt, J.; Ferrari, A.; Southworth, T.A.; Tao, Y.; Stiegman, A.E.; Dudley, G.B. Microwave-specific acceleration of a Friedel-Crafts reaction: Evidence for selective heating in homogeneous solution. J. Org. Chem. 2014, 79, 7437–7450. [Google Scholar] [CrossRef]
- Seipel, K.R.; Platt, Z.H.; Nguyen, M.; Holland, A.W. Microwave-assisted synthesis of phenylene-bridged aminophosphine ligands: Acceleration of N-arylation and aryl fluoride phosphorylation reactions. J. Org. Chem. 2008, 73, 4291–4294. [Google Scholar] [CrossRef]
- Hou, C.; Chen, Y.; Li, W. Thiocarbamide and microwave-accelerated green methylation of cassava starch with dimethyl carbonate. Carbohydr. Res. 2012, 355, 87–91. [Google Scholar] [CrossRef]
- Shieh, W.C.; Dell, S.; Repic, O. 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) and microwave-accelerated green chemistry in methylation of phenols, indoles, and benzimidazoles with dimethyl carbonate. Org. Lett. 2001, 3, 4279–4281. [Google Scholar] [CrossRef]
- Mayo, K.G.; Nearhoof, E.H.; Kiddle, J.J. Microwave-accelerated ruthenium-catalyzed olefin metathesis. Org. Lett. 2002, 4, 1567–1570. [Google Scholar] [CrossRef] [PubMed]
- Wipf, P.; Janjic, J.; Stephenson, C.R. Microwave-assisted synthesis of allylic amines: Considerable rate acceleration in the hydrozirconation-transmetalation-aldimine addition sequence. Org. Biomol. Chem. 2004, 2, 443–445. [Google Scholar] [CrossRef] [PubMed]
- Géci, I.; Filichev, V.V.; Pedersen, E.B. Stabilization of parallel triplexes by twisted intercalating nucleic acids (TINAs) incorporating 1,2,3-triazole units and prepared by microwave-accelerated click chemistry. Chemistry 2007, 13, 6379–6386. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, B.; Riemer, M.; Karras, M. 2,2’-Biphenols via protecting group-free thermal or microwave-accelerated Suzuki-Miyaura coupling in water. J. Org. Chem. 2013, 78, 8680–8688. [Google Scholar] [CrossRef]
- Schmidt, A.F.; Kurokhtina, A.A.; Svechkarev, A.N.; Smirnov, V.V.; Al-Halaiqa, A. Problems of distinguishing the homogeneous and heterogeneous mechanisms of the Suzuki reaction. Kinet. Catal. 2010, 51, 113–118. [Google Scholar] [CrossRef]
- Schmidt, A.F.; Al-Halaiqa, A.; Smirnov, V.V. New approaches to Heck reaction testing for homogeneity-heterogeneity. Kinet. Catal. 2008, 49, 395–400. [Google Scholar] [CrossRef]
- Schmidt, A.F.; Al-Halaiqa, A.; Smirnov, V.V.; Kurokhtina, A.A. State of palladium in ligandless catalytic systems for the Heck reaction of nonactivated bromobenzene. Kinet. Catal. 2008, 49, 638–643. [Google Scholar] [CrossRef]
- Horikoshi, S.; Serpone, N. Role of microwaves in heterogeneous catalytic systems. Catal. Sci. Technol. 2014, 4, 1197–1210. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, W.; You, Z.; Wang, Z.; Luo, Y.; Gao, L.; Yin, C.; Peng, R.; Lan, L. A new type of power energy for accelerating chemical reactions: The nature of a microwave-driving force for accelerating chemical reactions. Sci. Rep. 2016, 6, 25149. [Google Scholar] [CrossRef]
- Dudley, G.B.; Richert, R.; Stiegman, A.E. On the existence of and mechanism for microwave-specific reaction rate enhancement. Chem. Sci. 2015, 6, 2144–2152. [Google Scholar] [CrossRef]
- Nuechter, M.; Mueller, U.; Ondruschka, B.; Tied, A.; Lautenschlaeger, W. Microwave-assisted chemical reactions. Chem. Eng. Technol. 2003, 26, 1207–1216. [Google Scholar] [CrossRef]
- Horikoshi, S.; Serpone, N. Microwaves in Catalysis: Methodology and Applications; John Wiley & Sons: Weinheim, Germany, 2015; 454p. [Google Scholar]
- Kokel, A.; Schäfer, C.; Török, B. Application of microwave-assisted heterogeneous catalysis in sustainable synthesis design. Green Chem. 2017, 19, 3729–3751. [Google Scholar] [CrossRef]
- Cha Chang, Y. Process and Reactor for Char-Gas Oxide Reactions by Radiofrequency Catalysis. U.S. Patent 5,269,892, 14 December 1993. [Google Scholar]
- Cha Chang, Y. Process and Reactor for Char-Gas Oxide Reactions by Radiofrequency Catalysis. U.S. Patent 5,362,451, 8 November 1994. [Google Scholar]
- Cha Chang, Y. Process for Selected Gas Oxide Removal by Radiofrequency Catalysts. U.S. Patent 5,246,554. 21, 21 September 1993. [Google Scholar]
- Cha Chang, Y. Process for Oxide Reactions by Radiofrequency-Char Catalysis. U.S. Patent 5,256,265, 26 October 1993. [Google Scholar]
- Buchachenko, A.L.; Frankevich, E.L. Chemical Generation and Reception of Radio and Microwaves; VCH Publishers: New York, NY, USA, 1994; p. 180. [Google Scholar]
- Buchachenko, A.L.; Berdinskii, V.L. Chemically induced radio-frequency emission and chemical radiophysics. Russ. Chem. Rev. 1983, 52, 1–12. [Google Scholar] [CrossRef]
- Berdinskii, V.L.; Buchachenko, A.L.; Pershin, A.D. Theoretical analysis of a radio-frequency maser with chemical pumping of the nuclear Zeeman energy levels. Theor. Exp. Chem. 1977, 12, 519–524. [Google Scholar] [CrossRef]
- Zhuravlev, A.G.; Berdinskii, V.L.; Buchachenko, A.L. Generation of high-frequency current by the products of a photochemical reaction. JETP Lett. 1978, 28, 140–142. [Google Scholar]
- Berdinsky, V.L.; Yasina, L.L.; Buchachenko, A.L. Microwave Magnetic Isotope Effect. Theory. Khimicheskaya Fizika 2005, 24, 35–42. (In Russian) [Google Scholar]
- Buchachenko, A.L.; Berdinsky, V.L. Electron spin catalysis. Chem. Rev. 2002, 102, 603–612. [Google Scholar] [CrossRef]
- Buchachenko, A.L. Spin Chemistry. Khimiya i Zhizn 2005, 3, 8–13. (In Russian) [Google Scholar]
- Minaev, B.F.; Аgren, H. Spin uncoupling in ethylene activation by palladium and platinum atoms. Int. J. Quantum Chem. 1999, 72, 581–596. [Google Scholar] [CrossRef]
- Minaev, B.F.; Аgren, H. Spin uncoupling in molecular hydrogen activation by platinum clusters. J. Mol. Catal. A 1999, 149, 179–195. [Google Scholar] [CrossRef]
- Lindgren, M.; Minaev, B.; Glimsdal, E.; Vestberg, R.; Westlund, R.; Malmstrom, E. Electronic states and phosphorescence of dendron functionalized platinum(II) acetylides. J. Lumin. 2007, 124, 302–310. [Google Scholar] [CrossRef]
- Minaev, B.; Jansson, E.; Lindgren, M. Application of density functional theory for studies of excited states and phosphorescence of platinum(II) acetylides. J. Chem. Phys. 2006, 125, 094306. [Google Scholar] [CrossRef] [PubMed]
- Glimsdal, E.; Carlsson, M.; Eliasson, B.; Minaev, B.; Lindgren, M. Excited states and two-photon absorption of some novel thiophenyl Pt (II)-ethynyl derivatives. J. Phys. Chem. A 2007, 111, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Minaev, B.F. Ab initio study of the PtC molecule. A new assignment of the red bands to the 1 3ΠΩ (Ω=1,0+)–X 1Σ+ transitions. Phys. Chem. Chem. Phys. 2000, 2, 2851–2856. [Google Scholar] [CrossRef]
- Shishkina, S.N.; Galagan, R.L.; Minaev, B.F. Synthesis of nanostructured polymetallic composites based on palladium and quantum-chemical simulation of initial stages of the process. Russ. J. Appl. Chem. 2012, 85, 564–574. [Google Scholar] [CrossRef]
- Minaev, B.F. The role of triplet excited state of hydrocarbons in catalysis by transition-metal species. Bull. Pol. Acad. Sci. Chem. 2001, 49, 27–56. [Google Scholar]
- Mohammed, A.; Minaev, B.; Agren, H.; Lindgren, M.; Norman, P. Classification of Raman active modes of platinum(II) acetylides: A combined experimental and theoretical study. Chem. Phys. Lett. 2009, 481, 209–213. [Google Scholar] [CrossRef]
- Gradov, O.V.; Gradova, M.A. Multifactor response of the dispersed soft matter precursors under microwave-induced self-organization. Phys. A. SPb-2015. Sect. Dev. Mater. THz Microw. Ranges 2015, 394. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, X.; Xie, Y.; Zhou, Y.; Wang, T.; Wilson, J.D.; Simons, R.N.; Chui, S.-T.; Xiao, J.Q. Tunable magnetic resonance in microwave spintronics devices. IEEE MTT-S Int. Microw. Symp. (IMS) 2015, 1–4. [Google Scholar] [CrossRef]
- Parkes, D.E.; Shelford, L.R.; Wadley, P.; Holy, V.; Wang, M.; Hindmarch, A.T.; van der Laan, G.; Campion, R.P.; Edmonds, K.W.; Cavill, S.A.; et al. Magnetostrictive thin films for microwave spintronics. Sci. Rep. 2013, 3, 2220. [Google Scholar] [CrossRef]
- Microwave Spintronics as an Alternative Path to Components and Systems for Telecommunications; Storage and Security Applications (FP-7-ICT-2011-85). Available online: http://cordis.europa.eu/project/rcn/106473_en.html (accessed on 30 August 2019).
- Scientific Report of the Laboratory of Physics of Magnetic Heterostructures and Spintronics for Energy-Storage Informational Technologies (Moscow Institute of Physics and Technology). 2014. Available online: https://mipt.ru/upload/medialibrary/648/МФТИ_в_2014_году.pdf (accessed on 30 August 2019).
- Shlimak, I.; Vagner, I.D. Isotopically Engineered Si as a Promising Material for Spintronics and Semiconductor-Based Nuclear Spin Quantum Computers. NATO Sci. Ser. 2003, 106, 281–287. [Google Scholar]
- Morton, J.J. Quantum Spintronics Using Donors in Isotopically Engineered Silicon. Project # EP/H025952/2. Available online: http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/H025952/2 (accessed on 30 August 2019).
- Tokoro, H.; Ohkoshi, S. Novel magnetic functionalities of Prussian blue analogs. Dalton Trans. 2011, 40, 6825–6833. [Google Scholar] [CrossRef] [PubMed]
- Ohkoshi, S.I.; Nakagawa, K.; Tomono, K.; Imoto, K.; Tsunobuchi, Y.; Tokoro, H. High proton conductivity in Prussian blue analogues and the interference effect by magnetic ordering. J. Am. Chem. Soc. 2010, 132, 6620–6621. [Google Scholar] [CrossRef] [PubMed]
- Mizuguchi, M. Development of Nano Spin-Ionics. Project No.: FY 2014-2016 [Grant-in-Aid for Challenging Exploratory Research]. Available online: http://magmatelab.imr.tohoku.ac.jp/ProjectEng.html (accessed on 30 August 2019).
- Danilin, V.N.; Kushnirenko, A.I.; Petrov, G.V. Analog Semiconductor Microwave Integrated Circuits; Radio I Sviaz Publ.: Moscow, USSR, 1985; p. 192. (In Russian) [Google Scholar]
- Arofeev, V.I.; Privalov, V.N.; Yashin, A.A. Matching Devices for Hybrid and Semiconductor Microwave Integrated Circuits; Naukova Dumka Publ.: Kiev, USSR, 1989; p. 192. (In Russian) [Google Scholar]
- Gvozdev, V.I.; Nefyodov, E.I. 3D-Microwave Integrated Circuits; Nauka Publ.: Moscow, USSR, 1985; p. 256. (In Russian) [Google Scholar]
- Gradov, O.V.; Gradova, M.A. Autowave measurements in microwave-induced self-organization of structures. In Proceedings of the All-Russian Scientific and Technical Conference “Microwave Microelectronics”, St. Petersburg, Russia, 4–12 June 2012; pp. 371–376. (In Russian). [Google Scholar]
- Gradov, O.V. The use of angular descriptors and radiation patterns in high-frequency and microwave thermal analysis of anisotropic-heterogeneous structures on a chip. In Proceedings of the Conference on Thermal Analysis and Calorimetry (RTAC-2016), St. Petersburg, Russia, 19–23 September 2016. (In Russian). [Google Scholar]
- Gradov, O.V. In situ tunable laser diode spectroscopy of the processes and products of the microwave-induced self-organization in the soft mater active media. In Proceedings of the 2-nd International Conference and Exhibition on Mesoscopic and Condensed Matter Physics, Chicago, IL, USA, 26–28 October 2016. [Google Scholar]
- Církva, V.; Relich, S. Microwave photochemistry. Applications in organic synthesis. Mini-Rev. Org. Chem. 2011, 8, 282–293. [Google Scholar] [CrossRef]
- Gradov, O.V.; Gradova, M.A. Reaction-diffusion optoelectronics based on dispersed semiconductors. J. Phys. Conf. Ser. 2015, 643, 012072. [Google Scholar] [CrossRef]
- Gradov, O.V.; Gradova, M.A. Microwave-induced self-organization in saturated solutions and colloidal suspensions of Fe(III) salts. In Proceedings of the IV International Conference “Supramolecular Systems at the Interface”, Tuapse, Russia, 21–25 September 2015; p. 78. (In Russian). [Google Scholar]
- Gradov, O.V.; Gradova, M.A. Microwave-induced self-organization in mineral systems. I. Prussian blue (2.45 GHz; 450 W; 3 min). In Pangaea [Dataset], Microwave-Induced Self-Organization in Mineral Systems; Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Center for Marine Environmental Sciences, University of Bremen: Bremen, Germany, 2019. [Google Scholar]
- Li, B.; Rowais, H.A.; Kosel, J. Surface acoustic wave based magnetic sensors. In Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices; Beghi, M.G., Ed.; InTech: Rijeka, Croatia, 2013; pp. 355–380. [Google Scholar]
- Woodard, S.E.; Taylor, B.D.; Shams, O.A.; Fox, R.L. Magnetic field response measurement acquisition system. NASA Tech. Briefs 2006, 30, 28. [Google Scholar]
- Rosensweig, R.E. Ferrohydrodynamics; Dover Publications: Mineola, NY, USA, 2013; p. 368. [Google Scholar]
- Carugo, D.; Octon, T.; Messaoudi, W.; Fisher, A.L.; Carboni, M.; Harris, N.R.; Hill, M.; GlynneJones, P. A thin-reflector microfluidic resonator for continuous-flow concentration of microorganisms: A new approach to water quality analysis using acoustofluidics. Lab Chip 2014, 14, 3830–3842. [Google Scholar] [CrossRef]
- Travagliati, M.; Shilton, R.J.; Pagliazzi, M.; Tonazzini, I.; Beltram, F.; Cecchini, M. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices. Anal. Chem. 2014, 86, 10633–10638. [Google Scholar] [CrossRef]
- Kochervinskii, V.V.; Malyshkina, I.A.; Gradova, M.A.; Kozlova, N.V.; Shmakova, N.A.; Buzin, M.I.; Korlyukov, A.A.; Bedin, S.A. On the features of cooperative mobility in the amorphous phase of ferroelectric polymers. Colloid Polym. Sci. 2019, 297, 513–520. [Google Scholar] [CrossRef]
- Kochervinsky, V.V.; Kozlova, N.V.; Shmakova, N.A.; Kalabukhova, A.V.; Kiselev, D.A.; Malinkovich, M.D.; Gradova, M.A.; Gradov, O.V.; Bedin, S.A. The influence of dye molecules on the polarization process of a ferroelectric copolymer of vinylidene fluoride. Crystallogr. Rep. 2018, 63, 983–988. [Google Scholar] [CrossRef]
- Kochervinskii, V.V.; Gradova, M.A.; Gradov, O.V.; Kiselev, D.A.; Ilina, T.S.; Kalabukhova, A.V.; Kozlova, N.V.; Shmakova, N.A.; Bedin, S.A. Structural, optical, and electrical properties of ferroelectric copolymer of vinylidenefluoride doped with rhodamine 6G dye. J. Appl. Phys. 2019, 125, 044103. [Google Scholar] [CrossRef]
- Gradov, O.V. A novel principle for the design of CMOS-based labs-on-a-chip: Flexible configuration with non-solid walls controlled by the external field and multi-level signal conversion for measuring multiple parameters at a single chip. In Proceedings of the Conference “Actual Problems of Physical and Functional Electronics”, Ulyanovsk, Russia, 1–3 December 2015. (In Russian). [Google Scholar]
- Gradov, O.V.; Gradova, M.A. Soft matter reaction-diffusion and ferrofluid patterns as dynamic microchannels for optoelectronic lab-on-a-chip with the field-controlled geometry/topology. Comput. Nanotechnol. 2018, 4, 75–77. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gradov, O.V.; Gradova, M.A. Microwave Enthrakometric Labs-On-A-Chip and On-Chip Enthrakometric Catalymetry: From Non-Conventional Chemotronics Towards Microwave-Assisted Chemosensors. Chemosensors 2019, 7, 48. https://doi.org/10.3390/chemosensors7040048
Gradov OV, Gradova MA. Microwave Enthrakometric Labs-On-A-Chip and On-Chip Enthrakometric Catalymetry: From Non-Conventional Chemotronics Towards Microwave-Assisted Chemosensors. Chemosensors. 2019; 7(4):48. https://doi.org/10.3390/chemosensors7040048
Chicago/Turabian StyleGradov, Oleg V., and Margaret A. Gradova. 2019. "Microwave Enthrakometric Labs-On-A-Chip and On-Chip Enthrakometric Catalymetry: From Non-Conventional Chemotronics Towards Microwave-Assisted Chemosensors" Chemosensors 7, no. 4: 48. https://doi.org/10.3390/chemosensors7040048
APA StyleGradov, O. V., & Gradova, M. A. (2019). Microwave Enthrakometric Labs-On-A-Chip and On-Chip Enthrakometric Catalymetry: From Non-Conventional Chemotronics Towards Microwave-Assisted Chemosensors. Chemosensors, 7(4), 48. https://doi.org/10.3390/chemosensors7040048