Electrochemical Sensors Coupled with Multivariate Statistical Analysis as Screening Tools for Wine Authentication Issues: A Review
Abstract
:1. Introduction
2. General Consideration Regarding Application of Electrochemical Methodologies in Wine Authentication
3. Applications of Electroanalytical Techniques for Wine Authentication
3.1. Discrimination of Wine Varietal and Geographical Origins
3.2. Monitoring the Aging of Wines and Vintage Year Discrimination
3.3. Detection of Wine Frauds and Adulterations
4. Conclusions and Perspectives
Funding
Conflicts of Interest
References
- Kamiloglu, S. Authenticity and traceability in beverages. Food Chem. 2019, 277, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Gomes, S.; Barrias, S.; Gomes, E.; Baleiras-Couto, M.; Fernandes, J.; Martins-Lopes, P. From the Field to the Bottle—An Integrated Strategy for Wine Authenticity. Beverages 2018, 4, 71. [Google Scholar] [CrossRef] [Green Version]
- Commission Delegated Regulation Commission Delegated Regulation (EU) 2019/33 of 17 October 2018 Supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as Regards Applications for Protection of Designations of Origin, Geographical Indications and Traditi. Off. J. Eur. Union L9 2019, 1–45. Available online: https://op.europa.eu/en/publication-detail/-/publication/4c602329-154b-11e9-81b4-01aa75ed71a1/language-en (accessed on 30 July 2020).
- Cozzolino, D.; Cynkar, W.U.; Shah, N.; Smith, P.A. Can spectroscopy geographically classify Sauvignon Blanc wines from Australia and New Zealand? Food Chem. 2011, 126, 673–678. [Google Scholar] [CrossRef]
- Geană, E.-I.; Sandru, C.; Stanciu, V.; Ionete, R.E. Elemental Profile and 87Sr/86Sr Isotope Ratio as Fingerprints for Geographical Traceability of Wines: An Approach on Romanian Wines. Food Anal. Methods 2017, 10, 63–73. [Google Scholar] [CrossRef]
- Selih, V.S.; Sala, M.; Drgan, V. Multi-element analysis of wines by ICP-MS and ICP-OES and their classification according to geographical origin in Slovenia. Food Chem. 2014, 153, 414–423. [Google Scholar] [CrossRef]
- Jiang, W.; Xue, J.; Liu, X.; Wang, D.L.; Guo, Y.; Wang, L. The application of SNIF-NMR and IRMS combined with C, H and O isotopes for detecting the geographical origin of Chinese wines. Int. J. Food Sci. Technol. 2015, 50, 774–781. [Google Scholar] [CrossRef]
- Dinca, O.R.; Ionete, R.E.; Costinel, D.; Geana, I.E.; Popescu, R.; Stefanescu, I.; Radu, G.L. Regional and Vintage Discrimination of Romanian Wines Based on Elemental and Isotopic Fingerprinting. Food Anal. Methods 2016, 9, 2406–2417. [Google Scholar] [CrossRef]
- De Villiers, A.; Alberts, P.; Tredoux, A.G.J.; Nieuwoudt, H.H. Analytical techniques for wine analysis: An African perspective; a review. Anal. Chim. Acta 2012, 730, 2–23. [Google Scholar] [CrossRef]
- Villano, C.; Lisanti, M.T.; Gambuti, A.; Vecchio, R.; Moio, L.; Frusciante, L.; Aversano, R.; Carputo, D. Wine varietal authentication based on phenolics, volatiles and DNA markers: State of the art, perspectives and drawbacks. Food Control 2017, 80, 1–10. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, Z.; Chen, S. Aging status characterization of Chinese rice wine based on key aging-marker profiles combined with principal components analysis and partial least-squares regression. Eur. Food Res. Technol. 2020, 246, 1283–1296. [Google Scholar] [CrossRef]
- Geana, E.I.; Popescu, R.; Costinel, D.; Dinca, O.R.; Ionete, R.E.; Stefanescu, I.; Artem, V.; Bala, C. Classification of red wines using suitable markers coupled with multivariate statistic analysis. Food Chem. 2016, 192, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Godelmann, R.; Fang, F.; Humpfer, E.; Schütz, B.; Bansbach, M.; Schäfer, H.; Spraul, M. Targeted and nontargeted wine analysis by 1H-NMR spectroscopy combined with multivariate statistical analysis. Differentiation of important parameters: Grape variety, geographical origin, year of vintage. J. Agric. Food Chem. 2013, 61, 5610–5619. [Google Scholar] [CrossRef] [PubMed]
- Catalano, V.; Moreno-Sanz, P.; Lorenzi, S.; Grando, M.S. Experimental Review of DNA-Based Methods for Wine Traceability and Development of a Single-Nucleotide Polymorphism (SNP) Genotyping Assay for Quantitative Varietal Authentication. J. Agric. Food Chem. 2016, 64, 6969–6984. [Google Scholar] [CrossRef]
- Valentini, P.; Galimberti, A.; Mezzasalma, V.; De Mattia, F.; Casiraghi, M.; Labra, M.; Pompa, P.P. DNA Barcoding Meets Nanotechnology: Development of a Universal Colorimetric Test for Food Authentication. Angew. Chem.—Int. Ed. 2017, 56, 8094–8098. [Google Scholar] [CrossRef] [PubMed]
- Urbano, M.; Luque de Castro, M.D.; Pérez, P.M.; García-Olmo, J.; Gómez-Nieto, M.A. Ultraviolet–visible spectroscopy and pattern recognition methods for differentiation and classification of wines. Food Chem. 2006, 97, 166–175. [Google Scholar] [CrossRef]
- Tarantilis, P.A.; Troianou, V.E.; Pappas, C.S.; Kotseridis, Y.S.; Polissiou, M.G. Differentiation of Greek red wines on the basis of grape variety using attenuated total reflectance Fourier transform infrared spectroscopy. Food Chem. 2008, 111, 192–196. [Google Scholar] [CrossRef]
- Rodriguez-Mendez, M.L.; Apetrei, C.; Gay, M.; Medina-Plaza, C.; de Saja, J.A.; Vidal, S.; Aagaard, O.; Ugliano, M.; Wirth, J.; Cheynier, V. Evaluation of oxygen exposure levels and polyphenolic content of red wines using an electronic panel formed by an electronic nose and an electronic tongue. Food Chem. 2014, 155, 91–97. [Google Scholar] [CrossRef]
- Gay, M.; Apetrei, C.; Nevares, I.; del Alamo, M.; Zurro, J.; Prieto, N.; De Saja, J.A.; Rodríguez-Méndez, M.L. Application of an electronic tongue to study the effect of the use of pieces of wood and micro-oxygenation in the aging of red wine. Electrochim. Acta 2010, 55, 6782–6788. [Google Scholar] [CrossRef]
- Gutiérrez-Capitán, M.; Capdevila, F.; Vila-Planas, J.; Domingo, C.; Büttgenbach, S.; Llobera, A.; Puig-Pujol, A.; Jiménez-Jorquera, C. Hybrid Electronic Tongues Applied to the Quality Control of Wines. J. Sens. Hindawi Publ. Corp. 2014, 2014, 598317. [Google Scholar] [CrossRef]
- Matemadombo, F.; Apetrei, C.; Nyokong, T.; Rodríguez-Méndez, M.L.; de Saja, J.A. Comparison of carbon screen-printed and disk electrodes in the detection of antioxidants using CoPc derivatives. Sens. Actuators B. Chem. 2012, 166, 457–466. [Google Scholar] [CrossRef]
- Zeravik, J.; Hlavacek, A.; Lacina, K.; Skládal, P. State of the Art in the Field of Electronic and Bioelectronic Tongues – Towards the Analysis of Wines. Electroanalysis 2009, 21, 2509–2520. [Google Scholar] [CrossRef]
- Apetrei, I.M.; Apetrei, C. Detection of virgin olive oil adulteration using a voltammetric e-tongue. Comput. Electron. Agric. 2014, 108, 148–154. [Google Scholar] [CrossRef]
- Ciosek, P.; Wróblewski, W. Sensor arrays for liquid sensing—Electronic tongue systems. Analyst 2007, 132, 963–978. [Google Scholar] [CrossRef] [PubMed]
- Witkowska Nery, E. Electronic Tongue Systems for the Analysis of Beverages; Springer: Cham, Switzerland, 2016; pp. 109–182. [Google Scholar]
- del Valle, M. Sensor Arrays and Electronic Tongue Systems. Int. J. Electrochem. 2012, 2012, 986025. [Google Scholar] [CrossRef] [Green Version]
- Cosio, M.S.; Scampicchio, M.; Benedetti, S. Electronic Noses and Tongues. In Chemical Analysis of Food: Techniques and Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2012; pp. 219–247. ISBN 9780123848628. [Google Scholar]
- Bobacka, J.; Ivaska, A.; Lewenstam, A. Potentiometric ion sensors. Chem. Rev. 2008, 108, 329–351. [Google Scholar] [CrossRef] [PubMed]
- Otles, S.; Topkaya, S.N.; Ozyurt, V.H. Recent Advances in Application of Biosensors in Beverages. In Engineering Tools in the Beverage Industry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 435–445. [Google Scholar]
- Ghasemi-Varnamkhasti, M.; Rodríguez-Méndez, M.L.; Mohtasebi, S.S.; Apetrei, C.; Lozano, J.; Ahmadi, H.; Razavi, S.H.; de Antonio Saja, J. Monitoring the aging of beers using a bioelectronic tongue. Food Control 2012, 25, 216–224. [Google Scholar] [CrossRef]
- Apetrei, I.M.; Apetrei, C. Study of Different Carbonaceous Materials as Modifiers of Screen-Printed Electrodes for Detection of Catecholamines. IEEE Sens. J. 2015, 15, 3094–3101. [Google Scholar] [CrossRef]
- Apetrei, I.M.; Apetrei, C. Voltammetric e-tongue for the quantification of total polyphenol content in olive oils. Food Res. Int. 2013, 54, 2075–2082. [Google Scholar] [CrossRef]
- Arrieta, A.A.; Apetrei, C.; Rodríguez-Méndez, M.L.; De Saja, J.A. Voltammetric sensor array based on conducting polymer-modified electrodes for the discrimination of liquids. Electrochim. Acta 2004, 49, 4543–4551. [Google Scholar] [CrossRef]
- Wei, Z.; Yang, Y.; Zhu, L.; Zhang, W.; Wang, J. Application of novel nanocomposite-modified electrodes for identifying rice wines of different brands. RSC Adv. 2018, 8, 13333–13343. [Google Scholar] [CrossRef] [Green Version]
- Foster, C.W.; Pillay, J.; Metters, J.P.; Banks, C.E. Cobalt phthalocyanine modified electrodes utilised in electroanalysis: Nano-structured modified electrodes vs. bulk modified screen-printed electrodes. Sensors 2014, 14, 21905–21922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apetrei, I.M.; Rodriguez-Mendez, M.L.; Apetrei, C.; de Saja, J.A. Enzyme sensor based on carbon nanotubes/cobalt(II) phthalocyanine and tyrosinase used in pharmaceutical analysis. Sens. Actuators B Chem. 2013, 177, 138–144. [Google Scholar] [CrossRef]
- Apetrei, I.M.; Apetrei, C. The biocomposite screen-printed biosensor based on immobilization of tyrosinase onto the carboxyl functionalised carbon nanotube for assaying tyramine in fish products. J. Food Eng. 2015, 149, 1–8. [Google Scholar] [CrossRef]
- Couto, R.A.S.; Lima, J.L.F.C.; Quinaz, M.B. Recent developments, characteristics and potential applications of screen-printed electrodes in pharmaceutical and biological analysis. Talanta 2016, 146, 801–814. [Google Scholar] [CrossRef]
- Cetó, X.; Capdevila, J.; Puig-Pujol, A.; del Valle, M. Cava Wine Authentication Employing a Voltammetric Electronic Tongue. Electroanalysis 2014, 26, 1504–1512. [Google Scholar] [CrossRef] [Green Version]
- Arribas, A.S.; Martínez-Fernández, M.; Chicharro, M. The role of electroanalytical techniques in analysis of polyphenols in wine. TrAC Trends Anal. Chem. 2012, 34, 78–96. [Google Scholar] [CrossRef]
- Newair, E.F.; Kilmartin, P.A.; Garcia, F. Square wave voltammetric analysis of polyphenol content and antioxidant capacity of red wines using glassy carbon and disposable carbon nanotubes modified screen-printed electrodes. Eur. Food Res. Technol. 2018, 244, 1225–1237. [Google Scholar] [CrossRef]
- Vasilescu, A.; Fanjul-Bolado, P.; Titoiu, A.-M.; Porumb, R.; Epure, P. Progress in Electrochemical (Bio)Sensors for Monitoring Wine Production. Chemosensors 2019, 7, 66. [Google Scholar] [CrossRef] [Green Version]
- Tortolini, C.; Bollella, P.; Zumpano, R.; Favero, G.; Mazzei, F.; Antiochia, R. Metal oxide nanoparticle based electrochemical sensor for total antioxidant capacity (TAC) detection in wine samples. Biosensors 2018, 8, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Türke, A.; Kilmartin, P. Electrochemistry of White Wine Polyphenols Using PEDOT Modified Electrodes. Beverages 2017, 3, 28. [Google Scholar] [CrossRef]
- Apetrei, C.; Apetrei, I.M.; De Saja, J.A.; Rodriguez-Mendez, M.L. Carbon Paste Electrodes Made from Different Carbonaceous Materials: Application in the Study of Antioxidants. Sensors 2011, 11, 1328–1344. [Google Scholar] [CrossRef] [PubMed]
- Pigani, L.; Vasile Simone, G.; Foca, G.; Ulrici, A.; Masino, F.; Cubillana-Aguilera, L.; Calvini, R.; Seeber, R. Prediction of parameters related to grape ripening by multivariate calibration of voltammetric signals acquired by an electronic tongue. Talanta 2018, 178, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Medina-Plaza, C.; García-Hernández, C.; de Saja, J.A.; Fernández-Escudero, J.A.; Barajas, E.; Medrano, G.; García-Cabezón, C.; Martin-Pedrosa, F.; Rodriguez-Mendez, M.L. The advantages of disposable screen-printed biosensors in a bioelectronic tongue for the analysis of grapes. LWT—Food Sci. Technol. 2015, 62, 940–947. [Google Scholar] [CrossRef] [Green Version]
- Hernanz-Vila, D.; Jara-Palacios, M.J.; Escudero-Gilete, M.L.; Hereida, F.J. Applications of Voltammetric Analysis to Wine Products. In Applications of the Voltammetry; IntechOpen Limited: London, UK, 2017; pp. 109–127. [Google Scholar]
- Pigani, L.; Foca, G.; Ulrici, A.; Ionescu, K.; Martina, V.; Terzi, F.; Vignali, M.; Zanardi, C.; Seeber, R. Classification of red wines by chemometric analysis of voltammetric signals from PEDOT-modified electrodes. Anal. Chim. Acta 2009, 643, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Pigani, L.; Foca, G.; Ionescu, K.; Martina, V.; Ulrici, A.; Terzi, F.; Vignali, M.; Zanardi, C.; Seeber, R. Amperometric sensors based on poly(3,4-ethylenedioxythiophene)-modified electrodes: Discrimination of white wines. Anal. Chim. Acta 2008, 614, 213–222. [Google Scholar] [CrossRef]
- Ugliano, M. Rapid fingerprinting of white wine oxidizable fraction and classification of white wines using disposable screen printed sensors and derivative voltammetry. Food Chem. 2016, 212, 837–843. [Google Scholar] [CrossRef]
- Rodríguez-Méndez, M.L.; Parra, V.; Apetrei, C.; Villanueva, S.; Gay, M.; Prieto, N.; Martinez, J.; de Saja, J.A. Electronic tongue based on voltammetric electrodes modified with materials showing complementary electroactive properties. Applications. Microchim. Acta 2008, 163, 23–31. [Google Scholar] [CrossRef]
- Parra, V.; Hernando, T.; Rodríguez-Méndez, M.L.; De Saja, J.A. Electrochemical sensor array made from bisphthalocyanine modified carbon paste electrodes for discrimination of red wines. Electrochim. Acta 2004, 49, 5177–5185. [Google Scholar] [CrossRef]
- Verrelli, G.; Lvova, L.; Paolesse, R.; Di Natale, C.; D’Amico, A. Metalloporphyrin-based electronic tongue: An application for the analysis of Italian white wines. Sensors 2007, 7, 2750–2762. [Google Scholar] [CrossRef] [Green Version]
- Kutyła-Olesiuk, A.; Wawrzyniak, U.E.; Jańczyk, M.; Wróblewski, W. Electrochemical sensor arrays for the analysis of wine production. In Proceedings of the Procedia Engineering; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; Volume 87, pp. 580–583. [Google Scholar]
- Rudnitskaya, A.; Rocha, S.M.; Legin, A.; Pereira, V.; Marques, J.C. Evaluation of the feasibility of the electronic tongue as a rapid analytical tool for wine age prediction and quantification of the organic acids and phenolic compounds. The case-study of Madeira wine. Anal. Chim. Acta 2010, 662, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Apetrei, I.M.; Rodríguez-Méndez, M.L.; Apetrei, C.; Nevares, I.; del Alamo, M.; de Saja, J.A. Monitoring of evolution during red wine aging in oak barrels and alternative method by means of an electronic panel test. Food Res. Int. 2012, 45, 244–249. [Google Scholar] [CrossRef]
- Zhang, H.; Shao, W.; Qiu, S.; Wang, J.; Wei, Z. Collaborative analysis on the marked ages of rice wines by electronic tongue and nose based on different feature data sets. Sensors 2020, 20, 1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez, M.; Llobera, A.; Vila-Planas, J.; Capdevila, F.; Demming, S.; Büttgenbach, S.; Mínguez, S.; Jiménez-Jorquera, C. Hybrid electronic tongue based on optical and electrochemical microsensors for quality control of wine. Analyst 2010, 135, 1718–1725. [Google Scholar] [CrossRef]
- Gutiérrez-Capitán, M.; Santiago, J.L.; Vila-Planas, J.; Llobera, A.; Boso, S.; Gago, P.; Martínez, M.C.; Jiménez-Jorquera, C. Classification and characterization of different white grape juices by using a hybrid electronic tongue. J. Agric. Food Chem. 2013, 61, 9325–9332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, B.S.; Lee, J.E.; Park, H.J. Electronic tongue-based discrimination of Korean rice wines (makgeolli) including prediction of sensory evaluation and instrumental measurements. Food Chem. 2014, 151, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Parra, V.; Arrieta, Á.A.; Fernández-Escudero, J.A.; Rodríguez-Méndez, M.L.; De Saja, J.A. Electronic tongue based on chemically modified electrodes and voltammetry for the detection of adulterations in wines. Sens. Actuators B Chem. 2006, 118, 448–453. [Google Scholar] [CrossRef]
- Hosnedlova, B.; Sochor, J.; Baron, M.; Bjørklund, G.; Kizek, R. Application of nanotechnology based-biosensors in analysis of wine compounds and control of wine quality and safety: A critical review. Crit. Rev. Food Sci. Nutr. 2019. [Google Scholar] [CrossRef]
- Medina-Plaza, C.; de Saja, J.A.; Fernández-Escudero, J.A.; Barajas, E.; Medrano, G.; Rodriguez-Mendez, M.L. Array of biosensors for discrimination of grapes according to grape variety, vintage and ripeness. Anal. Chim. Acta 2016, 947, 16–22. [Google Scholar] [CrossRef]
- Ouyang, Q.; Zhao, J.; Chen, Q. Classification of rice wine according to different marked ages using a portable multi-electrode electronic tongue coupled with multivariate analysis. Food Res. Int. 2013, 51, 633–640. [Google Scholar] [CrossRef]
- Leon-Medina, J.X.; Cardenas-Flechas, L.J.; Tibaduiza, D.A. A data-driven methodology for the classification of different liquids in artificial taste recognition applications with a pulse voltammetric electronic tongue. Int. J. Distrib. Sens. Netw. 2019, 15, 155014771988160. [Google Scholar] [CrossRef] [Green Version]
- Śliwińska, M.; Wiśniewska, P.; Dymerski, T.; Namieśnik, J.; Wardencki, W. Food analysis using artificial senses. J. Agric. Food Chem. 2014, 62, 1423–1448. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Méndez, M.L.; De Saja, J.A.; González-Antón, R.; García-Hernández, C.; Medina-Plaza, C.; García-Cabezón, C.; Martín-Pedrosa, F. Electronic Noses and Tongues in Wine Industry. Front. Bioeng. Biotechnol. 2016, 4, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parra, V.; Arrieta, Á.A.; Fernández-Escudero, J.A.; García, H.; Apetrei, C.; Rodríguez-Méndez, M.L.; de Saja, J.A. E-tongue based on a hybrid array of voltammetric sensors based on phthalocyanines, perylene derivatives and conducting polymers: Discrimination capability towards red wines elaborated with different varieties of grapes. Sens. Actuators B Chem. 2006, 115, 54–61. [Google Scholar] [CrossRef]
- Cetó, X.; Gutiérrez, J.M.; Moreno-Barón, L.; Alegret, S.; del Valle, M. Voltammetric Electronic Tongue in the Analysis of Cava Wines. Electroanalysis 2011, 23, 72–78. [Google Scholar] [CrossRef]
- Moldes, O.A.; Mejuto, J.C.; Rial-Otero, R.; Simal-Gandara, J. A critical review on the applications of artificial neural networks in winemaking technology. Crit. Rev. Food Sci. Nutr. 2017, 57, 2896–2908. [Google Scholar] [CrossRef]
- Podrazka, M.; Báczyńska, E.; Kundys, M.; Jeleń, P.S.; Nery, E.W. Electronic tongue-A tool for all tastes? Biosensors 2017, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, M.; Llobera, A.; Ipatov, A.; Vila-Planas, J.; Mínguez, S.; Demming, S.; Büttgenbach, S.; Capdevila, F.; Domingo, C.; Jiménez-Jorquera, C. Application of an E-tongue to the analysis of monovarietal and blends of white wines. Sensors 2011, 11, 4840–4857. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Hernandez, C.; Medina-Plaza, C.; Garcia-Cabezon, C.; Martin-Pedrosa, F.; Del Valle, I.; de Saja, J.A.; Rodríguez-Méndez, M.L. An electrochemical quartz crystal microbalance multisensor system based on phthalocyanine nanostructured films: Discrimination of musts. Sensors 2015, 15, 29233–29249. [Google Scholar] [CrossRef] [Green Version]
- Blanco, C.A.; De La Fuente, R.; Caballero, I.; Rodríguez-Méndez, M.L. Beer discrimination using a portable electronic tongue based on screen-printed electrodes. J. Food Eng. 2015, 157, 57–62. [Google Scholar] [CrossRef]
- Soós, J.; Várvölgyi, E.; Dénes, L.D.; Kovács, Z.; Felföldi, J.; Magyar, I. Application of electronic tongue to discriminate white wines originated from different regions of Hungary. In Proceedings of the Acta Alimentaria; Akademiai Kiado Rt.: Budapestm, Hungary, 2014; Volume 43, pp. 132–139. [Google Scholar]
- Rudnitskaya, A.; Delgadillo, I.; Legin, A.; Rocha, S.M.; Costa, A.M.; Simões, T. Prediction of the Port wine age using an electronic tongue. Chemom. Intell. Lab. Syst. 2007, 87, 125–131. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, J.; Ye, L. Classification and prediction of rice wines with different marked ages by using a voltammetric electronic tongue. Biosens. Bioelectron. 2011, 26, 4767–4773. [Google Scholar] [CrossRef] [PubMed]
- Penza, M.; Cassano, G. Recognition of adulteration of Italian wines by thin-film multisensor array and artificial neural networks. Anal. Chim. Acta 2004, 509, 159–177. [Google Scholar] [CrossRef]
- Zaukuu, J.L.Z.; Soós, J.; Bodor, Z.; Felföldi, J.; Magyar, I.; Kovacs, Z. Authentication of Tokaj Wine (Hungaricum) with the Electronic Tongue and Near Infrared Spectroscopy. J. Food Sci. 2019, 84, 3437–3444. [Google Scholar] [CrossRef] [PubMed]
- Lvova, L.; Yaroshenko, I.; Kirsanov, D.; Di Natale, C.; Paolesse, R.; Legin, A. Electronic tongue for brand uniformity control: A case study of apulian red wines recognition and defects evaluation. Sensors 2018, 18, 2584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Country | Wine Samples/Experiment Type | Electrochemical Technique | Working Electrode | Analyzed Parameters | Multivariate Statistical Analysis | Reference |
---|---|---|---|---|---|---|
Italy | Discrimination of nine different types of red wines: Sangiovese, Lambrusco, Montepulciano, Primitivo | CV and DPV | Pt disk electrode modified with PEDOT film | Voltammetric fingerprint | PCA PLS-DA | [49] |
Italy | Varietal origin of white wines | DPV | Pt disk electrodes modified with PEDOT film with composite materials of Au and Pt nanoparticles | Voltammetric signals | PCA PLD-DA | [50] |
Spain | 21 sparkling wine (19 Spanish Cava DO and 2 Champagne (French)) from different regions | CV/ET | 5 modified graphite–epoxy electrodes (modifiers: nanoparticles of Co and Pt, and conducting polymers (polyaniline and polypyrrole)) | Cyclic voltammograms | PCA ANN | [70] |
Spain | Denomination of origin, grape variety, and vintage of 12 red wines | CV/hybrid array of voltammetric sensors | voltammetric gold electrodes chemically modified with electroactive materials (conducting polymers, phthalocyanine complexes and perylenes) | Voltammetric fingerprint | PCA PLS-DA SIMCA | [69] |
Spain | 6 Tempranillo red wines with different DO origins and ageing stages | CV and SWV/sensor array | Carbon paste electrodes (CPEs) modified with rare-earth bisphthalocyaninate compounds (LnPc2): LuPc2, GdPc2 and PrPc2 | Reproducible anodic and cathodic peaks; Cyclic voltammograms; SWV signals | PCA | [53] |
Spain | Varietal origin of white wines (Tempranillo, Garnacha, Turruntes, Viura, and Malvasia) | SWV | Array of carbon paste electrodes (CPE) modified with three rare-earth bisphthalocyanines and three perylenes | voltammetric signals | PCA | [52] |
Italy | Veridicchio white wines produced in different locations | Potentiometry | Glassy carbon with PVC solvent polymeric doped with several metallo-porphyrins porphyrin-based membranes | quantitative detection of total SO2, Total Polyphenols, Malic and Acetic Acids content | PCA | [54] |
Spain | Varietal origin of 11 white wines (Macabeu, Parellada, Chardonnay, Xarello, Picapol) and 12 red wines (Trepat, Garnatxa, Cabernet Sauvignon, and Merlot) | Hybrid electronic tongue based on optical and electrochemical microsensors | The array: six ISFETs potentiometric sensors, a conductivity sensor, a redox potential (ORP) sensor and two amperometric electrodes (Au microelectrode and a microelectrode for sensing electrochemical oxygen demand (EOD). | pH and Na+, K+, Ca2+, Cl−, and NO3− ions; conductivity and redox potential (ORP) | PCA | [59] |
Spain | 18 white wines: 5 Macabeu), 5 Parellada, 4 Chardonnay, and 4 Xarello and 12 wines: 4 Merlot, 3 Cabernet Sauvignon, 3 Grenache and 2 Trepat. Analysis of monovarietal white wines and bi- and trivarietal mixtures | Flow multiparametric system consisting in a hybrid ET and a miniaturized opto-fluidic system | ISFET sensors modified with polymeric membrane, Pt conductivity, and ORP sensors and gold amperometric microelectrodes | pH and Na+, K+, Ca2+, Cl−, and NO3− ions; conductivity and redox potential (ORP) | PCA SIMCA | [20,73] |
Spain | Varietal origin of musts prepared from Tempranillo, Garnacha, Cabernet-Sauvignon, Prieto, Picudo, and Mencía varieties | CV/Array of biosensors | 4 voltammetric biosensors based on Langmuir–Blodgett films containing glucose oxidase, D-fructose dehydrogenase, tyrosinase, and laccase, using LuPc2 as electron mediator and arachidic acid as lipid | Polyphenols Sugars | PCA | [64] |
Italy | Varietal origin of commercial white wines (Riesling, Chardonnay, Viognier, Muscadet) | LSV | Screen-printed carbon paste electrode | Voltammetric fingerprint | PCA | [51] |
Spain | Red musts: Juan García, Tempranillo, Prieto Picudo, Mencía Regadío, Cabernet, Garnacha | EQCM /Array of EQCM sensors | Pt/quartz crystals modified with iron, nickel, and copper phthalocyanines | voltammetric responses | PARAFAC | [74] |
Hungary | Nine white wines with different varietal and geographical origins | Commercial Alpha ASTREE II (Alpha M.O.S., Toulouse, France) potentiometric electronic tongue | 7 ISFET potentiometric sensors | Potentiometric responses | PCA LDA PLS | [76] |
Country | Wine Samples | Electrochemical Technique | Working Electrode | Analyzed Parameters | Multivariate Statistical Analysis | Reference |
---|---|---|---|---|---|---|
Spain | Tempranillo red wines aged by different methods during the aging process | CV/ET | 6 voltammetric sensors: 4 carbon paste electrodes (CPE) modified with electroactive materials (bisphthalocyanine molecules with lutetium and gadolinium central ions (LuPc2), (GdPc2), cobalt (II) monophthalocyanine (CoPc) and ferrocene), unmodified carbon paste, and platinum electrodes | Voltammetric responses | PCA PLS-DA | [57] |
Spain | Tempranillo musts collected from grapes with different maturation stage | CV/Array of biosensors | 4 voltammetric biosensors based on Langmuir–Blodgett films containing glucose oxidase, D-fructose dehydrogenase, tyrosinase and laccase, using LuPc2 as an electron mediator and arachidic acid as lipid | Polyphenols Sugars | PCA | [64] |
Spain | 160 Port wines of different ages (from 2 to 70 years) | Potentiometric ET multisensor | 14 plasticized PVC sensors, 11 chalcogenide glass sensors, and a conventional glass pH electrode | phenols and organic anions cations, redox and pH responses | PCA, PLS | [77] |
40 Madeira mono-varietal wines aged for 3, 6, 10, and 17 years | PCA, ANOVA | [56] | ||||
Spain | 65 cava wine with different vintage time | CV/ET | 6 graphite–epoxy voltammetric sensors made with different modifiers/catalysts: nanoparticles of Co and PT, conducting polymers (polyaniline and polypyrrole), and cobalt(II) phtalocyanine | Cyclic voltammograms | PCA, LDA, ANN | [39] |
China | 120 Chinese rice wine of different marked ages (1, 3, and 5 years) | VE-tongue/ MLAPV | 6 metallic electrodes (gold, silver, platinum, palladium, tungsten, and titanium) | Voltammetric responses | PCA, CA, PLS, ANN | [78] |
China | 120 Danyang Chinese rice wine with 3, 5, 8, and 10 marked ages | CV/ portable voltammetric ET | 3 working electrodes: glassy carbon, gold, and platinum | Cyclic voltammograms | SIMCA, PLSDA, KNN, BPANN, SVM | [65] |
China | 200 Guyuelongshan rice wines of 3, 5, 8, 10, and 20 years old | ET and EN | GCE modified with conducting polymer nanocomposites | Voltammetric response | PCA and LPP | [58] |
Country | Wine Samples | Electrochemical Technique | Working Electrode | Analyzed Parameters | Multivariate Statistical Analysis | Reference |
---|---|---|---|---|---|---|
Spain | Red wines adulterated with ethanol, tartaric and tannic acids, SO2, acetic acid, sucrose, and acetaldehyde | CV/hybrid ET | Carbon paste (CPEs) voltammetric electrodes chemically modified with phthalocyanines, and conducting polypyrrole doped with a range of counterions | Voltammetric responses for pH and antioxidants | PCA PLS | [62] |
Italy | Wines adulterated with SO2, H2S, and CH3CO2H | ET system based on an array of miniaturized potentiometric sensors | Miniaturized potentiometric sensors based on platinum electrode modified with PVC membranes based on metalloporphyrins, corroles, and their analogs | Potentiometric responses | PCA PLS | [54] |
Italy | White (2), red (4,) and rose (2) wines intentionally adulterated with methanol and ethanol or by mixing same-color wines | Chemoresistive e-tongue | Multisensor array based on four metal oxide semiconducting thin-film chemoresistive sensors (Pt, Au, Pd, and Bi metal catalysts) | Electrical resistance of each chemoresistive sensor | PCA, ANN | [79] |
Hungary | Tokaj wines artificially adulterated with grape must concentrate and sucrose | Potentiometric e-tongue | Chemically modified field-effect transistor sensors | Potentiometric responses | PCA, LDA, and PLS | [80] |
Russia Italy | Detection of markers of wine organoleptic faults: methionol, isoamyl alcohol, benzaldehyde, and acetic acid in a wide range of concentrations | Potentiometric ET | 8 potentiometric chemical sensors obtained by the electrodeposition of substituted porphyrin polymeric coatings on flat Pt working electrodes | Potentiometric responses | PLS PCA SIMCA PLS-DA | [81] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geană, E.-I.; Ciucure, C.T.; Apetrei, C. Electrochemical Sensors Coupled with Multivariate Statistical Analysis as Screening Tools for Wine Authentication Issues: A Review. Chemosensors 2020, 8, 59. https://doi.org/10.3390/chemosensors8030059
Geană E-I, Ciucure CT, Apetrei C. Electrochemical Sensors Coupled with Multivariate Statistical Analysis as Screening Tools for Wine Authentication Issues: A Review. Chemosensors. 2020; 8(3):59. https://doi.org/10.3390/chemosensors8030059
Chicago/Turabian StyleGeană, Elisabeta-Irina, Corina Teodora Ciucure, and Constantin Apetrei. 2020. "Electrochemical Sensors Coupled with Multivariate Statistical Analysis as Screening Tools for Wine Authentication Issues: A Review" Chemosensors 8, no. 3: 59. https://doi.org/10.3390/chemosensors8030059
APA StyleGeană, E. -I., Ciucure, C. T., & Apetrei, C. (2020). Electrochemical Sensors Coupled with Multivariate Statistical Analysis as Screening Tools for Wine Authentication Issues: A Review. Chemosensors, 8(3), 59. https://doi.org/10.3390/chemosensors8030059