AgNWs@TiO2 and AgNPs@TiO2 Double-Layer Photoanode Film Improving Light Capture and Application under Low Illumination †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Preparation of Silver Nanowires by Polyol Method
2.3. Preparation of Film Colloid
2.4. Fabrication of DSSCs
2.5. Measurements and Characterization
3. Results
3.1. Morphology of AgNWs and Photoanode Thin Film
3.2. Photovoltaic Performance of DSSCs
3.3. Electrochemical Impedance Spectroscopy of DSSC
3.4. Performance of DSSC under Different Light Intensities
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, K.-N.; Kim, W.-B.; Lee, C.S.; Lee, J.-S. Enhancement of Photoelectric Efficiency in a Dye-sensitized Solar Cell Using Hollow TiO2 Nanoparticles as an Overlayer. Bull. Korean Chem. Soc. 2013, 34, 1853–1856. [Google Scholar] [CrossRef] [Green Version]
- Lou, Y.; Yuan, S.; Zhao, Y.; Hu, P.; Wang, Z.; Zhang, M.; Shi, L.; Li, D. A simple route for decorating TiO2 nanoparticle over ZnO aggregates dye-sensitized solar cell. Chem. Eng. J. 2013, 229, 190–196. [Google Scholar] [CrossRef]
- Solaiyammal, T.; Murugakoothan, P. Green synthesis of Au and Au@ TiO2 core–shell structure formation by hydrothermal method for dye sensitized solar cell applications. J. Mater. Sci. Mater. Electron. 2018, 29, 491–499. [Google Scholar] [CrossRef]
- Arifin, Z.; Suyitno, S.; Hadi, S.; Sutanto, B. Improved performance of dye-sensitized solar cells with TiO2 nanoparticles/Zn-doped TiO2 hollow fiber photoanodes. Energies 2018, 11, 2922. [Google Scholar] [CrossRef] [Green Version]
- Zapata-Cruz, J.; Armendáriz-Mireles, E.N.; Rocha-Rangel, E.; Suarez-Velazquez, G.; González-Quijano, D.; Pech-Rodríguez, W. Implementation of taguchi method to investigate the effect of electrophoretic deposition parameters of SnO2 on dye sensitised solar cell performance. Mater. Technol. 2019, 34, 549–557. [Google Scholar] [CrossRef]
- Pace, S.; Resmini, A.; Tredici, I.G.; Soffientini, A.; Li, X.; Dunn, S.; Briscoe, J.; Anselmi-Tamburini, U. Optimization of 3D ZnO brush-like nanorods for dye-sensitized solar cells. RSC Adv. 2018, 8, 9775–9782. [Google Scholar] [CrossRef] [Green Version]
- Rehman, S.U.; Noman, M.; Khan, A.D.; Saboor, A.; Ahmad, M.S.; Khan, H.U. Synthesis of polyvinyl acetate/graphene nanocomposite and its application as an electrolyte in dye sensitized solar cells. Optik 2020, 202, 163591. [Google Scholar] [CrossRef]
- Mehmood, U.; Asghar, H.; Babar, F.; Younas, M. Effect of graphene contents in polyaniline/graphene composites counter electrode material on the photovoltaic performance of dye-sensitized solar cells (DSSCSs). Sol. Energy 2020, 196, 132–136. [Google Scholar] [CrossRef]
- Lee, S.U.; Choi, W.S.; Hong, B. A comparative study of dye-sensitized solar cells added carbon nanotubes to electrolyte and counter electrodes. Sol. Energy Mater. Sol. Cells 2010, 94, 680–685. [Google Scholar] [CrossRef]
- Nien, Y.-H.; Chen, H.-H.; Hsu, H.-H.; Kuo, P.-Y.; Chou, J.-C.; Lai, C.-H.; Hu, G.-M.; Kuo, C.-H.; Ko, C.-C. Enhanced photovoltaic conversion efficiency in dye-sensitized solar cells based on photoanode consisting of TiO2/GO/Ag nanofibers. Vacuum 2019, 167, 47–53. [Google Scholar] [CrossRef]
- Park, Y.; Bormann, L.; Müller-Meskamp, L.; Vandewal, K.; Leo, K. Efficient flexible organic photovoltaics using silver nanowires and polymer based transparent electrodes. Org. Electron. 2016, 36, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Luan, X.; Wang, Y. Plasmon-enhanced performance of dye-sensitized solar cells based on electrodeposited Ag nanoparticles. J. Mater. Sci. Technol. 2014, 30, 1–7. [Google Scholar] [CrossRef]
- Ihara, M.; Kanno, M.; Inoue, S. Photoabsorption-enhanced dye-sensitized solar cell by using localized surface plasmon of silver nanoparticles modified with polymer. Phys. E Low Dimens. Syst. Nanostruct. 2010, 42, 2867–2871. [Google Scholar] [CrossRef]
- Lee, K.S.; Park, Y.H.; Roy, A.K.; Park, B.; Park, S.Y.; In, I. Formulation of silver nanowire–reduced graphene oxide hybrid transparent electrodes by using catechol-functionalized poly (vinylpyrrolidone). Chem. Lett. 2014, 43, 723–725. [Google Scholar] [CrossRef]
- Zhang, D.; Qi, L.; Yang, J.; Ma, J.; Cheng, H.; Huang, L. Wet chemical synthesis of silver nanowire thin films at ambient temperature. Chem. Mater. 2004, 16, 872–876. [Google Scholar] [CrossRef]
- Lin, J.-Y.; Hsueh, Y.-L.; Huang, J.-J. The concentration effect of capping agent for synthesis of silver nanowire by using the polyol method. J. Solid State Chem. 2014, 214, 2–6. [Google Scholar] [CrossRef]
- Akbar, J.; Zeb, K.; Anwar, A.; Naeem, A.M.; Abid, K.; Sultana, N.; Khan, M.N.; Akhtar, K. Effect of TiO2 dense layer thickness on efficiency improvement of dye sensitized solar cells. Optoelectron. Adv. Mater. Rapid Commun. 2018, 12, 319–321. [Google Scholar]
- Hemmati, S.; Harris, M.T.; Barkey, D.P. Polyol silver nanowire synthesis and the outlook for a green process. J. Nanomater. 2020, 2020. [Google Scholar] [CrossRef]
- Teymouri, Z.; Naji, L.; Fakharan, Z. The influences of polyol process parameters on the optoelectronic characteristics of AgNWs-based flexible electrodes and their application in ITO-free polymer solar cells. Org. Electron. 2018, 62, 621–629. [Google Scholar] [CrossRef]
- Kumar, A.; Karadan, P.; Barshilia, H.C. Synthesis of silver nanowires towards the development the ultrasensitive AgNWs/SiNPLs hybrid photodetector and flexible transparent conductor. Mater. Sci. Semicond. Process. 2018, 75, 239–246. [Google Scholar] [CrossRef]
- Huang, P.-C.; Chen, T.-Y.; Wang, Y.-L.; Wu, C.-Y.; Lin, T.-L. Improving interfacial electron transfer and light harvesting in dye-sensitized solar cells by using Ag nanowire/TiO2 nanoparticle composite films. RSC Adv. 2015, 5, 70172–70177. [Google Scholar] [CrossRef]
- Selvapriya, R.; Abhijith, T.; Ragavendran, V.; Sasirekha, V.; Reddy, V.; Mayandi, J. Screen printed multifunctional TiO2 photoanode with plasmonic Ag nanoparticles for performance enhancement of dye sensitized solar cell. Mater. Lett. 2020, 276, 128194. [Google Scholar] [CrossRef]
- Erwin, W.R.; Zarick, H.F.; Talbert, E.M.; Bardhan, R. Light trapping in mesoporous solar cells with plasmonic nanostructures. Energy Environ. Sci. 2016, 9, 1577–1601. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Moser, J.-E.; Grätzel, M. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B 2005, 109, 14945–14953. [Google Scholar] [CrossRef] [Green Version]
- Solaiyammal, T.; Muniyappan, S.; Keerthana, B.G.T.; Nemala, S.S.; Bhargava, P.; Murugakoothan, P. Green synthesis of Ag and the effect of Ag on the efficiency of TiO2 based dye sensitized solar cell. J. Mater. Sci. Mater. Electron. 2017, 28, 15423–15434. [Google Scholar] [CrossRef]
- Hirakawa, T.; Kamat, P.V. Charge separation and catalytic activity of Ag@ TiO2 core− shell composite clusters under UV− irradiation. J. Am. Chem. Soc. 2005, 127, 3928–3934. [Google Scholar] [CrossRef] [PubMed]
- Sudeep, P.; Takechi, K.; Kamat, P.V. Harvesting photons in the infrared. Electron injection from excited tricarbocyanine dye (IR-125) into TiO2 and Ag@ TiO2 core− shell nanoparticles. J. Phys. Chem. C 2007, 111, 488–494. [Google Scholar] [CrossRef]
- Bisquert, J.; Fabregat-Santiago, F.; Mora-Sero, I.; Garcia-Belmonte, G.; Gimenez, S. Electron lifetime in dye-sensitized solar cells: Theory and interpretation of measurements. J. Phys. Chem. C 2009, 113, 17278–17290. [Google Scholar] [CrossRef]
- Huang, Y.-J.; Lee, C.-P.; Pang, H.-W.; Li, C.-T.; Fan, M.-S.; Vittal, R.; Ho, K.-C. Microemulsion-controlled synthesis of CoSe2/CoSeO3 composite crystals for electrocatalysis in dye-sensitized solar cells. Mater. Today Energy 2017, 6, 189–197. [Google Scholar] [CrossRef]
- Nien, Y.-H.; Chen, H.-H.; Hsu, H.-H.; Rangasamy, M.; Hu, G.-M.; Yong, Z.-R.; Kuo, P.-Y.; Chou, J.-C.; Lai, C.-H.; Ko, C.-C. Study of how photoelectrodes modified by TiO2/Ag nanofibers in various structures enhance the efficiency of dye-sensitized solar cells under low illumination. Energies 2020, 13, 2248. [Google Scholar] [CrossRef]
Photoanode | VOC (V) | JSC (mA/cm2) | Fill Factor (%) | η (%) |
---|---|---|---|---|
DSSC 1 (pure TiO2) | 0.719 ± 0.00 | 8.26 ± 0.11 | 64.65 ± 0.73 | 4.02 ± 0.15 |
DSSC 2 (1 wt% AgNWs@TiO2 + TiO2) | 0.74 ± 0.01 | 9.18 ± 0.23 | 61.99 ± 0.68 | 4.47 ± 0.25 |
DSSC 3 (2 wt% AgNWs@TiO2 + TiO2) | 0.74 ± 0.01 | 10.04 ± 0.20 | 66.31 ± 0.59 | 4.93 ± 0.16 |
DSSC 4 (3 wt% AgNWs@TiO2 + TiO2) | 0.73 ± 0.01 | 11.15 ± 0.14 | 65.49 ± 0.79 | 5.31 ± 0.06 |
DSSC 5 (3 wt% AgNWs@TiO2 + 1 wt% AgNPs@TiO2 | 0.75 ± 0.01 | 15.02 ± 0.23 | 56.72 ± 0.68 | 6.38 ± 0.25 |
3 wt% AgNWs + P25 [21] | 0.75 | 12.01 | 0.59 | 5.31 |
4 wt% AgNWs + P25 [21] | 0.76 | 10.44 | 0.59 | 4.70 |
Ag-TiO2 [22] | 0.78 | 11.10 | 0.65 | 5.62 |
Photoanode | RS (Ω) | C1 (μF) | R1 (Ω) | C2 (mF) | R2 (Ω) | τn (ms) |
---|---|---|---|---|---|---|
DSSC 1 (pure TiO2) | 20.46 | 18.2 | 15.05 | 0.29 | 134.6 | 39.03 |
DSSC 2 (1 wt% AgNWs@TiO2 + TiO2) | 18.06 | 19.2 | 15.67 | 0.34 | 109.3 | 37.16 |
DSSC 3 (2 wt% AgNWs@TiO2 + TiO2) | 13.89 | 21.2 | 13.41 | 0.48 | 97.1 | 46.60 |
DSSC 4 (3 wt% AgNWs@TiO2 + TiO2) | 14.25 | 19.1 | 13.21 | 0.54 | 89.3 | 48.22 |
DSSC 5 (3 wt% AgNWs@TiO2 + 1 wt% AgNPs@TiO2) | 17.23 | 18.1 | 12.12 | 0.54 | 87.4 | 47.19 |
Photoanode | Intensity (mW/cm2) | VOC (V) | JSC (mA/cm2) | Fill Factor (%) | η (%) |
---|---|---|---|---|---|
3 wt% AgNWs@TiO2 + TiO2 | 100 | 0.73 ± 0.02 | 11.15 ± 0.14 | 65.49 ± 0.79 | 5.31 ± 0.06 |
80 | 0.72 ± 0.01 | 10.80 ± 0.15 | 56.64 ± 0.56 | 5.35 ± 0.05 | |
50 | 0.71 ± 0.00 | 7.21 ± 0.21 | 62.73 ± 0.19 | 5.84 ± 0.03 | |
30 | 0.71 ± 0.01 | 4.67 ± 0.17 | 65.10 ± 0.96 | 6.17 ± 0.05 | |
10 | 0.65 ± 0.00 | 1.52 ± 0.09 | 70.29 ± 0.67 | 6.49 ± 0.09 | |
3 wt% AgNWs@TiO2 + 1 wt% AgNPs@TiO2 | 100 | 0.75 ± 0.01 | 15.02 ± 0.23 | 56.72 ± 0.68 | 6.38 ± 0.25 |
80 | 0.74 ± 0.01 | 12.38 ± 0.12 | 58.81 ± 0.49 | 6.40 ± 0.16 | |
50 | 0.73 ± 0.01 | 8.12 ± 0.09 | 62.54 ± 0.11 | 6.83 ± 0.20 | |
30 | 0.72 ± 0.00 | 5.31 ± 0.12 | 65.10 ± 0.26 | 7.42 ± 0.11 | |
10 | 0.62 ± 0.01 | 1.72 ± 0.04 | 70.59 ± 0.37 | 8.78 ± 0.05 | |
Counter electrode of CoSe2/CoSeO3-NP [29] | 100 | 0.81 | 15.88 | 71 | 9.27 |
50 | 0.78 | 8.11 | 72 | 9.31 | |
10 | 0.72 | 1.82 | 72 | 9.41 | |
TiO2/Ag NF [30] | 100 | 0.73 ± 0.01 | 10.05 ± 0.09 | 69.92 ± 0.51 | 5.13 ± 0.16 |
80 | 0.72 ± 0.02 | 8.29 ± 0.12 | 70.75 ± 0.47 | 6.40 ± 0.14 | |
50 | 0.71 ± 0.01 | 5.60 ± 0.14 | 71.84 ± 0.48 | 5.71 ± 0.12 | |
30 | 0.70 ± 0.01 | 3.67 ± 0.13 | 72.66 ± 0.45 | 6.23 ± 0.16 | |
10 | 0.69 ± 0.02 | 1.08 ± 0.13 | 70.83 ± 0.46 | 5.31 ± 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, J.-C.; Lin, Y.-C.; Lai, C.-H.; Kuo, P.-Y.; Nien, Y.-H.; Syu, R.-H.; Yong, Z.-R.; Wu, Y.-T. AgNWs@TiO2 and AgNPs@TiO2 Double-Layer Photoanode Film Improving Light Capture and Application under Low Illumination. Chemosensors 2021, 9, 36. https://doi.org/10.3390/chemosensors9020036
Chou J-C, Lin Y-C, Lai C-H, Kuo P-Y, Nien Y-H, Syu R-H, Yong Z-R, Wu Y-T. AgNWs@TiO2 and AgNPs@TiO2 Double-Layer Photoanode Film Improving Light Capture and Application under Low Illumination. Chemosensors. 2021; 9(2):36. https://doi.org/10.3390/chemosensors9020036
Chicago/Turabian StyleChou, Jung-Chuan, Yu-Che Lin, Chih-Hsien Lai, Po-Yu Kuo, Yu-Hsun Nien, Ruei-Hong Syu, Zhen-Rong Yong, and Yi-Ting Wu. 2021. "AgNWs@TiO2 and AgNPs@TiO2 Double-Layer Photoanode Film Improving Light Capture and Application under Low Illumination" Chemosensors 9, no. 2: 36. https://doi.org/10.3390/chemosensors9020036
APA StyleChou, J. -C., Lin, Y. -C., Lai, C. -H., Kuo, P. -Y., Nien, Y. -H., Syu, R. -H., Yong, Z. -R., & Wu, Y. -T. (2021). AgNWs@TiO2 and AgNPs@TiO2 Double-Layer Photoanode Film Improving Light Capture and Application under Low Illumination. Chemosensors, 9(2), 36. https://doi.org/10.3390/chemosensors9020036