Preliminary Studies of Perovskite-Loaded Plastic Scintillator Prototypes for Radioactive Strontium Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plastic Scintillator Fabrication
2.3. Optical and Structural Properties of the Perovskite-Loaded Epoxy-Based Scintillator
2.4. MCNP 6 Simulation for the Plastic Scintillator Thickness
2.5. Device Setup for Strontium Detection
3. Results and Discussion
3.1. MCNP 6 Simulation for Scintillator Geometry Optimization
3.2. Fabrication and Characterization of Epoxy-Based POPOP or Perovskite-Loaded Scintillator
3.3. Strontium Measurement and Detection Efficiency
3.4. Scintillation Process and Radiation Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dlouhy, Z.; Crégut, A.; Genova, M.; Cross, M.T.; Reisenweaver, D.W.; Laraia, M.; Cross, M.T.; Sivintsev, Y.; Smith, R.I. Radio-logical Characterization of Shut Down Nuclear Reactors for Decommissioning Purposes; Technical Reports Series No. 389; IAEA: Vienna, Austria, 1998. [Google Scholar]
- Friedli, C.; Geering, J.J.; Lerch, P. Some aspects of the behaviour of 90Sr in the environment. Radiochim. Acta 1991, 52–53, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Putra, D.I.P.; Prihatiningsih, W.R.; Makmur, M.; Yahya, M.N.; Priasetyono, Y.; Suseno, H. A review on determination of 90Sr from alkaline waters using precipitation of Ca(OH)2 and Ba(Ra)SO4. IOP Conf. Ser. Earth Environ. Sci. 2020, 584. [Google Scholar] [CrossRef]
- Saniewski, M.; Zalewska, T. 90Sr in Zostera marina from the Gulf of Gdańsk (southern Baltic Sea). Oceanol. Hydrobiol. Stud. 2017, 46, 24–29. [Google Scholar] [CrossRef]
- Yoon, S.K.; Seo, H.; Lee, C.; Ahn, S.K.; Kim, H.D. A State of the Art on Technology of Fast Neutron Measurement Based on Organic Scintillators; Korea Atomic Energy Research Institute: DaeJeon, Korea, 2018. [Google Scholar]
- Ferreira, C.A.; Ehlerding, E.B.; Rosenkrans, Z.T.; Jiang, D.; Sun, T.; Aluicio-Sarduy, E.; Engle, J.W.; Ni, D.; Cai, W. 86/90Y-labeled monoclonal antibody targeting tissue factor for pancreatic cancer theranostics. Mol. Pharm. 2020, 17, 1697–1705. [Google Scholar] [CrossRef] [PubMed]
- Naranjo, B.; Gimzewski, J.K.; Putterman, S.J. Observation of nuclear fusion driven by a pyroelectric crystal. Nat. Cell Biol. 2005, 434, 1115–1117. [Google Scholar] [CrossRef]
- Arikawa, Y.; Yamanoi, K.; Nakazato, T.; Estacio, E.S.; Shimizu, T.; Sarukura, N.; Nakai, M.; Norimatsu, T.; Azechi, H.; Murata, T.; et al. Pr3+-doped fluoro-oxide lithium glass as scintillator for nuclear fusion diagnostics. Rev. Sci. Instrum. 2009, 80, 113504. [Google Scholar] [CrossRef]
- Del Sordo, S.; Abbene, L.; Caroli, E.; Mancini, A.M.; Zappettini, A.; Ubertini, P. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors 2009, 9, 3491–3526. [Google Scholar] [CrossRef] [PubMed]
- Osborn, J.; Fohring, D.; Dhillon, V.S.; Wilson, R.W. Atmospheric scintillation in astronomical photometry. Mon. Not. R. Astron. Soc. 2015, 452, 1707–1716. [Google Scholar] [CrossRef]
- Undagoitia, T.M.; Von Feilitzsch, F.; Göger-Neff, M.; Hochmuth, K.; Oberauer, L.; Potzel, W.; Wurm, M. Low energy neutrino astronomy with the large liquid scintillation detector LENA. Prog. Part. Nucl. Phys. 2006, 57, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Milbrath, B.; Peurrung, A.; Bliss, M.; Weber, W. Radiation detector materials: An overview. J. Mater. Res. 2008, 23, 2561–2581. [Google Scholar] [CrossRef]
- Hajagos, T.J.; Liu, C.; Cherepy, N.J.; Pei, Q. High-Z sensitized plastic scintillators: A review. Adv. Mater. 2018, 30, e1706956. [Google Scholar] [CrossRef]
- McKigney, E.A.; Del Sesto, R.E.; Jacobsohn, L.G.; Santi, P.A.; Muenchausen, R.E.; Ott, K.C.; McCleskey, T.M.; Bennett, B.L.; Smith, J.F.; Cooke, D.W. Nanocomposite scintillators for radiation detection and nuclear spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2007, 579, 15–18. [Google Scholar] [CrossRef]
- L’Annunziata, M.F. Radioactivity, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2016; pp. 167–201. [Google Scholar]
- Cerrito, L. Radiation and Detectors; Springer: Berlin, Germany, 2017. [Google Scholar] [CrossRef]
- Lowdon, M.; Martin, P.G.; Hubbard, M.; Taggart, M.; Connor, D.T.; Verbelen, Y.; Sellin, P.; Scott, T.B. Evaluation of Scintillator Detection Materials for Application within Airborne Environmental Radiation Monitoring. Sensors 2019, 19, 3828. [Google Scholar] [CrossRef] [Green Version]
- Miller, T.G.; Makky, W.H. Application of fast neutron spectroscopy/radiography to airport security. Soc. Opt. Photon. 1993, 184–196. [Google Scholar] [CrossRef]
- Kang, Z.; Zhang, Y.; Menkara, H.; Wagner, B.K.; Summers, C.J.; Lawrence, W.; Nagarkar, V. CdTe quantum dots and polymer nanocomposites for x-ray scintillation and imaging. Appl. Phys. Lett. 2011, 98, 181914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buranurak, S.; Andersen, C.E. Fiber optically coupled radioluminescence detectors: A short review of key strengths and weaknesses of BCF-60 and Al2O3:C scintillating-material based systems in radiotherapy dosimetry applications. J. Phys. Conf. Ser. 2017, 860, 12028. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Wu, J.; Ou, X.; Huang, B.; Almutlaq, J.; Zhumekenov, A.A.; Guan, X.; Han, S.; Liang, L.; Yi, Z.; et al. All-inorganic perovskite nanocrystal scintillators. Nat. Cell Biol. 2018, 561, 88–93. [Google Scholar] [CrossRef]
- Yin, W.-J.; Yang, J.-H.; Kang, J.; Yan, Y.; Wei, S.-H. Halide perovskite materials for solar cells: A theoretical review. J. Mater. Chem. A 2014, 3, 8926–8942. [Google Scholar] [CrossRef]
- Shang, Y.; Ning, Z. Colloidal quantum-dots surface and device structure engineering for high-performance light-emitting diodes. Natl. Sci. Rev. 2017, 4, 170–183. [Google Scholar] [CrossRef]
- Lim, J.; Bae, W.K.; Kwak, J.; Lee, S.; Lee, C.; Char, K. Perspective on synthesis, device structures, and printing processes for quantum dot displays. Opt. Mater. Express 2012, 2, 594–628. [Google Scholar] [CrossRef]
- Shirasaki, Y.; Supran, G.J.; Bawendi, M.G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photon. 2012, 7, 13–23. [Google Scholar] [CrossRef]
- Lee, U.; Choi, W.N.; Kim, M.J.; Kim, H.R. In situ beta radiation monitoring system with enhanced efficiency for water samples from decommissioned nuclear environment. Rev. Sci. Instrum. 2019, 90, 025103. [Google Scholar] [CrossRef] [PubMed]
- Cieślak, M.; Gamage, K.; Glover, R.; Taylor, C. Pulse shape discrimination performance of a pixelated plastic scintillator (EJ-299-34) for a coded-aperture based dual particle imaging system. J. Instrum. 2019, 14, P07017. [Google Scholar] [CrossRef]
- LaPlace, T.; Goldblum, B.; Brown, J.; Bleuel, D.; Brand, C.; Gabella, G.; Jordan, T.; Moore, C.; Munshi, N.; Sweger, Z.; et al. Low energy light yield of fast plastic scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2020, 954, 161444. [Google Scholar] [CrossRef]
- Sutton, R.J.; Eperon, G.E.; Miranda, L.; Parrott, E.S.; Kamino, B.A.; Patel, J.B.; Hörantner, M.T.; Johnston, M.B.; Haghighirad, A.A.; Moore, D.T.; et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 2016, 6. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, Y. Chemical stability and instability of inorganic halide perovskites. Energy Environ. Sci. 2019, 12, 1495–1511. [Google Scholar] [CrossRef]
- Guhrenz, C.; Benad, A.; Ziegler, C.; Haubold, D.; Gaponik, N.; Eychmüller, A. Solid-state anion exchange reactions for color tuning of CsPbX3 perovskite nanocrystals. Chem. Mater. 2016, 28, 9033–9040. [Google Scholar] [CrossRef]
- Jin, Y.; Sun, Y.; Wang, K.; Chen, Y.; Liang, Z.; Xu, Y.; Xiao, F. Long-term stable silver nanowire transparent composite as bottom electrode for perovskite solar cells. Nano Res. 2017, 11, 1998–2011. [Google Scholar] [CrossRef]
- Cho, H.; Jeong, S.-H.; Park, M.-H.; Kim, Y.-H.; Wolf, C.; Lee, C.-L.; Heo, J.H.; Sadhanala, A.; Myoung, N.; Yoo, S.; et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 2015, 350, 1222–1225. [Google Scholar] [CrossRef]
- Hoogland, S.; Sukhovatkin, V.; Howard, I.; Cauchi, S.; Levina, L.; Sargent, E.H. A solution-processed 1.53 μm quantum dot laser with temperature-invariant emission wavelength. Opt. Express 2006, 14, 3273–3281. [Google Scholar] [CrossRef]
- Adachi, M.M.; Fan, F.; Sellan, D.P.; Hoogland, S.; Voznyy, O.; Houtepen, A.J.; Parrish, K.D.; Kanjanaboos, P.; Malen, J.A.; Sargent, E.H. Microsecond-sustained lasing from colloidal quantum dot solids. Nat. Commun. 2015, 6, 8694. [Google Scholar] [CrossRef]
- Chen, C.W.; Wu, D.Y.; Chan, Y.C.; Lin, C.C.; Chung, P.H.; Hsiao, M.; Liu, R.S. Evaluations of the chemical stability and cy-totoxicity of CuInS2 and CuInS2/ZnS core/shell quantum dots. Phys. Chem. 2015, 119, 2852. [Google Scholar]
- Zhang, M.; Zheng, Z.; Fu, Q.; Chen, Z.; He, J.; Zhang, S.; Yan, L.; Hu, Y.; Luo, W. Growth and characterization of all-inorganic lead halide perovskite semiconductor CsPbBr3 single crystals. CrystEngComm 2017, 19, 6797–6803. [Google Scholar] [CrossRef]
- Richter, J.M.; Abdi-Jalebi, M.; Sadhanala, A.; Tabachnyk, M.; Rivett, J.P.; Pazos-Outón, L.M.; Gödel, K.C.; Price, M.B.; Deschler, F.A.; Friend, R.H. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nat. Commun. 2016, 7, 13941. [Google Scholar] [CrossRef] [Green Version]
- Miao, Y.; Ke, Y.; Wang, N.; Zou, W.; Xu, M.; Cao, Y.; Sun, Y.; Yang, R.; Wang, Y.; Tong, Y.; et al. Stable and bright formamidinium-based perovskite light-emitting diodes with high energy conversion efficiency. Nat. Commun. 2019, 10, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, L.C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Espallargas, G.M.; Bolink, H.J.; Galian, R.E.; Pérez-Prieto, J. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 2014, 136, 850–853. [Google Scholar] [CrossRef]
- Mary, V.C.V.; Rajeev, K.K.; Jayaraj, M.K. Stokes shift engineered, stable core-shell perovskite nanoparti-cle—poly(methy-methacrylate) composites with high photoluminescence quantum yield. Opt. Mater. 2019, 94, 241–248. [Google Scholar] [CrossRef]
- Liu, J.; Xue, Y.; Wang, Z.; Xu, Z.-Q.; Zheng, C.; Weber, B.; Song, J.; Wang, Y.; Lu, Y.; Zhang, Y.; et al. Two-dimensional CH3NH3PbI3 perovskite: Synthesis and optoelectronic application. ACS Nano 2016, 10, 3536–3542. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-C.; Bao, Z.; Tsai, H.-Y.; Tang, A.-C.; Liu, R.-S. Perovskite quantum dots and their application in light-emitting diodes. Small 2017, 14. [Google Scholar] [CrossRef]
- Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937. [Google Scholar] [CrossRef] [Green Version]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, E.T.; Vaziri, K.; Krueger, F.P.; Cossairt, J.D. Determination of the secondary electron equilibrium using an extrap-olation chamber (FNAL/C--96/318). In Proceedings of the Health Physics Society 1997 Midyear Topical Meeting, San Jose, CA, USA, 5–8 January 1997; Volume 28, p. 12. [Google Scholar]
- Nam, J.S.; Choi, Y.S.; Hong, S.B.; Seo, B.K.; Moon, J.K.; Choi, J.W. Study on the characteristics of a scintillator for beta-ray detection using epoxy resin. EPJ Web Conf. 2017, 153, 07005. [Google Scholar] [CrossRef] [Green Version]
- Tam, A.K.; Boyraz, O.; Unangst, J.; Nazareta, P.; Schreuder, M.; Nilsson, M. Quantum-dot doped polymeric scintillation ma-terial for radiation detection. Radiat. Meas. 2018, 111, 27–34. [Google Scholar] [CrossRef]
- Kessler, M.J. Liquid Scintillation Analysis; PerkinElmer: Waltham, MA, USA, 2015. [Google Scholar]
- Bowen, M.; Majewski, S.; Pettey, D.; Walker, J.; Wojcik, R.; Zorn, C. A new radiation-hard plastic scintillator. Nucl. Instrum. Methods Phys. Res. Sec. A Accel. Spectrom. Detect. Assoc. Equip. 1989, 276, 391–393. [Google Scholar] [CrossRef]
- Kawano, N.; Shinozaki, K.; Nakauchi, D.; Kimura, H.; Yanagida, T. Scintillation properties of organic–inorganic layered perovskite nanocrystals in glass. J. Appl. Phys. 2020, 127, 213103. [Google Scholar] [CrossRef]
- Yu, D.; Wang, P.; Cao, F.; Gu, Y.; Liu, J.; Han, Z.; Huang, B.; Zou, Y.; Xu, X.; Zeng, H. Two-dimensional halide perovskite as β-ray scintillator for nuclear radiation monitoring. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gandini, M.; Villa, I.; Beretta, M.; Gotti, C.; Imran, M.; Carulli, F.; Fantuzzi, E.; Sassi, M.; Zaffalon, M.; Brofferio, C.; et al. Efficient, fast and reabsorption-free perovskite nanocrystal-based sensitized plastic scintillators. Nat. Nanotechnol. 2020, 15, 462–468. [Google Scholar] [CrossRef] [PubMed]
Plastic Scintillator | Epoxy + Hardener Monomer | PPO | POPOP | Perovskite |
---|---|---|---|---|
Epoxy/PPO/POPOP | Each 10 g | 0.2 wt% | 0.01 wt% | – |
Epoxy/PPO/perovskite | Each 10 g | 0.2 wt% | – | 0.5 wt% |
Source | 90Sr |
---|---|
Activity (kBq) | 18.04 Bq |
β-Emax (MeV) (decay probability) | 0.546/2.278 |
BC-400 | Epoxy-PPO/POPOP | Epoxy-PPO/Perovskite | ||||
---|---|---|---|---|---|---|
source | Net count rate (cps) | Efficiency (%) | Net count rate (cps)] | Efficiency (%) | Net count rate (cps) | Efficiency (%) |
90Sr | 3286 ± 105.12σ | 20.05% | 1406 ± 1.4σ | 8.58 | 2903 ± 49.24σ | 17.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, H.; Min, S.; Seo, B.; Roh, C.; Hong, S.; Cheong, J.H. Preliminary Studies of Perovskite-Loaded Plastic Scintillator Prototypes for Radioactive Strontium Detection. Chemosensors 2021, 9, 53. https://doi.org/10.3390/chemosensors9030053
Kang H, Min S, Seo B, Roh C, Hong S, Cheong JH. Preliminary Studies of Perovskite-Loaded Plastic Scintillator Prototypes for Radioactive Strontium Detection. Chemosensors. 2021; 9(3):53. https://doi.org/10.3390/chemosensors9030053
Chicago/Turabian StyleKang, Hara, Sujung Min, Bumkyung Seo, Changhyun Roh, Sangbum Hong, and Jae Hak Cheong. 2021. "Preliminary Studies of Perovskite-Loaded Plastic Scintillator Prototypes for Radioactive Strontium Detection" Chemosensors 9, no. 3: 53. https://doi.org/10.3390/chemosensors9030053
APA StyleKang, H., Min, S., Seo, B., Roh, C., Hong, S., & Cheong, J. H. (2021). Preliminary Studies of Perovskite-Loaded Plastic Scintillator Prototypes for Radioactive Strontium Detection. Chemosensors, 9(3), 53. https://doi.org/10.3390/chemosensors9030053