Methods for Early Detection of Microbiological Infestation of Buildings Based on Gas Sensor Technologies
Abstract
:1. Introduction
2. Microbiological Contamination in the Building Sector
2.1. Causes of the Microbiological Threat
2.2. Physical and Chemical Conditions Conducive to the Development of Micro-Organisms
2.3. Technical Conditions Conduicive to the Development of Mold
- Inappropriate selection of building materials that lack properties protecting against the harmful influences of ground and atmospheric moisture;
- No water or moisture insulation;
- No thermal insulation and improper construction of thermal insulation of walls;
- Lack of ventilation or poor design of ventilation ducts in rooms such as kitchens, bathrooms, laundries, etc.;
- Airtight building envelope;
- Obstruction of ventilation and air-conditioning ducts;
- Incorrect drainage of rainwater from roofs, balconies, etc.;
- Use of building materials with increased humidity;
- The building is put into service before the required drying time;
- Lack of proper maintenance of buildings;
- Leakage of central heating or water supply system or even sewage installation.
- Minimizing the exposure of construction products inside buildings to external factors;
- Monitoring and maintaining the integrity of the building envelope;
- Checking the supplied clean and dry material and discarding any wet or moldy material;
- Protecting the stored materials from moisture;
- Minimizing the accumulation of moisture during construction;
- Balancing the HVAC (Heating, Ventilation, and Air Conditioning) systems to control comfort and humidity.
- Transparent inspection of rooms, including HVAC systems;
- Documentation of the history of water damage;
- Measurement of temperature, relative humidity, and air;
- Checking for visible traces of mold and mold odors;
- Checking for hidden mold (found behind wallpaper/panels, under carpets, on ceilings, or in wall recesses);
- Air sampling or surface samples—if necessary.
2.4. Harmful Effects of Microbiological Contamination on Human Health
- Headaches and dizziness, fainting, nausea, difficult breathing, and unnatural fatigue;
- Allergic complaints: mucositis, chronic laryngitis, bronchitis, and dry cough;
- Mood-related symptoms: migraines, irritability, and concentration disorders;
- Dryness; redness; and flaking of the skin of the face, hands, and ears.
- Bronchial asthma;
- Legionnaires’ disease and air-conditioning fever;
- Cancer, which occurs as a result of tobacco smoke, asbestos, and radon.
2.5. Microorganisms Developing in the Building Envelopes
2.5.1. Mold Genera
2.5.2. Pathogenic Fungi
2.5.3. Domestic Fungi
2.5.4. Algae
3. Methods for Assessing the Degree of Pollution of the Internal Environment
3.1. Microbiological Method
- the Koch sedimentation method,
- the collision cascade method, which is based on the flow of polluted air through small openings.
3.2. Molecular Methods
3.3. Chemical Methods
- Detection of the chemical components forming the microbial cells such as components which make up the mycelium cells for fungi (chitin and ergosterol), adenosine triphosphate (ATP) being an energy-producing molecule, and cell-wall polysaccharides (β-d-glucane). The components’ quantity can be connected with the number of microorganisms or correlated with the microbial species’ type [76,77,93,94].
- Detection of the chemical compounds formed by microorganisms such as nitric oxide, various toxins (mycotoxins, endotoxins, etc.), and other substrate-sampled metabolites. Using this indirect method, it is possible to assess the metabolic (or biological) activity of microorganisms and, as a result, provide an estimate on microbial population. This method is mainly used to collect information on the quantity of potentially harmful compounds (volatile compounds or metabolites on substrates) and to identify the pathogenic potential of the sampled environment and resulting health hazards [76,93,95].
- Gas chromatography mass spectrometry,
- High-performance liquid chromatography.
3.4. Quick Detection with Multi-Sensor Array
4. Gas Sensor Array
5. Analysis of Received Signals
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Oszust, K.; Panek, J.; Pertile, G.; Siczek, A.; Oleszek, M.; Frąc, M. Metabolic and genetic properties of Petriella setifera precultured on waste. Front. Microbiol. 2018, 9, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husman, T. Health effect of indoor-air microorganisms. Scand. J. Work Environ. Health 1996, 22, 5–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fung, F.; Hughson, W.G. Health effects of indoor fungal bioaerosol exposure. Appl. Occup. Environ. Hyg. 2003, 18, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Crook, B.; Burton, N.C. Indoor moulds, sick building syndrome and building related illness. Fungal. Biol. Rev. 2010, 24, 106–113. [Google Scholar] [CrossRef]
- Guo, H.; Lee, S.C.; Chan, L.Y. Indoor air quality investigation AT air-conditioned and non-air-conditioned markets in Hong Kong. Sci. Total Environ. 2004, 323, 87–98. [Google Scholar] [CrossRef]
- Jadud, M.A.; Rock, B.A. Tobacco smoking policy and indoor air quality: A case study. Energy Build. 1993, 20, 143–150. [Google Scholar] [CrossRef]
- Harrison, J.; Pickering, C.A.C.; Faragher, E.B.; Austwick, P.K.C.; Little, S.A.; Lawton, L. An investigation of the relationship between microbial and particulate indoor air pollution and the sick building syndrome. Respir. Med. 1992, 86, 225–235. [Google Scholar] [CrossRef]
- Ross, C.S.; Lockey, J.E. Indoor air quality medicolegal issues. J. Allergy Clin. Immunol. 1994, 94, 417–522. [Google Scholar] [CrossRef]
- Andersen, I.; Gyntelberg, F. Modern indoor climate research in Denmark from 1962 to the early 1990s: An eyewitness report. Indoor Air 2011, 21, 182–190. [Google Scholar] [CrossRef]
- Sundell, J. Reflections on the history of indoor air science, focusing on the last 50 years. Indoor Air 2017, 27, 708–724. [Google Scholar] [CrossRef]
- Tietjen, G.E.; Khubchandani, J.; Ghosh, S.; Bhattacharjee, S.; Kleinfelder, J. Headache symptoms and indoor environmental parameters: Results from the EPA BASE study. Ann. Indian. Acad. Neurol. 2012, 15, 95–99. [Google Scholar] [CrossRef]
- Pierpaoli, M.; Ruello, M.L. Indoor air quality: A bibliometric study. Sustainability 2018, 10, 3830. [Google Scholar] [CrossRef] [Green Version]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A Resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Połednik, B. Variations in particle concentrations and indoor air parameters in classrooms in the heating and summer seasons. Arch. Environ. Prot. 2013, 39, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Suchorab, Z.; Sobczuk, H.; Guz, Ł.; Łagód, G. The possibility of building classification for mould threat using gas sensors array. Adv. Mater. Res. 2015, 1126, 161–168. [Google Scholar] [CrossRef]
- Maddalena, R.; Mendell, M.J.; Eliseeva, K.; Chan, W.R.; Sullivan, D.P.; Russell, M.; Satish, U.; Fisk, W.J. Effects of ventilation rate per person and per floor area on perceived air quality, sick building syndrome symptoms, and decision-making. Indoor Air 2015, 25, 362–370. [Google Scholar] [CrossRef]
- Polizzi, V.; Adams, A.; Picco, A.M.; Adriaens, E.; Lenoir, J.; Van Peteghem, C.; De Saeger, S.; De Kimpe, N. Influence of environmental conditions on production of volatiles by Trichoderma atroviride in relation with the sick building syndrome. Build. Environ. 2011, 46, 945–954. [Google Scholar] [CrossRef]
- Huo, X.; Sun, Y.; Hou, J.; Wang, P.; Kong, X.; Zhang, Q.; Sundell, J. Sick building syndrome symptoms among young parents in Chinese homes. Build. Environ. 2019, 169, 106283. [Google Scholar] [CrossRef]
- Berglund, B.; Lindvall, T. Sensory and hyperreactivity reactions and their significance to public health. Sensory reactions to “sick buildings”. Environ. Int. 1986, 12, 147–159. [Google Scholar] [CrossRef]
- Sundell, J.; Anderson, B.; Anderson, K.; Lindvall, T. Volatile organic compounds in ventilating air in buildings at different sampling points in the buildings and their relationship with the prevalence of occupant symptoms. Indoor Air 1993, 3, 82–93. [Google Scholar] [CrossRef]
- Chester, A.C.; Levine, P.H. The natural history of concurrent sick building syndrome and chronic fatigue syndrome. J. Psychiatr. Res. 1997, 31, 51–57. [Google Scholar] [CrossRef]
- Burge, P.S. Sick Building Syndrome. Occup. Environ. Med. 2004, 61, 185–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, F.L.; Hashim, Z.; Md Said, S.; Than, L.T.; Hashim, J.H.; Norback, D. Sick building syndrome (SBS) among office workers in a Malaysian university—Associations with atopy, fractional exhaled nitric oxide (FENO) and the office environment. Sci. Total Environ. 2015, 536, 353–361. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Guidelines for Indoor Air Quality: Dampness and Mould; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- Lu, C.Y.; Lin, J.M.; Chen, Y.Y.; Chen, Y.C. Building-related symptoms among office employees associated with indoor carbon dioxide and total volatile organic compounds. Int. J. Environ. Res. Public Health 2015, 12, 5833–5845. [Google Scholar] [CrossRef]
- Lu, C.Y.; Tsai, M.C.; Muo, C.H.; Kuo, Y.H.; Sung, F.C.; Wu, C.C. Personal, psychosocial and environmental factors related to sick building syndrome in official employees of Taiwan. Int. J. Environ. Res. Public Health 2018, 15, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchorab, Z.; Sobczuk, H.; Guz, Ł.; Łagód, G. Gas sensors array as a device to classify mold threat of the buildings. In Environmental Engineering V, 1st ed.; Pawlowska, M., Pawlowski, L., Eds.; CRC Press: Lublin, Poland, 2017; pp. 203–210. [Google Scholar]
- Dutkiewicz, J.; Górny, R. Biological factors hazardous to human health: Classification and criteria of exposure assessment. Med. Pr. 2002, 53, 29–39. [Google Scholar] [PubMed]
- Żukiewicz-Sobczak, W.; Sobczak, P.; Imbor, K.; Krasowska, E.; Zwoliński, J.; Horoch, A.; Wojdyła, A.; Piątek, J. Fungal hazards in buildings and flats—Impact on the human organism. Med. Ogólna Nauki Zdr. 2012, 18, 141–146. [Google Scholar]
- Wolkoff, P. Indoor air humidity, air quality, and health—An overview. Int. J. Hyg. Environ. Health 2018, 221, 376–390. [Google Scholar] [CrossRef]
- Lu, C.; Deng, Q.; Li, Y.; Sundell, J.; Norbäck, D. Outdoor air pollution, meteorological conditions and indoor factors in dwellings in relation to sick building syndrome (SBS) among adults in China. Sci. Total Environ. 2016, 560–561, 186–196. [Google Scholar] [CrossRef] [Green Version]
- Van Tilborg, M.M.; Murphy, P.J.; Evans, K.S. Impact of dry eye symptoms and daily activities in a modern office. Optom. Vis. Sci. 2017, 94, 688–693. [Google Scholar] [CrossRef]
- Blaszczok, M.; Baranowski, A. Thermal improvement in residential buildings in view of the indoor air quality—Case study for polish dwelling. Archit. Civ. Eng. Environ. 2018, 11, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Kemp, P.C.; Neumeister-Kemp, H.-G.; Esposito, B.; Lysek, G.; Murray, F. Changes in airborne fungi from the outdoors to indoor air; large HVAC systems in nonproblem buildings in two different climates. Am. Ind. Hyg. Assoc. J. 2003, 64, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Pasanen, A.; Juutinen, T.; Jantunen, M.; Kalliokoski, P. Occurrence and moisture requirements of microbial growth in building materials. Int. Biodeterior. Biodegrad. 1992, 30, 273–283. [Google Scholar] [CrossRef]
- Brzyski, P.; Barnat-Hunek, D.; Fic, S.; Szeląg, M. Hydrophobization of lime composites with lignocellulosic raw materials from flax. J. Nat. Fibers 2017, 14, 609–620. [Google Scholar] [CrossRef]
- Brzyski, P.; Barnat-Hunek, D.; Suchorab, Z.; Łagód, G. Composite Materials Based on Hemp and Flax for Low-Energy Buildings. Materials 2017, 10, 510. [Google Scholar] [CrossRef] [PubMed]
- Siddiquee, S.; Al Azad, S.; Bakar, F.A.; Naher, L.; Kumar, S.V. Separation and identification of hydrocarbons and other volatile compounds from cultures of Aspergillus niger by GC–MS using two different capillary columns and solvents. J. Saudi Chem. Soc. 2015, 19, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Isaksson, T.; Thelandersson, S.; Ekstrand-Tobin, A.; Johansson, P. Critical conditions for onset of mould growth under varying climate conditions. Build. Environ. 2010, 45, 1712–1721. [Google Scholar] [CrossRef]
- Ważny, J.; Karyś, J. Protection of the Buildings against Biological Corrosion, 1st ed.; Arkady: Warsaw, Poland, 2001. (In Polish) [Google Scholar]
- Belanger, K.; Bracken, M.B.; Leaderer, B.P. The relation between fungal propagules in indoor air and Home characteristic. Allergy 2001, 56, 419–424. [Google Scholar] [CrossRef] [Green Version]
- Hroudova, J.; Zach, J. Acoustic and thermal insulating materials based on natural fibres used in floor construction. World Acad. Sci. Eng. Technol. Int. J. Civ. Environ. Eng. 2014, 8, 1152–1155. [Google Scholar]
- Adamczyk, J.; Dylewski, R. Recycling of construction waste in terms of sustainable building. Probl. Ekorozw. 2010, 5, 125–131. [Google Scholar]
- Morath, S.U.; Hung, R.; Bennett, J.W. Fungal volatile organic compounds: A review with emphasis on their biotechnological potential. Fungal Biol. Rev. 2012, 26, 73–83. [Google Scholar] [CrossRef]
- Kuske, M.; Romain, A.C.; Nicolas, J. Microbial volatile organic compounds as indicators of fungi. Can an electronic nose detect fungi in indoor environments? Build. Environ. 2005, 40, 824–831. [Google Scholar] [CrossRef] [Green Version]
- European Agency for Safety and Health at Work. Expert Forecast on Emerging Biological Risks Related to Occupational Safety and Health. European Risk Observatory Report. 2007. Available online: https://osha.europa.eu/en/publications/report-expert-forecast-emerging-biological-risks-related-occupational-safety-and-health (accessed on 20 November 2019).
- US EPA. EPA 402-F-91-102: Building Air Quality, a Guide for Building Owners and Facility Managers; United States Environmental Protection Agency: Washington, DC, USA, 1991. Available online: https://www.epa.gov/indoor-air-quality-iaq (accessed on 20 November 2019).
- AIHA. The American Industrial Hygiene Association Indoor Environmental Quality Committee; Gunderson, E.C., Ed.; The IAQ Investigator’s Guide Fairfax: Fairfax, VA, USA, 2006. [Google Scholar]
- Samson, R.; Flannigan, B.; Flannigan, M.; Verhoeff, A.; Adan, O.; Hoekstra, E. Health Implications of Fungi in INDOOR Environments, 1st ed.; Elsevier Science & Technology: Oxford, UK, 1994. [Google Scholar]
- Simmons, R.B.; Rose, L.J.; Crow, S.A.; Ahearn, D.G. The occurrence and persistence of mixed biofilms in automobile air conditioning systems. Curr. Microbiol. 1999, 39, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Rose, L.J.; Simmons, R.B.; Crow, S.A.; Ahearn, D.G. Volatile organic compounds associated with microbial growth in automobile air conditioning systems. Curr. Microbiol. 2000, 41, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.G.; Attaway, H.H.; Terzieva, S.; Marshall, A.; Steed, L.L.; Salzberg, D.; Hamoodi, H.A.; Khan, J.A.; Feigley, C.E.; Michels, H.T. Characterization and Control of the Microbial Community Affiliated with Copper or Aluminum Heat Exchangers of HVAC Systems. Curr. Microbiol. 2012, 65, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Smedje, G.; Wang, J.; Norbäck, D.; Nilsson, H.; Engvall, K. SBS symptoms in relation to dampness and ventilation in inspected single-family houses in Sweden. Int. Arch. Occup. Environ. Health 2017, 90, 703–711. [Google Scholar] [CrossRef] [Green Version]
- Mendell, M.J.; Naco, G.M.; Wilcox, T.G.; Sieber, W.K. Environmental risk factors and work-related lower respiratory symptoms in 80 office buildings: An exploratory analysis of NIOSH data. Am. J. Ind. Med. 2003, 43, 630–641. [Google Scholar] [CrossRef] [Green Version]
- Sessa, R.; Di Pietro, M.; Schia Voni, G.; Santino, I.; Atieri, A.; Pinelli, S.; Del Piano, M. Microbiological indoor air quality in healthy buildings. New Microbiol. 2002, 25, 51–56. [Google Scholar]
- Lugauskas, A.; Krikstaponis, A. Filamentous fungi isolated in hospitals and some medical institutions in Lithuania. Indoor Built. Environ. 2004, 13, 101–108. [Google Scholar] [CrossRef]
- Garcia-Alcega, S.; Nasir, Z.A.; Ferguson, R.; Whitby, C.; Dumbrell, A.J.; Colbeck, I.; Gomes, D.; Tyrrel, S.; Coulon, F. Fingerprinting outdoor air environment using microbial volatile organic compounds (MVOCs)—A review. TrAC Trend. Anal. Chem. 2017, 86, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Li, F.; Liu, C.; Yang, J.; Zhang, J.; Peng, C. Monitoring, human health risk assessment and optimized management for typical pollutants in indoor air from random families of university staff, Wuhan City, China. Sustainability 2017, 9, 1115. [Google Scholar] [CrossRef] [Green Version]
- Guo, P.; Yokoyama, K.; Piao, F.; Sakai, K.; Khalequzzaman, M.; Kamijima, M.; Nakajima, T.; Kitamura, F. Sick building syndrome by indoor air pollution in Dalian, China. Int. J. Environ. Res. Public Health 2013, 10, 1489–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Clark, E.; McGlothlin, J.D.; Mittal, S.K. Efficiency of airborne sample analysis platform (ASAP) bioaerosol sampler for pathogen detection. Front. Microbiol. 2015, 6, 512. [Google Scholar] [CrossRef] [PubMed]
- Eggleston, P.A.; Bush, R.K. Environmental allergen avoidance: An overview. J. Allergy Clin. Immunol. 2001, 107, 403–405. [Google Scholar] [CrossRef] [PubMed]
- Gardner, J.W.; Shin, H.W.; Hines, E.L. An electronic nose system to diagnose illness. Sens. Actuator B Chem. 2000, 70, 19–24. [Google Scholar] [CrossRef]
- Frąc, M.; Jezierska-Tys, S.; Yaguchi, T. Occurrence, detection, and molecular and metabolic characterization of heat-resistant fungi in soils and plants and their risk to human health. Adv. Agron. 2015, 132, 161–204. [Google Scholar] [CrossRef]
- Norbäck, D.; Hashim, J.H.; Hashim, Z.; Ali, F. Volatile organic compounds (VOC), formaldehyde and nitrogen dioxide (NO2) in schools in Johor Bahru, Malaysia: Associations with rhinitis, ocular, throat and dermal symptoms, headache and fatigue. Sci. Total Environ. 2017, 92, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhou, X.; Wang, D.; Song, C.; Liu, J. A prediction model of VOC partition coefficient in porous building materials based on adsorption potential theory. Build. Environ. 2015, 93, 221–233. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, Y.; Song, C.; Liu, J. A study for predicting the VOC emission characteristic of adsorbent blended building materials. Procedia Eng. 2017, 205, 519–525. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, Y.; Song, C.; Liu, J. Impact of Temperature and Microstructure on the Emission Characteristics of VOC in Porous Building Materials. Procedia Eng. 2015, 121, 1065–1075. [Google Scholar] [CrossRef] [Green Version]
- Gross, A.; Mocho, P.; Plaisance, H.; Cantau, C.; Kinadjian, N.; Yrieix, C.; Desauziers, V. Assessment of VOCs material/air exchanges of building products using the DOSEC®-SPME method. Energy Procedia 2017, 122, 367–372. [Google Scholar] [CrossRef]
- Schenkel, D.; Lemfack, M.C.; Piechulla, B.; Splivallo, R. A meta-analysis approach for assessing the diversity and specificity of belowground root and microbial volatiles. Front. Plant. Sci. 2015, 6, 707. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Liu, Y.; Song, C.; Liu, J. A study on the formaldehyde emission parameters of porous building materials based on adsorption potential theory. Build. Environ. 2016, 106, 254–264. [Google Scholar] [CrossRef]
- Gallego, E.; Roca, F.J.J.; Perales, J.F.F.; Sánchez, G.; Esplugas, P. Characterization and determination of the odorous charge in the indoor air of a waste treatment facility through the evaluation of volatile organic compounds (VOCs) using TD–GC/MS. Waste Manag. 2012, 32, 2469–2481. [Google Scholar] [CrossRef]
- Araki, A.; Kanazawa, A.; Kawai, T.; Eitaki, Y.; Morimoto, K.; Nakayama, K.; Shibata, E.; Tanaka, M.; Takigawa, T.; Yoshimura, T.; et al. The relationship between exposure to microbial volatile organic compound and allergy prevalence in single-family homes. Sci. Total Environ. 2012, 423, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Hou, J.; Cheng, R.; Sheng, Y.; Zhang, X.; Sundell, J. Indoor air quality, ventilation and their associations with sick building syndrome in Chinese homes. Energy Build. 2019, 197, 112–119. [Google Scholar] [CrossRef]
- Oliveira, I.S.; Galdino da Silva, A., Jr.; Souza de Andrade, C.A.; Oliveira, M.D.L. Biosensors for early detection of fungi spoilage and toxigenic and mycotoxins in food. Curr. Opin. Food Sci. 2019, 29, 64–79. [Google Scholar] [CrossRef]
- Gutarowska, B.; Żakowska, Z. Elaboration and application of mathematical model for estimation of mould contamination of some building materials based on ergosterol content determination. Int. Biodeterior. Biodegrad. 2002, 49, 299–305. [Google Scholar] [CrossRef]
- Verdier, T.; Coutand, M.; Bertron, A.; Roques, C. A review of indoor microbial growth across building materials and sampling and analysis methods. Build. Environ. 2014, 80, 136–149. [Google Scholar] [CrossRef] [Green Version]
- Gutarowska, B. Metabolic activity of moulds as a factor of building materials biodegradation. Pol. J. Microbiol. 2010, 59, 119–124. [Google Scholar] [CrossRef]
- Chambers, S.T.; Bhandari, S.; Scott-Thomas, A.; Syhre, M. Novel diagnostics: Progress toward a breath test for invasive Aspergillus fumigatus. Med. Mycol. Off. Publ. Int. Soc. Hum. Anim. Mycol. 2011, 49, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Wood-Jones, A.; Wang, W.; Vanlangenberg, C.; Jones, D.; Gower, J.; Simmons, P.; Baird, R.E.; Mlsna, T.E. Monitoring MVOC profiles over time from isolates of Aspergillus flavus using SPME GC-MS. J. Agric. Chem. Environ. 2014, 3, 48–63. [Google Scholar] [CrossRef] [Green Version]
- Hung, R.; Lee, S.; Bennett, J.W. Fungal volatile organic compounds and their role in ecosystems. Appl. Microbiol. Biotechnol. 2015, 99, 3395–3405. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, B.; Lal, H.; Srivastava, A. Review of bioaerosols in indoor environment with special reference to sampling, analysis and control mechanisms. Environ. Int. 2015, 85, 254–272. [Google Scholar] [CrossRef]
- Lacey, J. Indoor aerobiology and health. In Building Mycology: Management of Decay and Health in Buildings, 1st ed.; Jagjit, S., Ed.; Taylor and Francis: London, UK, 1995; pp. 75–120. [Google Scholar]
- Piotrowska, M.; Żakowska, Z.; Gliścińska, A.; Bogusłąwska-Kozłowska, J. The role of outdoor air on fungal aerosols formation in indoor environment. In Proceedings of the II International Scientific Conference: Microbial Biodegradation and Biodeterioration of Technical Materials, Łódź, Poland, 30–31 May 2001; pp. 113–118. (In Polish). [Google Scholar]
- Rao, C.Y.; Riggs, M.A.; Chew, G.L.; Muilenberg, M.L.; Thorne, P.S.; Van Sickle, D.; Dunn, K.H.; Brown, C. Characterisation of airborne molds, endotoxins, and glucans in homes in New Orleans after Hurricanes Katrina and Rita. Appl. Environ. Microbol. 2007, 73, 1630–1634. [Google Scholar] [CrossRef] [Green Version]
- Riggs, M.A.; Rao, C.Y.; Brown, C.M.; Van Sickle, D.; Cummings, K.J.; Dunn, K.H.; Deddens, J.A.; Ferdinands, J.; Callahan, D.; Moolenaar, R.L.; et al. Resident cleanup activities, characteristics of flood-damaged homes and airborne microbial concentrations in New Orleans, Louisiana, October 2005. Environ. Res. 2008, 106, 401–409. [Google Scholar] [CrossRef]
- Adhikari, A.; Jung, J.; Reponen, T.; Lewis, J.S.; DeGrasse, E.C.; Grimsley, L.F.; Chew, G.L.; Grinshpun, S.A. Aerosolization of fungi, (1→3)-β-d glucan, and endotoxin from flood-affected materials collected in New Orleans homes. Environ. Res. 2009, 109, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Wiejak, A. The assessment of air contamination with the mould fungi spores as an essential factor of mycological report. Build. Res. Inst. Quart. 2011, 40, 3–12. [Google Scholar]
- Guz, Ł.; Sobczuk, H.; Suchorab, Z. Odor measurement by using a portable device with semiconductor gas sensors array. Przem. Chem. 2010, 89, 378–381. [Google Scholar]
- Łagód, G.; Suchorab, Z.; Guz, Ł.; Sobczuk, H. Classification of buildings mold threat using electronic nose. AIP Conf. Proc. 2017, 1866, 030002-1–030002-5. [Google Scholar] [CrossRef]
- Mendell, M.J.; Adams, R.I. The challenge for microbial measurements in buildings. Indoor Air 2019, 29, 523–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otlewska, A.; Adamiak, J.; Gutarowska, B. Clone-based comparative sequence analysis of 16S rRNA genes retrieved from biodeteriorating brick buildings of the former Auschwitz II–Birkenau concentration and extermination camp. Syst. Appl. Microbiol. 2015, 38, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Oszust, K.; Gryta, A.; Ziemiński, K.; Bilińska-Wielgus, N.; Gałązka, R.; Frąc, M. Characterization of microbial functional and genetic diversity as a novel strategy of biowaste ecotoxicological evaluation. Int. J. Environ. Sci. Technol. 2018, 16, 4261–4274. [Google Scholar] [CrossRef] [Green Version]
- Andersson, M.A.; Nikulin, M.; Köljalg, U.; Andersson, M.C.; Rainey, F.; Reijula, K.; Hintikka, E.L.; Salkinoja-Salonen, M. Bacteria, molds, and toxins in water-damaged building materials. Appl. Environ. Microbiol. 1997, 63, 387–393. [Google Scholar] [CrossRef] [Green Version]
- Szponar, B.; Larsson, L. Determination of microbial colonisation in waterdamaged buildings using chemical marker analysis by gas chromatography–mass spectrometry. Indoor Air 2000, 10, 13–18. [Google Scholar] [CrossRef]
- Andersen, B.; Nielsen, K.F.; Jarvis, B.B. Characterization of Stachybotrys from water-damaged buildings based on morphology, growth, and metabolite production. Mycologia 2002, 94, 392–403. [Google Scholar] [CrossRef]
- Wei, G.L.; Zeng, E.Y. Gas chromatography-mass spectrometry and high-performance liquid chromatography-tandem mass spectrometry in quantifying fatty acids. TrAC Trend. Anal. Chem. 2011, 30, 1429–1436. [Google Scholar] [CrossRef]
- Fornal, E.; Parfieniuk, E.; Czeczko, R.; Bilinska-Wielgus, N.; Frac, M. Fast and easy liquid chromatography–mass spectrometry method for evaluation of postharvest fruit safety by determination of mycotoxins: Fumitremorgin C and verruculogen. Postharvest Biol. Technol. 2017, 131, 46–54. [Google Scholar] [CrossRef]
- Guz, Ł.; Łagód, G.; Jaromin-Gleń, K.; Suchorab, Z.; Sobczuk, H.; Bieganowski, A. Application of gas sensor arrays in assessment of wastewater purification effects. Sensors 2015, 15, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Murphy, K.R.; Wenig, P.; Parcsi, G.; Skov, T.; Stuetz, R.M. Characterizing odorous emissions using new software for identifying peaks in chemometric models of gas chromatography-mass spectrometry datasets. Chemom. Intell. Lab. Syst. 2012, 118, 41–50. [Google Scholar] [CrossRef]
- Tiebe, C.; Hübert, T.; Koch, B.; Ritter, U.; Stephan, I. Investigation of gaseous metabolites from moulds by ion mobility spectrometry (IMS) and gas chromatography-mass spectrometry (GC–MS). Int. J. Ion. Mobil. Spectrom. 2010, 13, 17–24. [Google Scholar] [CrossRef]
- Połednik, B. Zanieczyszczenia a Jakość Powietrza Wewnętrznego w Wybranych Pomieszczeniach, 1st ed.; Polska Akademia Nauk: Lublin, Poland, 2013; Volume 116. [Google Scholar]
- Wang, Y.; Li, Y.; Yang, J.; Ruan, J.; Sun, C. Microbial volatile organic compounds and their application in microorganism identification in foodstuff. TrAC Trend. Anal. Chem. 2016, 78, 1–16. [Google Scholar] [CrossRef]
- Sawoszczuk, T.; Syguła-Cholewińska, J.; del Hoyo-Meléndez, J.M. Optimization of headspace solid phase microextraction for the analysis of microbial volatile organic compounds emitted by fungi: Application to historical objects. J. Chromatogr. A 2015, 1409, 30–45. [Google Scholar] [CrossRef] [PubMed]
- Marin, S.; Vinaixa, M.; Brezmes, J.; Llobet, E.; Vilanova, X.; Correig, X.; Ramos, A.J.; Sanchis, V. Use of a MS-electronic nose for prediction of early fungal spoilage of bakery products. Int. J. Food Microbiol. 2007, 114, 10–16. [Google Scholar] [CrossRef]
- Otlewska, A.; Adamiak, J.; Gutarowska, B. Application of molecular techniques for the assessment of microorganism diversity on cultural heritage objects. Acta Biochim. Pol. 2014, 61, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Canhoto, O.; Pinzari, F.; Fanelli, C.; Magan, N. Application of electronic nose technology for the detection of fungal contamination in library paper. Int. Biodeterior. Biodegrad. 2004, 54, 303–309. [Google Scholar] [CrossRef]
- Guz, Ł. Metodyczne Aspekty Pomiaru Lotnych Zanieczyszczeń Powietrza za Pomocą Urządzenia Wieloczujnikowego. Ph.D. Thesis, Faculty of Environmental Engineering Lublin University of Technology, Lublin, Poland, 2 July 2018. [Google Scholar]
- Zhang, Y.; Askim, J.R.; Zhong, W.; Orlean, P.; Suslick, K.S. Identification of pathogenic fungi with an optoelectronic nose. Analyst 2014, 139, 1922–1928. [Google Scholar] [CrossRef] [Green Version]
- Magan, N.; Evans, P. Volatiles as an indicator of fungal activity and differentiation between species, and the potential use of electronic nose technology for early detection of grain spoilage. J. Stored. Prod. Res. 2000, 36, 319–340. [Google Scholar] [CrossRef]
- Tothill, I.E.; Magan, N. Rapid Detection Method for Microbial Contamination. In Rapid and Online Instrumentation for Food Quality Assurance, 1st ed.; Tothill, I.E., Ed.; CRC Press: New York, NY, USA, 2003; pp. 136–160. [Google Scholar]
- Van Deventer, D.; Mallikarjunan, P. Optimizing an electronic nose for analysis of volatiles from printing inks on assorted plastic films. Innov. Food Sci. Emerg. 2002, 3, 93–99. [Google Scholar] [CrossRef]
- Kuske, M.; Padilla, M.; Romain, A.; Nicolas, J.; Rubio, R.; Marco, S. Detection of diverse mould species growing on building materials by gas sensor arrays and pattern recognition. Sens. Actuator B Chem. 2006, 119, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Demyttenaere, J.C.R.; Morina, R.M.; Pat, S. Monitoring and fast detection of mycotoxinproducing fungi based on headspace solid-phase microextraction and headspace sorptive extraction of the volatile metabolites. J. Chromatogr. A 2003, 985, 127–135. [Google Scholar] [CrossRef]
- Scotter, J.M.; Langford, V.S.; Wilson, P.F.; McEwan, M.J.; Chambers, S.T. Real-time detection of common microbial volatile organic compounds from medically important fungi by Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS). J. Microbiol. Methods 2005, 63, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Zarra, T.; Galang, M.G.; Ballesteros, F.; Belgiorno, V.; Naddeo, V. Environmental odour management by artificial neural network—A review. Environ. Int. 2019, 133, 105189. [Google Scholar] [CrossRef] [PubMed]
- Craven, M.A.; Gardner, J.W.; Bartlett, P.N. Electronic noses—Development and future prospects. Trends Anal. Chem. 1996, 15, 486–493. [Google Scholar] [CrossRef]
- Wilson, A.D.; Baietto, M. Applications and advances in electronic-nose technologies. Sensors 2009, 9, 5099–5148. [Google Scholar] [CrossRef]
- Szulczyński, B.; Gębicki, J. Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air. Environments 2017, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Kuchmenko, T.A.; Lvova, L.B. A Perspective on Recent Advances in Piezoelectric Chemical Sensors for Environmental Monitoring and Foodstuffs Analysis. Chemosensors 2019, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Krivetskiy, V.; Malkov, I.; Garshev, A.; Mordvinova, N.; Lebedev, O.I.; Dolenko, S.; Efitorov, A.; Grigoriev, T.; Rumyantseva, M.; Gaskov, A. Chemically modified nanocrystalline SnO2-based materials for nitrogen-containing gases detection using gas sensor array. J. Alloys Compd. 2017, 691, 514–523. [Google Scholar] [CrossRef]
- Alphasense. PID-AH2 Sensor Datasheet. Available online: www.alphasense.com (accessed on 20 November 2019).
- Alphasnese. PID-A12 Sensor Datasheet. Available online: www.alphasense.com (accessed on 20 November 2019).
- James, D.; Scott, S.M.; Ali, Z.; O’Hare, W.T. Chemical sensors for electronic nose systems. Microchim. Acta 2005, 149, 1–17. [Google Scholar] [CrossRef]
- Karczmarczyk, A.; Haupt, K.; Feller, K.H. Development of a QCM-D biosensor for Ochratoxin A detection in red wine. Talanta 2017, 166, 193–197. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, Y.; Wu, X.; Pan, M.; Hu, N.; Wang, J.; Wang, S. Quartz crystal microbalance sensor based on covalent organic framework composite and molecularly imprinted polymer of poly(o-aminothiophenol) with gold nanoparticles for the determination of aflatoxin B1. Sens. Actuator B Chem. 2019, 291, 293–297. [Google Scholar] [CrossRef]
- Di Pietrantonio, F.; Cannatà, D.; Benetti, M.; Verona, E.; Varriale, A.; Staiano, M.; D’Auria, S. Detection of odorant molecules via surface acoustic wave biosensor array based on odorant-binding proteins. Biosens. Bioelectron. 2013, 41, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Wasilewski, T.; Gębicki, J.; Kamysz, W. Advances in olfaction-inspired biomaterials applied to bioelectronic noses. Sens. Actuator B Chem. 2018, 257, 511–537. [Google Scholar] [CrossRef]
- Wasilewski, T.; Gębicki, J.; Kamysz, W. Bioelectronic nose: Current status and perspectives. Biosens. Bioelectron. 2017, 87, 480–494. [Google Scholar] [CrossRef]
- Ertekin, Ö.; Öztürk, S.; Öztürk, Z.Z. Label free QCM immunobiosensor for AFB1 detection using monoclonal IgA antibody as recognition element. Sensors 2016, 16, 1274. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Zhu, Z.; Li, B.; Liu, Z.; Jia, L.; Zuo, L.; Chen, L.; Zhu, Z.; Shan, G.; Luo, S.Z. A direct determination of AFBs in vinegar by aptamer-based surface plasmon resonance biosensor. Toxicon 2018, 146, 24–30. [Google Scholar] [CrossRef]
- Hossain, M.Z.; McCormick, S.P.; Maragos, C.M. An imaging surface plasmon resonance biosensor assay for the detection of t-2 toxin and masked t-2 toxin-3-glucoside in wheat. Toxins 2018, 10, 119. [Google Scholar] [CrossRef] [Green Version]
- He, B.; Dong, X. Aptamer based voltammetric patulin assay based on the use of ZnO nanorods. Microchim. Acta 2018, 185, 462. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Yan, X. An amperometric zearalenone aptasensor based on signal amplification by using a composite prepared from porous platinum nanotubes, gold nanoparticles and thionine-labelled graphene oxide. Microchim. Acta 2019, 186, 383. [Google Scholar] [CrossRef]
- Baldwin, E.; Bai, J.; Plotto, A.; Dea, S. Electronic noses and tongues: Applications for the food and pharmaceutical industries. Sensors 2011, 11, 4744–4766. [Google Scholar] [CrossRef]
- Chilo, J.; Pelegri-Sebastia, J.; Cupane, M.; Sogorb, T. E-nose application to food industry production. IEEE Instrum. Meas. Mag. 2016, 19, 27–33. [Google Scholar] [CrossRef]
- Wilson, A.D. Applications of electronic-nose technologies for noninvasive early detection of plant, animal and human diseases. Chemosensors 2018, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Szulczyński, B.; Gębicki, J. Electronic nose—An instrument for odour nuisances monitoring. E3S Web Conf. 2019, 100, 79. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, R.; Singh, J.; Sachdev, T.; Basu, T.; Malhotra, B.D. Recent advances in mycotoxins detection. Biosens. Bioelectron. 2016, 81, 532–545. [Google Scholar] [CrossRef] [PubMed]
- Suchorab, Z.; Frąc, M.; Guz, Ł.; Oszust, K.; Łagód, G.; Gryta, A.; Bilińska-Wielgus, N.; Czerwiński, J. A method for early detection and identification of fungal contamination of building materials using e-nose. PLoS ONE 2019, 14, e0215179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuske, M.; Rubio, R.; Romain, A.C.; Nicolas, J.; Marco, S. Fuzzy k-NN applied to moulds detection. Sens. Actuator B Chem. 2005, 106, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang, N.; Vigneault, C. Electronic nose and electronic tongue in food production and processing. Stewart Posthar. Rev. 2006, 2, 1–5. [Google Scholar] [CrossRef]
- Zhang, X.; Li, M.; Cheng, Z.; Ma, L.; Zhao, L.; Li, J. A comparison of electronic nose and gas chromatography–mass spectrometry on discrimination and prediction of ochratoxin A content in Aspergillus carbonarius cultured grape-based medium. Food Chem. 2019, 297, 124850. [Google Scholar] [CrossRef]
- Gębicki, J.; Szulczyński, B. Discrimination of selected fungi species based on their odour profile using prototypes of electronic nose instruments. Measurement 2018, 116, 307–313. [Google Scholar] [CrossRef]
- Gancarz, M.; Wawrzyniak, J.; Gawrysiak-Witulska, M.; Wiącek, D.; Nawrocka, A.; Rusinek, R. Electronic nose with polymer-composite sensors for monitoring fungal deterioration of stored rapeseed. Int. Agrophys. 2017, 31, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Persaud, K.C.; Wareham, P.D. Hand-Held Electronic Nose (HHEN) for dry rot detection in buildings. In Digest of Technical Papers—International Conference on Solid State Sensors and Actuators and Microsystems, TRANSDUCERS 2005; IEEE: Seoul, Korea, 2007; pp. 1947–1950. [Google Scholar]
- Karlshøj, K.; Nielsen, P.V.; Larsen, T.O. Differentiation of closely related fungi by electronic nose analysis. J. Food Sci. 2007, 72, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.D. Review of electronic-nose technologies and algorithms to detect hazardous chemicals in the environment. Procedia Technol. 2012, 1, 453–463. [Google Scholar] [CrossRef] [Green Version]
- Vanneste, E.; Geise, H.J. Commercial electronic nose instruments. In Handbook of Machine Olfaction: Electronic Nose Technology; Pearce, T.C., Ed.; Wiley-VCH: Chichester, UK, 2003; pp. 161–179. [Google Scholar]
- Pinzari, F.; Fanelli, C.; Canhoto, O.; Magan, N. Electronic nose for the early detection of moulds in libraries and archives. Indoor Built Environ. 2004, 13, 387–395. [Google Scholar] [CrossRef]
- Rusinek, R.; Gancarz, M.; Krekora, M.; Nawrocka, A. A Novel Method for Generation of a Fingerprint Using Electronic Nose on the Example of Rapeseed Spoilage. J. Food Sci. 2019, 84, 51–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gancarz, M.; Wawrzyniak, J.; Gawrysiak-Witulska, M.; Wiącek, D.; Nawrocka, A.; Tadla, M.; Rusinek, R. Application of electronic nose with MOS sensors to prediction of rapeseed quality. Measurement 2017, 103, 227–234. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, N.; Zhou, D.; Sun, Y.; Sun, K.; Pan, L.; Tu, K. Discrimination and growth tracking of fungi contamination in peaches using electronic nose. Food Chem. 2018, 262, 226–234. [Google Scholar] [CrossRef]
- Di Natale, C.; Martinelli, E.; Pennazza, G.; Orsini, A.; Santonico, M. Data analysis for chemical sensor arrays In Advances in Sensing with Security Applications, 1st ed.; Byrnes, J., Ostheimer, G., Eds.; Springer: Ammsterdam, The Netherlands, 2006; pp. 147–169. [Google Scholar] [CrossRef] [Green Version]
- Distante, C.; Leo, M.; Siciliano, P.; Persaud, K.C. On the study of feature extraction methods for an electronic nose. Sens. Actuator B Chem. 2002, 87, 274–288. [Google Scholar] [CrossRef]
- Gutierrez-Osuna, R. Pattern analysis for machine olfaction: A review. IEEE Sens. J. 2002, 2, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Brudzewski, K.; Ulaczyk, J. An effective method for analysis of dynamic electronic nose responses. Sens. Actuator B Chem. 2009, 140, 43–50. [Google Scholar] [CrossRef]
- Roussel, S.; Forsberg, G.; Grenier, P.; Bellon-Maurel, V. Optimisation of electronic nose measurements. Part II: Influence of experimental parameters. J. Food Eng. 1999, 39, 9–15. [Google Scholar] [CrossRef]
- Tomic, O.; Eklöv, T.; Kvaal, K.; Haugen, J.E. Recalibration of a gas-sensor array system related to sensor replacement. Anal. Chim. Acta 2004, 512, 199–206. [Google Scholar] [CrossRef]
- Bro, R.; Smilde, A.K. Centering and scaling in component analysis. J. Chemometr. 2003, 17, 16–33. [Google Scholar] [CrossRef]
- Skov, T.; Bro, R. A new approach for modelling sensor based data. Sens. Actuator B Chem. 2005, 106, 719–729. [Google Scholar] [CrossRef]
- Scott, S.M.; James, D.; Ali, Z. Data analysis for electronic nose systems. Microchim. Acta 2006, 156, 183–207. [Google Scholar] [CrossRef]
- Kohonen, T. The self-organizing map. Neurocomputing 1998, 21, 1–6. [Google Scholar] [CrossRef]
- Łagód, G.; Majerek, D.; Guz, Ł.; Nabrdalik, M. Analysis of gas sensors array signals for evaluation of mold contamination in buildings. AIP Conf. Proc. 2018, 1988, 020022. [Google Scholar] [CrossRef]
- Fu, J.; Huang, C.; Xing, J.; Zheng, J. Pattern classification using an olfactory model with PCA feature selection in electronic noses: Study and application. Sensors 2012, 12, 2818–2830. [Google Scholar] [CrossRef] [Green Version]
- González Martín, Y.; Pérez Pavón, J.L.; Moreno Cordero, B.; García Pintob, C. Classification of vegetable oils by linear discriminant analysis of Electronic Nose data. Anal. Chim. Acta 1999, 384, 83–94. [Google Scholar] [CrossRef]
- Dixon, S.J.; Brereton, R.G. Comparison of performance of five common classifiers represented as boundary methods: Euclidean Distance to Centroids, Linear Discriminant Analysis, Quadratic Discriminant Analysis, Learning Vector Quantization and Support Vector Machines, as dependent on. Chemometr. Intell. Lab. 2009, 95, 1–17. [Google Scholar] [CrossRef]
- Pardo, M.; Sberveglieri, G. Classification of electronic nose data with support vector machines. Sens. Actuator B Chem. 2005, 107, 730–737. [Google Scholar] [CrossRef]
- Gardner, J.W. Detection of vapours and odours from a multisensor array using pattern recognition Part 1. Principal component and cluster analysis. Sens. Actuator B Chem. 1991, 4, 109–115. [Google Scholar] [CrossRef]
- Monakhova, Y.B.; Godelmann, R.; Kuballa, T.; Mushtakova, S.P.; Rutledge, D.N. Independent components analysis to increase efficiency of discriminant analysis methods (FDA and LDA): Application to NMR fingerprinting of wine. Talanta 2015, 141, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Aronzon, A.; Hanson, C.W.; Thaler, E.R. Differentiation between Cerebrospinal Fluid and Serum with Electronic Nose. Otolaryngol. Head Neck Surg. 2005, 133, 16–19. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Wang, J.; Qi, G. Comparison of spectral clustering, K-clustering and hierarchical clustering on e-nose datasets: Application to the recognition of material freshness, adulteration levels and pretreatment approaches for tomato juices. Chemometr. Intell. Lab. 2014, 133, 17–24. [Google Scholar] [CrossRef]
- Schaller, E.; Bosset, J.O.; Escher, F. “Electronic Noses” and Their Application to Food. LWT Food Sci. Technol. 1998, 31, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Lozano, J.; Santos, J.P.; Arroyo, T.; Aznar, M.; Cabellos, J.M.; Gil, M.; del Carmen Horrillo, M. Correlating e-nose responses to wine sensorial descriptors and gas chromatography–mass spectrometry profiles using partial least squares regression analysis. Sens. Actuator B Chem. 2007, 127, 267–276. [Google Scholar] [CrossRef]
- Nayak, M.S.; Dwivedi, R.; Srivastava, S.K. Application of iteration technique in association with multiple regression method for identification of mixtures of gases using an integrated gas-sensor array. Sens. Actuator B Chem. 1994, 21, 11–16. [Google Scholar] [CrossRef]
- Tian, X.Y.; Cai, Q.; Zhang, Y.M. Rapid classification of hairtail fish and pork freshness using an electronic nose based on the PCA method. Sensors 2012, 12, 260–277. [Google Scholar] [CrossRef] [Green Version]
- Fraley, C.; Raftery, A.E. Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 2002, 97, 611–631. [Google Scholar] [CrossRef]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June–18 July 1965; University of California Press: Berkeley, CA, USA, 1967. [Google Scholar]
- Łagod, G.; Duda, S.M.; Majerek, D.; Szutt, A.; Dołhańczuk-Śródka, A. Application of Electronic Nose for Evaluation of Wastewater Treatment Process Effects at Full-Scale WWTP. Processes 2019, 7, 251. [Google Scholar] [CrossRef] [Green Version]
- Majerek, D.; Guz, Ł.; Suchorab, Z.; Łagód, G.; Sobczuk, H. The application of the statistical classifying models for signal evaluation of the gas sensors analyzing mold contamination of the building materials. AIP Conf. Proc. 2017, 1866, 040024. [Google Scholar] [CrossRef]
- Łagód, G.; Majerek, D. Application of fuzzy clustering model for interpretation of gas sensors array signals from mold-contaminated buildings. AIP Conf. Proc. 2019, 2133, 020022. [Google Scholar] [CrossRef]
- Ruspini, E.H. A new approach to clustering. Inform. Control. 1969, 15, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Wee, W.G.; Fu, K.S. A formulation of fuzzy automata and its application as a model of learning systems. IEEE Trans. Syst. Sci. Cybern. 1969, 5, 215–223. [Google Scholar] [CrossRef]
- Gustafson, D.E.; Kessel, W.C. Fuzzy Clustering with A Fuzzy Covariance Matrix. In Proceedings of the THOMAS IEEE Conference on Decision and Control, San Diego, CA, USA, 10–12 January 1979; pp. 761–766. [Google Scholar]
- Ferraro, M.B.; Giordani, P. On possibilistic clustering with repulsion constraints for imprecise data. Inform. Sci. 2013, 245, 63–75. [Google Scholar] [CrossRef]
- Henry, P. The Testing Network an Integral Approach to Test Activities in Large Software Projects; Springer: Berlin, Germany, 2008; p. 87. [Google Scholar]
- Thomas, M.C.; Romagnoli, J. Extracting knowledge from historical databases for process monitoring using feature extraction and data clustering. Comput. Aided Chem. Eng. 2016, 38, 859–864. [Google Scholar] [CrossRef]
- Everitt, B.S.; Landau, S.; Leese, M.; Stahl, D. Cluster Analysis, Wiley Series in Probability and Statistics, 5th ed.; John Wiley & Sons: Chichester, UK, 2008. [Google Scholar]
- Cattell, R.B. The Scree Test for the Number of Factors. Multivar. Behav. Res. 1966, 1, 245–276. [Google Scholar] [CrossRef]
- Rajagopal, R.; Ranganathan, V. Evaluation of effect of unsupervised dimensionality reduction techniqueson automated arrhythmia classification. Biomed. Signal. Process. 2017, 34, 1–8. [Google Scholar] [CrossRef]
- Kaiser, H.F. A Note on Guttman’s lower bound for the number of common factors. Br. J. Stat. Psychol. 1961, 14, 1–2. [Google Scholar] [CrossRef]
- Krzanowski, W.J. Principles of Multivariate Analysis: A User’s Perspective, 1st ed.; University Press Inc.: Oxford, NY, USA, 2008. [Google Scholar]
- Khun, M.; Johnson, K. Applied Predictive Modeling, 1st ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Łagód, G.; Guz, Ł.; Sabba, F.; Sobczuk, H. Detection of Wastewater Treatment Process Disturbances in Bioreactors Using the E-Nose Technology. Ecol. Chem. Eng. S 2018, 25, 405–418. [Google Scholar] [CrossRef] [Green Version]
- Bergman, L.E.; Wilson, J.M.; Small, M.J.; VanBriesen, J.M. Application of classification trees for predicting disinfection by-product formation targets from source water characteristics. Environ. Eng. Sci. 2016, 33, 455–470. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Wadsworth Statistics/Probability Series; Wadsworth Advanced Books and Software: Belmont, CA, USA, 1984. [Google Scholar]
- Mette, A.; Hass, J. Guide to Advanced Software Testing; Artech House: Boston, FL, USA, 2008; pp. 179–186. [Google Scholar]
- Persaud, K.C.; Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 1982, 299, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Brereton, R.G.; Lloyd, G.R. Partial least squares discriminant analysis: Taking the magic away. J. Chemometr. 2014, 28, 213–225. [Google Scholar] [CrossRef]
- Friedman, J.H.; Hastie, T.; Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Gardner, J.W.; Bartlett, P.N. Electronic Noses. Principles and applications. Meas. Sci. Technol. 2000, 11, 1087. [Google Scholar] [CrossRef]
Sensor Type | Sensor Advantages | Sensor Disadvantages |
---|---|---|
calorimetric | fast sensor reaction, short return time to the baseline | high operating temperature, sensitive only to oxygen-containing compounds |
catalytic | small sensor sizes, low measurement costs | requires environmental control, baseline drift, low sensitivity to ammonia and carbon dioxide |
conductive polymers | low measuring temperature, sensitive to many volatile organic compounds, fast sensor reaction, various sensor coverings, inexpensive | susceptibility to poisoning the sensor, sensitive to moisture and temperature, sensors can be supersaturated by some compounds, limited, short sensor life |
electrochemical | low operating temperature, low energy consumption, sensitive to many volatile organic compounds | significant sensor size, limited sensitivity for simple compounds or low molar mass |
oxide semiconductor (MOS) | high sensitivity, rapid sensor response, return of the signal to the baseline for compounds with low molar mass | high operating temperature, high energy consumption, susceptible to sulphur poisoning and weak acids, limited types of sensor coverings, sensitive to dampness, poor precision |
optical | high sensitivity, ability to distinguish individual compounds in a mixture, ability to measure many parameters | complicated sensor array systems, expensive to run, susceptible to mechanical damage, limited mobility |
quartz microbalances (QMB) | high precision, wide range of active element covers, high sensitivity | complicated electronics, low signal-to-noise ratio, sensitive to humidity and temperature |
surface acoustic wave (SAW) | sensitivity, good response time, inexpensive, small, sensitive to many compounds | complicated electronic circuits |
Mycotoxin | Sensor Type | Sensing Element | Sensibility | Ref. |
---|---|---|---|---|
AFB1 | Piezoelectric (QCM) | Antibody | 1.625 ng mL−1 | [129] |
AFB2 | Optical (SPR) | Aptamer | 0.19 ng mL−1 | [130] |
OTA | Piezoelectric (QCM) | Antibody | 0.16 ng mL−1 | [124] |
T-2 | Optical (SPR) | Antibody | 1.2 ng mL−1 | [131] |
PAT | Potentiometric (EIS/DPV) | Aptamer | 0.27 pg mL−1 | [132] |
ZEN | Amperometric (CV/DPV) | Aptamer | 0.17 pg mL−1 | [133] |
Application | e-Nose | Sampling Details | Description | Ref. |
---|---|---|---|---|
Building materials | 12×MOS | sampling 3 min @ 200 mL min−1, cleaning 50 min @ 200 mL min−1 | Possibility to detect Aspergillus versicolor growing on different building materials (classification rate in range 80 and 89%); the classification ability is assessed in a second dataset collected 4 and 5 months later. | [112,140] |
8×MOS | 100 mL/mn; 2 min flushing/5 min measurement | Ability to distinguish between the non-contaminated and contaminated samples, shortly after fungal contamination, typically occurs with indoor environment (Penicillium, Aspergillus, Acremonium, Paecilomyces, and Cladosporium) | [139] | |
32×MOS | SPME sampling | Building timber infection with Serpula lacrimans, discrimination between infected and uninfected samples | [145] | |
Building assessment | 15×MOS | sampling 60 s, 30 s cleaning, 240 ns reference sample | E-noses can detect and classify 5 common fungi species; correct classification was achieved at 24 h of growth. | [140] |
8×MOS | sampling 5 min @100 mL/mn | Discrimination between buildings with different levels of mold stroke. | [27,89] | |
Fungi species discrimination | αFox-3000 AlphaM.O.S. (12×MOS) with a HS-100 auto sampler | 20 mL flask, 500 μL sample injected into sensor chamber; air flux 150 mL/min; 2 min measurement/2 min recovery | Ability to correctly identify closely related fungi | [146] |
Library paper | BH114 Bloodhound Sensors (14×CP) and eNOSE 4000 Marconi Applied Technologies (12×CP) | sampling from bags 500 mL and vials 50 mL, flushing with air (BH114) and nitrogen (eNOSE4000) | Possibility of Aspergillus terreus, A. holandicus, and Eurotium chevalieri differentiation after 20 h of incubation; possible differentiation between particular species as well as paper growing substrate. | [106,149] |
Rapeseed | Cyranose 320 Sensigent (32×CP) | gas box 5.4 L, 10 s baseline purge, 40 s sample draw-in, 5 s laboratory air purge, >120 s sample purge | Distinction between species of spoiled and unspoiled rapeseeds, colony forming units, and ergosterol content; the electronic nose provided responses correctly corresponding to the level of spoilage. | [145] |
6×MOS | 10 s baseline purge, 40 s sample draw-in, 5 s laboratory air purge and 140 s sample purge | Possibility of rapeseed spoilage examination | ||
Human pathogenic influence | 6×MOS; and 2nd based on GC column | 0.4 L/min;4.6 mL/min | Classification correction of Penicillium chrysogenum, Cladosporium herbarum, Rhizopus oryzae, and Alternaria alternate species was respectively 55–100% and 80–100% for MOS- and GC-based e-nose | [150,151] |
Bakery | MS | SPME fiber desorption | ergosterol level prediction, 87–96% accuracy of Eurotium and Aspergillus and 46% accuracy for Penicillium species detection | [143] |
Fruits | PEN3 Airsense (10×MOS) | sampling 60 s @ 150 mL min−1, cleaning 120 s | Successfully discriminated after 48 h of storage, 90% discrimination accuracy among Botrytis cinerea, Monilinia fructicola, and Rhizopus stolonifer contamination in peaches. | [104] |
PEN3 Airsense (10×MOS) | sampling 50 s @ 200 mL min−1, cleaning 60 s@ 400 mL min−1 | Prediction of OTA content in Aspergillus carbonarius cultured grape-based medium; all the OTA level samples were positively classify using e-nose; comparison to GC-MS analysis | [152] | |
Cereals | PEN2 Airsense (10×MOS) | sampling 90 s @ 200 mL min−1, cleaning 60 s@ 600 mL min−1 | Fungal species and counts in rice could be classified and predicted with 96.4% accuracy; early detection of Aspergillus spp. contamination in rice is feasible | [142] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garbacz, M.; Malec, A.; Duda-Saternus, S.; Suchorab, Z.; Guz, Ł.; Łagód, G. Methods for Early Detection of Microbiological Infestation of Buildings Based on Gas Sensor Technologies. Chemosensors 2020, 8, 7. https://doi.org/10.3390/chemosensors8010007
Garbacz M, Malec A, Duda-Saternus S, Suchorab Z, Guz Ł, Łagód G. Methods for Early Detection of Microbiological Infestation of Buildings Based on Gas Sensor Technologies. Chemosensors. 2020; 8(1):7. https://doi.org/10.3390/chemosensors8010007
Chicago/Turabian StyleGarbacz, Monika, Agnieszka Malec, Sylwia Duda-Saternus, Zbigniew Suchorab, Łukasz Guz, and Grzegorz Łagód. 2020. "Methods for Early Detection of Microbiological Infestation of Buildings Based on Gas Sensor Technologies" Chemosensors 8, no. 1: 7. https://doi.org/10.3390/chemosensors8010007
APA StyleGarbacz, M., Malec, A., Duda-Saternus, S., Suchorab, Z., Guz, Ł., & Łagód, G. (2020). Methods for Early Detection of Microbiological Infestation of Buildings Based on Gas Sensor Technologies. Chemosensors, 8(1), 7. https://doi.org/10.3390/chemosensors8010007