Estimation of Active Compounds Quantity from Pharmaceuticals Based on Ginkgo biloba
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Solutions
2.2. Electrochemical Measurements
2.3. Pharmaceutical Analysis
2.4. Antioxidant Activity (DPPH Free Radical Scavenging Activity)
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cao, Y.; Chu, Q.; Fang, Y.; Ye, J. Analysis of flavonoids in Ginkgo biloba L. and its phytopharmaceuticals by capillary electrophoresis with electrochemical detection. Anal. Bioanal. Chem. 2002, 374, 294–299. [Google Scholar] [CrossRef] [PubMed]
- He, J.-B.; Lin, X.-Q.; Pan, J. Multi-Wall Carbon Nanotube Paste Electrode for Adsorptive Stripping Determination of Quercetin: A Comparison with Graphite Paste Electrode via Voltammetry and Chronopotentiometry. Electroanalysis 2005, 17, 1681–1686. [Google Scholar] [CrossRef]
- European Medicines Agency, Science Medicines Health—EMA/HMPC/3210952012. Committee on Herbal Medicinal Products (HMPC)—Ginkgo Biloba; Monograph; European Medicines Agency: Amsterdam, The Netherlands, 2014.
- Wang, Y.; Wang, L.; Zeng, S.; Yang, Y.; Tang, Y. Analysis and determination of the flavonoids from Ginkgo biloba extract by high performance liquid chromatography. Jiangxi Sci. 1997, 15, 122–125. [Google Scholar]
- He, X.-G.; Bernart, M.W.; Nolan, G.S.; Lin, L.-Z.; Lindenmaier, M.P. High-Performance Liquid Chromatography—Electrospray Ionization-Mass Spectrometry Study of Ginkgolic Acid in the leaves and Fruits of the Ginkgo Tree (Ginkgo biloba). J. Chromatogr. Sci. 2000, 38, 169–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J. Analytical Electrochemistry; John Wiley and Sons: New York, NY, USA, 2006. [Google Scholar]
- Aguilar-Sánchez, R.; Áhuatl-García, F.; Dávila-Jiménez, M.M.; Elizalde-González, M.P.; Guevara-Villa, M.R.G. Chromatographic and electrochemical determination of quercetin and kaempferol in phytopharmaceuticals. J. Pharm. Biomed. Anal. 2005, 38, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Apetrei, I.M.; Apetrei, C. Development of a Novel Biosensor Based on Tyrosinase/Platinum Nanoparticles/Chitosan/Graphene Nanostructured Layer with Applicability in Bioanalysis. Materials 2019, 12, 1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods; John Wiley and Sons: New York, NY, USA, 2001. [Google Scholar]
- Petkova Pencheva, I.; Nikolova Maslarska, V.; Christova Stoimenova, A.; Metodieva Manova, M.; Antonova Andonova, L.; Krumova Zdraveva, P. Quality control optimization solutions for determination of rutin in supplements containing ginkgo biloba extract. Curr. Pharm. Anal. 2016, 12, 386–390. [Google Scholar] [CrossRef]
- Bounegru, A.V.; Apetrei, C. Carbonaceous Nanomaterials Employed in the Development of Electrochemical Sensors Based on Screen-Printing Technique—A Review. Catalysts 2020, 10, 680. [Google Scholar] [CrossRef]
- Camilli, L.; Passacantando, M. Advances on Sensors Based on Carbon Nanotubes. Chemosensors 2018, 6, 62. [Google Scholar] [CrossRef] [Green Version]
- Bounegru, A.; Apetrei, C. Voltammetric Sensors Based on Nanomaterials for Detection of Caffeic Acid in Food Supplements. Chemosensors 2020, 8, 41. [Google Scholar] [CrossRef]
- Huang, H.; Su, S.; Wu, N.; Wan, H.; Wan, S.; Bi, H.; Sun, L. Graphene-Based Sensors for Human Health Monitoring. Front. Chem. 2019, 7, 399. [Google Scholar] [CrossRef] [Green Version]
- Pilehvar, S.; De Wael, K. Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms. Biosensors 2015, 5, 712–735. [Google Scholar] [CrossRef] [Green Version]
- Spanu, D.; Binda, G.; Dossi, C.; Monticelli, D. Biochar as an Alternative Sustainable Platform for Sensing Applications: A Review. Microchem. J. 2020, 159, 105506. [Google Scholar] [CrossRef]
- Sant’Anna, M.V.S.; Carvalho, S.W.M.M.; Gevaerd, A.; Silva, J.O.S.; Santos, E.; Carregosa, I.S.C.; Wisniewski, A.; Marcolino-Junior, L.H.; Bergamini, M.F.; Sussuchi, E.M. Electrochemical Sensor Based on Biochar and Reduced Graphene Oxide Nanocomposite for Carbendazim Determination. Talanta 2020, 220, 121334. [Google Scholar] [CrossRef]
- Apetrei, I.M.; Apetrei, C. Study of Different Carbonaceous Materials as Modifiers of Screen-Printed Electrodes for Detection of Catecholamines. IEEE Sens. J. 2015, 15, 3094–3101. [Google Scholar] [CrossRef]
- Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S. Carbon Nanotubes: Properties, Synthesis, Purification, and Medical Applications. Nanoscale Res. Lett. 2014, 9, 393. [Google Scholar] [CrossRef] [Green Version]
- Apetrei, C.; Apetrei, I.M. Biosensor Based on Tyrosinase Immobilized on a Single-Walled Carbon Nanotube-Modified Glassy Carbon Electrode for Detection of Epinephrine. Int. J. Nanomed. 2013, 8, 4391–4398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, N.; Fazal, H.; Abbasi, B.H.; Farooq, S. Efficient free radical scavenging activity of Ginkgo biloba, Stevia rebaudiana and Parthenium hysterophorous leaves through DPPH (2, 2-diphenyl-1-picrylhydrazyl). Int. J. Phytomed. 2010, 2, 231–239. [Google Scholar]
- Arteaga, J.F.; Ruiz-Montoya, M.; Palma, A.; Alonso-Garrido, G.; Pintado, S.; Rodríguez-Mellado, J.M. Comparison of the Simple Cyclic Voltammetry (CV) and DPPH Assays for the Determination of Antioxidant Capacity of Active Principles. Molecules 2012, 17, 5126–5138. [Google Scholar] [CrossRef]
- De Siqueira Leite, K.C.; Garcia, L.F.; Lobón, G.S.; Thomaz, D.V.; Moreno, E.K.G.; De Carvalho, M.F.; Rocha, M.L.; Dos Santos, W.T.P.; De Souza Gil, E. Antioxidant Activity Evaluation of Dried Herbal Extracts: An Electroanalytical Approach. Rev. Bras. Farmacogn. 2018, 28, 325–332. [Google Scholar] [CrossRef]
- Katano, H.; Senda, M. Stripping Voltammetry of Mercury (II) and Lead (II) Ions at Liquid. Liq. Interface 1998, 14, 63–65. [Google Scholar]
- Chevion, S.; Roberts, M.A.; Chevion, M. Free Radical. Biol. Med. 2000, 28, 860–870. [Google Scholar]
- Tsierkezos, N.G. Cyclic Voltammetric Studies of Ferrocene in Nonaqueous Solvents in the Temperature Range from 248.15 to 298.15 K. J. Solut. Chem. 2007, 36, 289–302. [Google Scholar] [CrossRef]
- Mantle, D.; Wilkins, R.M.; Gok, M.A. Comparison of Antioxidant Activity in Commercial Ginkgo biloba Preparations. J. Altern. Complement. Med. 2003, 9, 625–629. [Google Scholar] [CrossRef]
- Ernst, E. The risk—Benefit profile of commonly used herbal therapies: Ginkgo, St. John’s wort, ginseng, echinacea, saw palmetto and kava. Ann. Intern. Med. 2002, 136, 42–53. [Google Scholar] [CrossRef]
- Chan, C.-P.; Xia, Q.; Fu, P.P. Ginkgo Biloba Leave Extract: Biological, Medicinal and Toxicological Effects. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2007, 25, 211–244. [Google Scholar] [CrossRef]
- Nakanishi, K. Chemistry and Biology of Terpene Trilactones from Ginkgo Biloba. Med. Aromat. Plants Ind. Profiles 2000, 12, 143–150. [Google Scholar]
- Sakabe, N.; Takada, S.; Okabe, K. The structure of ginkgolide A, a novel diterpenoid trilactone. Chem. Commun. 1967, 259–261. [Google Scholar] [CrossRef]
- Corey, E.J. Retrosynthetic thinking—Essentials and Examples. Chem. Soc. Rev. 1988, 17, 111–133. [Google Scholar] [CrossRef]
- Van Beek, T.A. Ginkgolides and bilobalide: Their physical, chromatographic and spectroscopic properties. Bioorg. Med. Chem. 2005, 13, 5001–5012. [Google Scholar] [CrossRef]
- Karak, P. Biological activities of flavonoids: An overview. Int. J. Pharm. Sci. Res. 2019, 10, 1567–1574. [Google Scholar]
- Nijveldt, R.J.; Van Nood, E.; Van Hoorn, D.E.; Boelens, P.G.; Van Norren, K.; Van Leeuwen, P.A. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 2001, 74, 418–425. [Google Scholar] [CrossRef]
- Stangl, V.; Dreger, H.; Stangl, K.; Lorenz, M. Molecular targets of tea polyphenols in the cardiovascular system. Cardiovasc. Res. 2007, 73, 348–358. [Google Scholar] [CrossRef]
- Arts, I.C.; Hollman, P.C. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 2005, 81, 317S–325S. [Google Scholar] [CrossRef] [Green Version]
- Middleton, E.; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease and cancer. Pharmacol. Rev. 2000, 52, 673–751. [Google Scholar]
- Apetrei, I.M.; Apetrei, C. A Modified Nanostructured Graphene-Gold Nanoparticle Carbon Screen-Printed Electrode for the Sensitive Voltammetric Detection of Rutin. Measurement 2018, 114, 37–43. [Google Scholar] [CrossRef]
- Ricci, A.; Parpinello, G.P.; Teslić, N.; Kilmartin, P.A.; Versari, A. Suitability of the Cyclic Voltammetry Measurements and DPPH Spectrophotometric Assay to Determine the Antioxidant Capacity of Food-Grade Oenological Tannins. Molecules 2019, 24, 2925. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunache, R.O.; Apetrei, C. Estimation of Active Compounds Quantity from Pharmaceuticals Based on Ginkgo biloba. Chemosensors 2020, 8, 110. https://doi.org/10.3390/chemosensors8040110
Gunache RO, Apetrei C. Estimation of Active Compounds Quantity from Pharmaceuticals Based on Ginkgo biloba. Chemosensors. 2020; 8(4):110. https://doi.org/10.3390/chemosensors8040110
Chicago/Turabian StyleGunache (Roșca), Ramona Oana, and Constantin Apetrei. 2020. "Estimation of Active Compounds Quantity from Pharmaceuticals Based on Ginkgo biloba" Chemosensors 8, no. 4: 110. https://doi.org/10.3390/chemosensors8040110
APA StyleGunache, R. O., & Apetrei, C. (2020). Estimation of Active Compounds Quantity from Pharmaceuticals Based on Ginkgo biloba. Chemosensors, 8(4), 110. https://doi.org/10.3390/chemosensors8040110